
Meridian: A Lightweight Network Location Service without
Virtual Coordinates

Bernard Wong Aleksandrs Slivkins Emin Gün Sirer
Dept. of Computer Science, Cornell University, Ithaca, NY 14853

{bwong, slivkins, egs}@cs.cornell.edu

ABSTRACT
This paper introduces a lightweight, scalable and accurate frame-
work, called Meridian, for performing node selection based on net-
work location. The framework consists of an overlay network struc-
tured around multi-resolution rings, query routing with direct mea-
surements, and gossip protocols for dissemination. We show how
this framework can be used to address three commonly encountered
problems, namely, closest node discovery, central leader election,
and locating nodes that satisfy target latency constraints in large-
scale distributed systems without having to compute absolute coor-
dinates. We show analytically that the framework is scalable with
logarithmic convergence when Internet latencies are modeled as a
growth-constrained metric, a low-dimensional Euclidean metric, or
a metric of low doubling dimension. Large scale simulations, based
on latency measurements from 6.25 million node-pairs as well as
an implementation deployed on PlanetLab show that the framework
is accurate and effective.

Categories and Subject Descriptors: C.2.1 [Computer-Communi-
cation Networks]: Network Architecture and Design—Network topology

General Terms: Algorithms, Design, Measurement, Performance

Keywords: Node selection, Network locality, Nearest neighbor

1. INTRODUCTION
Selecting nodes based on their location in the network is a ba-

sic building block for many distributed systems. In small systems,
it is possible to perform extensive measurements and make de-
cisions based on global information. For instance, in an online
game with few servers, a client can simply measure its latency
to all servers and bind to the closest one for minimal response
time. However, collecting global information is infeasible for a
significant set of recently emerging large-scale distributed applica-
tions, where global information is unwieldy and lack of centralized
servers makes it difficult to find nodes that fit selection criteria. Yet
many distributed applications, such as filesharing networks, content
distribution networks, backup systems, anonymous communication
networks, pub-sub systems, discovery services, and multi-player
online games could benefit substantially from selecting nodes based
on their location in the network.

A general technique for finding nodes that optimize a given net-
work metric is to perform a network embedding, that is, to map
high-dimensional network measurements into a location in a smaller
Euclidean space. For instance, recent work in network position-
ing [42, 15, 40, 57, 52, 44, 12, 43, 39] uses large vectors of node-to-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

node latency measurements on the Internet to determine a corre-
sponding single point in a d-dimensional space for each node. The
resulting embedded address, a virtual coordinate, can be used to
select nodes.

While the network embedding approach is applicable for a wide
range of applications, it is neither accurate nor complete. The em-
bedding process typically introduces significant errors. Selection of
parameters, such as the constant d, the set of measurements taken
to perform the embedding, the landmarks used for measurement,
and the timing interval in which measurements are taken, is non-
trivial and has a significant impact on the accuracy of the approach.
Further, coordinates need to be recomputed as network latencies
fluctuate. In addition, complex mechanisms besides virtual coor-
dinates are required to support large-scale applications. Simple
schemes, such as centralized servers that retainO(N) state or naive
algorithms with O(N) running time, are unsuitable for large-scale
networks. Peer-to-peer substrates that can naturally work with Eu-
clidean coordinates and support range queries, such as CAN [46],
Mercury [5] and P-Trees [13], can reduce the state requirements
per node; however, these systems introduce substantial complex-
ity and bandwidth overhead in addition to the overhead of network
embedding. And our simulation results show that, even with a P2P
substrate that always finds the best node based on virtual coordi-
nates, the embedding error leads to a suboptimal choice.

This paper introduces a lightweight, scalable and accurate frame-
work, called Meridian, for performing node selection based on net-
work location. Meridian forms a loosely-structured overlay net-
work, uses direct measurements instead of a network embedding,
and can solve spatial queries without an absolute coordinate space.
Its functionality is similar to that of GNP combined with CAN in
performing node selection based on network location1.

Each Meridian node keeps track of O(logN) peers and orga-
nizes them into concentric rings of exponentially increasing radii.
A query is matched against the relevant nodes in these rings, and
optionally forwarded to a subset of the node’s peers. Intuitively,
the forwarding “zooms in” towards the solution space, handing off
the query to a node that has more information to solve the prob-
lem due to the structure of its peer set. A scalable gossip proto-
col is used to notify other nodes of membership in the system. A
node selection algorithm provides diverse ring membership to max-
imize the marginal utility provided by each ring member. Meridian
avoids incurring embedding errors by making no attempt to recon-
cile the latencies seen at participating nodes into a globally consis-
tent coordinate space. Directly evaluating queries against relevant
peers in each ring avoids errors stemming from out of date coor-
dinates. Meridian provides a general framework applicable for a
wide range of network location problems. In this paper, we focus
on three network location problems that are commonly encountered

1We use the term “location” to refer to a node’s placement in the Internet as
defined by its round-trip latency to other nodes. While Meridian does not
assume that there is a well-defined location for any node, our illustrations
depict a single point in a two-dimensional space for clarity.

in distributed systems, and describe how the lightweight Meridian
framework can be used to address them.

The first network location problem that we examine is that of
discovering the closest node to a targeted reference point. This is
a pervasive problem; content distribution networks (CDNs) [29],
large-scale multiplayer games [38], and peer-to-peer overlays [27,
30, 9, 8], among others, can significantly reduce response time and
network load by selecting nodes close to targets. For instance, a ge-
ographically distributed peer-to-peer web crawler can reduce crawl
time and minimize network load by delegating the crawl to the
closest node to each target web server, CDNs can reduce latency
by assigning clients to nearby servers, and multiplayer games can
improve gameplay by reducing server latency.

Meridian can also be used to find a node that offers minimal la-
tencies to a given set of nodes. Intuitively, various applications seek
to locate a node that is at the centerpoint of the region defined by
the set members. This basic operation can be used for location-
aware leader election, where the chosen central node enables av-
erage communication latency to be minimized. For instance, an
application-level multicast system can use location-aware leader
election to improve transmission latencies by placing centrally-loc-
ated nodes higher in the tree.

Finally, we examine the problem of finding a set of nodes in a
region whose boundaries are defined by latency constraints. For
instance, given a set of latency constraints to well-known peer-
ing points, we show how Meridian can locate nodes in the region
defined by the intersection of these constraints. This functional-
ity is useful for ISPs and hosting services to cost effectively meet
service-level agreements, for computational grids to locate nodes
with specific inter-cluster latency requirements, and generally, for
applications that require fine-grain selection of services based on
latency to multiple targets.

We demonstrate through a theoretical analysis that our system
provides robust performance, delivers high scalability and balances
load evenly across the nodes. The analysis ensures that the per-
formance of our system scales beyond and is not an artifact of our
measurements.

We evaluate Meridian through simulations as well as a deploy-
ment on PlanetLab [4]. Our simulations are parameterized by an
extensive measurement study, in which we collected node-to-node
round-trip latency measurements for 2500 Internet name servers
(6.25 million node pairs). We use 500 of these nodes as targets,
and the remaining 2000 as overlay nodes in our experiments.

Overall, this paper makes three contributions. First, it outlines
a lightweight, scalable, and accurate system for keeping track of
location-information for participating nodes. The system is sim-
ple, loosely-structured, and entails modest resources for mainte-
nance. The paper shows how Meridian can efficiently find the clos-
est node to a target, the latency minimizing node to a given set of
nodes, and the set of nodes that lie in a region defined by latency
constraints, which are frequently encountered building block op-
erations in many location-sensitive distributed systems. Although
less general than virtual coordinates, we show that Meridian in-
curs significantly less error. Second, the paper provides a theo-
retical analysis of our system that shows that Meridian provides
robust performance, high scalability and good load balance. This
analysis is general and applies to Internet latencies that cannot be
accurately modeled with a Euclidean metric. Following a line of
previous work on object location (see [24] for a recent summary),
we give guarantees for the family of growth-constrained metrics.
Moreover, we support a much wider family of metrics of low dou-
bling dimension. Finally, the paper shows empirical results from
both simulations parameterized with measurements from a large-

scale network study and a PlanetLab deployment. The results con-
firm our theoretical analysis that Meridian is accurate, scalable, and
load-balanced.

2. FRAMEWORK
The basic Meridian framework is based around three mecha-

nisms: a loose routing system based on multi-resolution rings on
each node, an adaptive ring membership replacement scheme that
maximizes the usefulness of the nodes populating each ring, and a
gossip protocol for node discovery and dissemination.

Multi-Resolution Rings. Each Meridian node keeps track of a
small, fixed number of other nodes in the system, and organizes
this list of peers into concentric, non-overlapping rings. The ith
ring has inner radius ri = αsi−1 and outer radius Ri = αsi, for
i > 0, where α is a constant, s is the multiplicative increase factor,
and r0 = 0, R0 = α for the innermost ring. Each node keeps
track of a finite number of rings; all rings i > i∗ for a system-wide
constant i∗ are collapsed into a single, outermost ring that spans
the range [αsi∗ ,∞].

Meridian nodes measure the distance dj to a peer j, and place
that peer in the corresponding ring i such that ri < dj ≤ Ri. This
sorting of neighbors into concentric rings is performed indepen-
dently at each node and requires no fixed landmarks or distributed
coordination. Each node keeps track of at most k nodes in each ring
and drops peers from overpopulated rings. Consequently, Merid-
ian’s space requirement per node is proportional to k. We later
show in the analysis (Section 4) that a choice of k = O(logN) can
resolve queries in O(logN) lookups; in simulations (Section 6),
we verify that a small k suffices. We assume that every participat-
ing node has a rough estimate of logN .

The ring structure with its exponentially increasing ring radii fa-
vors nearby neighbors, enabling each node to retain a relatively
large number of pointers to nodes in their immediate vicinity. This
allows a node to authoritatively answer geographic queries for its
region of the network. At the same time, the ring structure ensures
that each node retains a sufficient number of pointers to remote
regions, and can therefore dispatch queries towards nodes that spe-
cialize in those regions. An exponentially increasing radius also
makes the total number of rings per node manageably small and i∗

clamps it at a constant.

Ring Membership Management. The number of nodes per ring,
k, represents an inherent tradeoff between accuracy and overhead.
A large k increases a node’s information about its peers and helps
it make better choices when routing queries. On the other hand, a
large k also entails more state, more memory and more bandwidth
at each node.

Within a given ring, node choice can have a significant effect on
the performance of the system. A set of ring members that are ge-
ographically distributed provides much greater utility than a set of
ring members that are clustered together, as shown in Figure 1. In-
tuitively, nodes that are geographically diverse instead of clustered
together enable a node to forward a query to a greater region. Con-
sequently, Meridian strives to promote geographic diversity within
each ring.

Meridian achieves geographic diversity by periodically reassess-
ing ring membership decisions and replacing ring members with al-
ternatives that provide greater diversity. Within each ring, a Merid-
ian node not only keeps track of the k primary ring members, but
also a constant number l of secondary ring members, which serve
as a FIFO pool of candidates for primary ring membership.

We quantify geographic diversity through the hypervolume of
the k-polytope formed by the selected nodes. To compute the hy-

Figure 1: Each Meridian node keeps track of a fixed number
of other nodes and organizes these nodes into concentric, non-
overlapping rings of exponentially increasing radii.

pervolume, each node defines a local, non-exported coordinate spa-
ce. A node i will periodically measure its distance di

j to another
node j in the same ring, for all 0 ≤ i, j ≤ k + l. The coordinates
of node i consist of the tuple 〈di

1, d
i
2, ..., d

i
k+l〉, where di

i = 0. This
embedding is trivial to construct and does not require a potentially
error-introducing mapping from high-dimensional data to a lower
number of dimensions.

Having computed the coordinates for all of its members in a ring,
Meridian nodes then determine the subset of k nodes that provide
the polytope with the largest hypervolume. For small k, it is pos-
sible to determine the maximal hypervolume polytope by consid-
ering all possible polytopes from the set of k + l nodes. For large
k + l, evaluating all subsets is infeasible. Instead, Meridian uses a
greedy algorithm: A node starts out with the k + l polytope, and
iteratively drops the vertex (and corresponding dimension) whose
absence leads to the smallest reduction in hypervolume until k ver-
tices remain. The remaining vertices are designated the new pri-
mary members for that ring, while the remaining l nodes become
secondaries. This computation can be performed in linear time us-
ing standard computational geometry tools [10]. The ring member-
ship management occurs in the background and its latency is not
critical to the correct operation of Meridian. Note that the coordi-
nates computed for ring member selection are used only to select
a diverse set of ring members; they are not exported by Meridian
nodes and play no role in query routing.

Churn in the system can be handled gracefully by the ring mem-
bership management system due to the loose structure of the Merid-
ian overlay. If a node is discovered to be unreachable during the
replacement process, it is dropped from the ring and removed as a
secondary candidate. If a peer node is discovered to be unreach-
able during gossip or the actual query routing, it is removed from
the ring, and replaced with a random secondary candidate node.
The quality of the ring set may suffer temporarily, but will be cor-
rected by the next ring replacement. Discovering a peer node fail-
ure during a routing query can reduce query performance; k can be
increased to compensate for this expected rate of failure.

Gossip Based Node Discovery. The use of a gossip protocol to per-
form node discovery allows the Meridian overlay to be loosely con-
nected, highly robust and inexpensively kept up-to-date of member-
ship changes. Our gossip protocol is based on an anti-entropy push
protocol [17] that implements a membership service. The central
goal of our gossip protocol is for each node to discover and main-
tain a small set of pointers to a sufficiently diverse set of nodes in
the network.

Our gossip protocol works as follows:
1. Each node A randomly picks a node B from each of its rings

and sends a gossip packet to B containing a randomly chosen
node from each of its rings.

2. On receiving the packet, node B determines through direct
probes its latency to A and to each of the nodes contained in
the gossip packet from A.

3. After sending a gossip packet to a node in each of its rings,
node A waits until the start of its next gossip period and then
begins again from step 1.

In step 2, node B sends probes to A and to the nodes in the gos-
sip packet from A regardless of whether B has already discovered
these nodes. This re-pinging ensures that stale latency information
is updated, as latency between nodes on the Internet can change
dynamically. The newly discovered nodes are placed on B’s rings
as secondary members.

For a node to initially join the system, it needs to know the IP
address of one of the nodes in the Meridian overlay. The newly
joining node contacts the Meridian node and acquires its entire list
of ring members. It then measures its latency to these nodes and
places them on its own rings; these nodes will likely be binned into
different rings on the newly joining node. From there, the new node
participates in the gossip protocol as usual.

The period between gossip cycles is initially set to a small value
in order for new nodes to quickly propagate their arrival to the ex-
isting nodes. The new nodes gradually increase their gossip period
to the same length as the existing nodes. The choice of a gossip pe-
riod depends on the expected rate of latency change between nodes
and expected churn in the system.

Maintenance Overhead. The average bandwidth overhead to main-
tain the multi-resolution rings of a Meridian node is modest. The
number of gossip packets a node receives is equal to the number of
neighbors (m logN) multiplied by the probability of being chosen
as a gossip target by one of the neighbors (1

log N
), where m is the

number of rings in the ring-set. A node should therefore expect
to send and receive m gossip packets and to initiatem2 probes per
gossip period. A node is also the recipient of probes from neighbors
of its neighbors. Since it has m logN neighbors, each of which
sends m gossip packets, there are m2 logN gossip packets with a

1
log N

probability of containing a reference to it. Therefore, a node

expects to receive m2 probes from neighbors of its neighbors. As-
suming m = 9, a probe packet size of 50 bytes, two packets per
probe, and a gossip packet size of 100 bytes, membership dissem-
ination consumes an average of 20.7 KB/period of bandwidth per
node. For a gossip period of 60 seconds, the average overhead as-
sociated with gossip is 345 B/s, and is independent of system size.

There is also maintenance overhead for performing ring man-
agement. In every ring management period where the membership
of one ring is re-evaluated, 2 logN requests are sent, 2 logN are
received, 4 log2N probes are sent, and 4 log2N are received. As-
suming two packets are necessary per request and per probe, the
size of a probe request packet is 100 bytes and a probe packet is 50
bytes, and a 2000 node system with 16 nodes per ring, ring man-
agement consumes an average of 218 KB/period. For a ring man-
agement period of 5 minutes, the average overhead associated with
ring management is 727 B/s. This analysis conservatively assumes
that all primary and secondary rings of all nodes are full, which is
unlikely in practice.

3. APPLICATIONS
The following three sections describe how Meridian can be used

to solve some frequently encountered location-related problems in
distributed systems.

Figure 2: A client sends a “closest node discovery to target T”
request to a Meridian node A, which determines its latency d
to T and probes its ring members between (1− β) · d and (1 +
β) · d to determine their distances to the target. The request is
forwarded to the closest node thus discovered, and the process
continues until no closer node is detected.

Closest Node Discovery. Meridian locates the closest node by per-
forming a multi-hop search where each hop exponentially reduces
the distance to the target. This is similar to searching in struc-
tured peer-to-peer networks such as Chord [55], Pastry [48] and
Tapestry [61], where each hop brings the query exponentially closer
to the destination, though in Meridian the routing is performed us-
ing physical latencies instead of numerical distances in a virtual
identifier space. Another important distinction that Meridian holds
over the structured peer-to-peer networks is the target node need
not be part of the Meridian overlay. The only requirement is that
the latencies between the nodes in the overlay and the target node
are measurable. This enables applications such as finding the clos-
est node to a public web server, where the web server is not di-
rectly controlled by the distributed application and only responds
to HTTP queries.

When a Meridian node receives a request to find the closest node
to a target, it determines the latency d between itself and the target.
Once this latency is determined, the Meridian node simultaneously
queries all of its ring members whose distances are within (1−β)·d
to (1 + β) · d. These nodes measure their distance to the target and
report the result back to the Meridian node. Nodes that take more
than (2β + 1) · d to provide an answer are ignored, as they cannot
be closer to the target than the Meridian node currently processing
the query.

Meridian uses an acceptance threshold β, which determines the
reduction in distance at each hop. The route acceptance threshold
is met if one or more of the queried peers is closer than β times
the distance to the target, and the client request is forwarded to the
closest node. If no peers meet the acceptance threshold, then rout-
ing stops and the closest node currently known is chosen. Figure 2
illustrates the process.

Meridian is agnostic to the choice of a route acceptance thresh-
old β, where 0 ≤ β < 1. A small β value reduces the total number
of hops, as fewer peers can satisfy the requirement, but introduces
additional error as the route may be prematurely stopped before
converging to the closest node. A large β reduces error at the ex-
pense of increased hop count.

Central Leader Election. Another frequently encountered prob-

Figure 3: A multi-constraint query consisting of targets
A,B,C with respective latency constraints of αa, αb, αC . The
shaded area represents the solution space.

lem in distributed systems is to locate a node that is “centrally sit-
uated” with respect to a set of other nodes. Typically, such a node
plays a specialized role in the network that requires frequent com-
munication with the other members of the set; selecting a centrally
located node minimizes both latency and network load. An exam-
ple application is leader election, which itself is a building block for
higher level applications such as clustering and low latency multi-
cast trees.

The central leader election application can be implemented by
extending the closest node discovery protocol. We replace d in
the single target closest node selection protocol with davg for cen-
tral leader election. When a Meridian node receives a client re-
quest to find the closest node to the target set T , it determines
the latency set {d1, ..., d|T |} between itself and the targets through
direct measurements, and computes the average latency davg =

(
P|T |

i=1 di)/|T |. Similarly, when a ring member is requested to de-
termine its latency to the targets, it computes the average latency
and returns that to the requesting node. The remaining part of the
central leader election application follows exactly from the closest
node discovery protocol.

Multi-Constraint System. Another frequent operation in distribut-
ed systems is to find a set of nodes satisfying constraints on the
network geography. For instance, an ISP or a web hosting ser-
vice is typically bound by a service level agreement (SLA) to sat-
isfy latency requirements to well-known peering locations when
hosting services for clients. A geographically distributed ISP may
have thousands of nodes at its disposal, and finding the right set
of nodes that satisfy the given constraints may be necessary for
fulfilling an SLA. Latency constraints are also important for grid
based distributed computation applications, where the latency be-
tween nodes working together on a problem is often the main effi-
ciency bottleneck. A customer may want to specify that ∀q, p ∈ P
where P is the set of grid nodes, dq,p < γ for some desired latency
γ.

Finding a node that satisfies multiple constraints can be viewed
as a node selection problem, where the constraints define the bound-
aries of a region in space (the solution space), as illustrated in Fig-
ure 3. A constraint is specified as a target and a latency bound
around that target. When a Meridian node receives a multi-constraint
query with u constraints specified as 〈targeti, rangei〉, for all 0 <
i ≤ u, it measures its latency di to the target nodes and calculates
its distance to the solution space as

s =

uX

i=1

max(0, di − rangei)
2

If s is 0, then the current node satisfies all the constraints, and
it returns itself as the solution to the client. Otherwise, it iterates
through all its peers, and simultaneously queries all peers j that are
within max(0, (1−β)·(di−rangei)) to (1+β)·(di+rangei) from
itself, for all 0 < i ≤ u. These nodes include all the peers that lie
within the range of at least one of the constraints, and possibly other
peers that do not satisfy any of the constraints, but are nevertheless
close to the solution space. These peer nodes measure their distance
to the u targets and report the results back to the source. Nodes that
take longer than max0<i≤u((2β + 1) · (di + rangei)) to provide
an answer are ignored.

The distance sj of each node j to the solution space is calculated
using the metric s defined above. If sj is 0, then node j satisfies
all the constraints and is returned as a solution to the client. If no
zero valued sj is returned, the client determines whether there is
an sj < β · s, where β is the route acceptance threshold. If the
route acceptance threshold is met, the client request is forwarded to
the peer closest to the solution space. A larger β may increase the
success rate, at the expense of increased hops.

4. ANALYSIS
In this section we argue analytically that Meridian scales well

with the size of the system. Our contributions are three-fold. First,
we put forward a rigorous definition that captures the quality of
the ring sets, and prove that under certain reasonable assumptions,
small ring cardinalities suffice to ensure good quality. Second,
we show that with these good-quality rings, the nearest-neighbor
queries return exact or near-exact neighbors in logarithmic number
of steps. Finally, we argue that if the ring sets of different nodes are
stochastically independent then the system is load-balanced; that is,
if many random queries are inserted into the system, then the load
is spread approximately evenly among Meridian nodes.

We model the matrix of Internet latencies as a metric, that is,
a symmetric function obeying the triangle inequality. Since one
cannot hope to provide theoretical guarantees for arbitrary metrics,
we will need to make some reasonable assumptions to capture the
properties of real-life latencies. However, we avoid assumptions on
the geometry of the metric. Most notably, we do not assume that the
metric is Euclidean, since recent experimental results suggest that
approximating Internet latencies by Euclidean metrics, although a
useful heuristic in some cases, incurs significant relative errors [42,
15, 40, 57, 52, 44, 12, 43, 39].

We will consider two families of metrics that have been popular
in the recent theoretical literature as non-geometric notions of low-
dimensionality: growth-constrained metrics and doubling metrics.
We focus on the case when the rate of churn and fluctuations in
Internet latencies are sufficiently low to provide Meridian with time
to adjust. So, for the purposes of this analysis, we assume that the
node set and the latency matrix do not change with time.

Proofs of the forth-coming theorems are deferred to a comple-
mentary technical report [60]. We provide proof sketches below.

Preliminaries. Nodes running Meridian are called Meridian nodes.
When such a node receives a query to find the nearest neighbor of
some node q, this q is called the target. Let V be the set of all pos-
sible targets. Let SM ⊂ V be the set of Meridian nodes, of sizeN .
Let d be the distance function on V induced by the node-to-node
latencies: duv is the uv-distance, that is, the latency between nodes
u and v. LetBu(r) denote the closed ball in SM of radius r around
node u, that is, the set of all Meridian nodes within distance r from

u; let Bui = Bu(2i). For simplicity let the smallest distance be 1
and denote the maximal distance by ∆.

For some fixed k, every node u maintains log(∆) rings Sui ⊂
Bui \B(u, i−1) of exactly k nodes each; the elements of these rings
are called Meridian neighbors of u. We treat each ring at a given
time as a random variable whose values are k-node subsets of SM .
In particular, we can talk about the distribution of a given ring, and
about several rings being probabilistically independent from each
other.

Ring quality. Intuitively, we want each ring Sui to cover the corre-
sponding annulus Bui \B(u, i−1) reasonably well; that is, we want
each node in this annulus to be within a relatively small distance
from some Meridian neighbor of u. We say that Meridian rings are
ε-nice, if for any two nodes u, v ∈ SM , node u has a Meridian
neighbor w ∈ Sui such that dwv ≤ ε duv and duv(1 + ε) ≤ 2i. If
the Meridian rings are ε-nice then our algorithm finds good approx-
imate nearest neighbors; the precision improves as ε gets smaller.
Under some additional assumptions, even ε = 1

2
suffices to guar-

antee finding exact nearest neighbors.
We will show that even with small ring cardinalities it is possible

to make the rings ε-nice, and confirm this with empirical evidence
in Section 5. We give constructive arguments where we show that
the rings with small cardinalities are ε-nice provided that the ring
sets, seen as stochastic distributions over subsets of nodes, have
certain reasonable properties.

4.1 Growth-constrained metrics
For n-dimensional grid and α = O(n), the cardinality of any

ball is at most 2α times smaller than the cardinality of a ball with
the same center and twice the radius. This motivates the following
definition: the grid dimension of a metric is the smallest α such that
the above property holds. If the grid dimension is constant (and,
intuitively, small), we say that the metric is growth-constrained.
Growth-constrained metrics can be seen as generalized grids; they
have been considered in the context of compact data structures [30],
and have been used as a reasonable abstraction of Internet latencies
(see [25] for a short survey).

We start with a model where the metric on the Meridian nodes
is growth-constrained, but we make no such assumption about the
non-Meridian nodes. This is important because even in an un-
friendly metric we might be able to choose a relatively well-behaved
subset of Meridian nodes.

Our first result is that even with small ring cardinalities it is pos-
sible to make the rings ε-nice. We say at some point of time the ring
Sui is well-formed if it is distributed as a random k-node subset of
Bui \ B(u, i−1). Intuitively, this is desirable since, in a growth-
constrained metric, the density is approximately uniform.

Theorem 4.1 Let the metric on SM have grid dimension α. Fix
δ ∈ (0, 1) and ε < 1; let the cardinality of a Meridian ring be
k = O(1

ε
)α log(N/δ). If the Meridian rings are well-formed then

with probability at least 1 − δ they are ε-nice.

Proof Sketch: Fix two Meridian nodes u, v and let r = εduv .
Pick the smallest i such that duv + r ≤ 2i. Then

Bui ⊂ Bv(2i + duv) ⊂ Bv(2i+1 − r) = Bv(γr),

where γ = 4 + 3/ε. By definition of the grid dimension |Bui| ≤
γα|Bv(r)|. By Chernoff Bounds2, some node from Sul, l ≤ i
lands in Bv(r) with failure probability < δ/N2. ✷

2Chernoff Bounds establish that the sum of many bounded independent
random variables is close to its expectation with very high probability.

Recall that our nearest-neighbor search algorithm forwards a que-
ry to the node w ∈ S that is closest to the target t, subject to the
constraint that dut/dwt ≤ β0; if such w does not exist, the algo-
rithm stops. Here β0 > 1 is a parameter; we denote this algorithm
by A(β0).

Consider a node q and let u be its nearest neighbor. Say node
v is a γ-approximate nearest neighbor of q if dvq/duq ≤ γ. An
algorithm A(β0) is γ-approximate if, for any query, it finds a γ-
approximate nearest neighbor and does so in at most 2 log(∆) steps.

The following theorem describes the quality of algorithm A(β0),
for different values of the threshold β0, under the assumption that
the rings are ε-nice. In part (a) the algorithm looks at only three
rings at every intermediate node; in parts (bc) it might need to look
at O(log 1

ε
) rings. The tradeoff between β0 and the approximation

ratio matches our simulation in Section 6 (Figure 7).

Theorem 4.2 Suppose the Meridian rings are ε-nice.
(a) algorithm A(2) is 3-approximate if ε ≤ 1

8
;

(b) A(1 + ε2) is (1 + 3ε)-approximate if ε ≤ 1
4

;
(c) A(1 + γ) is (1 + 3ε + γ)-approximate if ε ≤ 1

4
, γ ≤ 2

5
.

Proof Sketch: Let q be the target node and w be the nearest neigh-
bor of q. For a node u, let r(u) = duq/dwq be the approximation
ratio. If the query is forwarded from node u to node v, we say that
the progress at u is duq/dvq.

For part (a) we show that the progress is at least 2 at every node
u such that r(u) ≥ 3, so in at most log ∆ steps we reach some
node v such that r(v) < 3.

For parts (bc) we define a function f(x) which is continuously
increasing from f(1) < 1 + 3ε to infinity, and show that algorithm
A(β0) achieves progress x ≥ β0 at any node u such that r(u) =
f(x). The query is thus forwarded from u to some node v within
distance duq/x from q; it follows that r(v) ≤ f(x)/x.

The query proceeds in two stages. In the first stage the progress
at each node is x ≥ 2; in at most log ∆ steps we reach some node
u such that r(u) < f(2). For the second stage, the progress can
be less than 2. The crucial observation is that f(1 + y)/(1 + y) ≤
f(1 + y/2) for any y ≤ 1. Therefore if for the current node r(·) is
f(1 + y), then for the next node it is at most f(1 + y/2).

If β0 = 1 + γ then we can iterate this log 1
γ

times and reach a
node such that r(·) ≤ f(1 + γ/2). For part (c) we just note that
f(1 + γ/2) < 1 + 3ε + γ. For part (b) we take γ = ε2 and note
that f(1 + ε2/2) ≤ 1 + 3ε. ✷

In Thm. 4.1 the value of k depends on ε. We can avoid this and
find exact nearest-neighbors by restricting the model. Specifically,
we assume that the metric on SM ∪ {q} is growth-constrained for
any target q in some set Q ⊂ V . However, we do not need to
assume that the metric on all ofQ is growth-constrained; in partic-
ular, very dense clusters of targets are allowed.

We modify A(β0) slightly: if w is the Meridian neighbor of the
current node u that is closest to the target t, and dut/dwt < β0,
then instead of stopping at u the algorithm stops at w. Denote this
modified algorithm by A′(β0); say it isQ-exact if it finds an exact
nearest neighbor for all queries to targets in the set Q, and does so
in at most log(∆) steps.

Theorem 4.3 Fix some set Q ⊂ V such that for any q ∈ Q the
metric on SM ∪ {q} has grid dimension α. Fix δ ∈ (0, 1) and
let k = 2O(α) log(N |Q|/δ) be the cardinality of a Meridian ring.
If the rings are well-formed then with probability at least 1 − δ
algorithm A′(2) is Q-exact.

Proof Sketch: Using the technique from Thm. 4.2a, we prove that
the distance to target decreases by a factor of at least 2 on each
step except maybe the last one. We have to be careful about this
last step, since in general the target is not a Meridian node and
therefore not a member of any ring. In particular, this is why we
need bounded grid dimension on SM ∪ {q}, not only on SM . ✷

Ideally, the algorithm for nearest neighbor selection would bal-
ance the load among participating nodes. Intuitively, if Nqy(A) is
the maximal number of packets exchanged by a given algorithm A
on a single query, then for m random queries we do not want any
node to send or receive much more than m

n
Nqy(A) packets.

We make it precise as follows. Fix some set Q ⊂ V and sup-
pose each Meridian node u receives a query for a random target
tu ∈ Q. Say algorithm A is (γ,Q)-balanced if, in this scenario
under this algorithm, any given node sends and receives at most
γNqy(A) packets. To reason about load balance, we need a slightly
more restrictive model in which the metric on all of Q is growth-
constrained and the rings are stochastically independent from each
other. The latter property matches well with our simulation results
(Figure 10).

Theorem 4.4 Fix some set Q ⊂ V such that the metric on Q
has grid dimension α. Let SM be a random N -node subset of
Q. Fix δ ∈ (0, 1) and let the cardinality of a Meridian ring be
k = 2O(α) log(|Q|/δ) log(N) log(∆).

If the rings are well-formed and stochastically independent then
with probability at least 1 − δ algorithm A′(2) is Q-exact and
(γ,Q)-balanced, for γ = 2O(α) log(N∆/δ).

Proof Sketch: We prove that A′(2) isQ-exact using the technique
from Thm. 4.3. Some extra computation is needed due to the fact
that we do not have a good bound on the grid dimension of SM ;
instead, we are given that SM is a random subset of Q.

The load-balancing property is much harder to prove, essentially
because we need to bound, over all nodes, not only the expected
load (which is relatively easy), but also the actual load. We consider
the probability space where the randomness comes from choos-
ing Meridian nodes, Meridian neighbors, and the query targets tu,
u ∈ SM . In this space, we consider theN nearest-neighbor queries
propagating through the Meridian network. Ideally, we would like
to express the contribution of a given query i to the load on a given
node u as a random variable Lui, and use Chernoff Bounds to show
that with high probability the sum

P
i Lui does not deviate too

much from its expectation. However, Chernoff Bounds only apply
to independent random variables, which the Lui’s are not. To rem-
edy this, we need to be a lot more careful in splitting the load on u
into a sum of random variables; see the full version [60] for details.

✷

Extensions. We can further show that if a metric is comparatively
‘well-behaved’ in the vicinity of a given node, then some of its rings
can be made smaller. Second, our guarantees are worst-case; on av-
erage it suffices to query only a fraction of Meridian neighbors of a
given ring, e.g. (1

ε
)O(α) neighbors in Thm. 4.1. Third, our results

for growth-constrained metrics hold under a less restrictive defini-
tion of grid dimension that only applies to balls of cardinality at
least logN . Finally, Thm. 4.4 holds under a more demanding def-
inition of (γ,Q)-balanced algorithm. We discuss these extensions
in the full version [60].

4.2 Doubling metrics
Any point set in an n-dimensional Euclidean metric has the fol-

lowing property: for α = O(n), every ball of radius r can be

covered by 2α balls of radius r/2. For an arbitrary metric, we de-
fine the doubling dimension [21] as the smallest α such that the
above property holds. If the doubling dimension is constant (and,
intuitively, small), we say that the metric is doubling. Such metrics
have recently become an active research topic [21, 56, 37, 32].

By definition, doubling metrics generalize low-dimensional Eu-
clidean metrics. This generalization is non-trivial: by [21] there
exist doubling metrics onN nodes that need distortion Ω(

√
logN)

to embed into any Euclidean space. It is known [21] that the dou-
bling dimension is at most four times the grid dimension, so dou-
bling metrics also generalize growth-constrained metrics. Dou-
bling metrics are more powerful because they can combine very
sparse and very dense regions, e.g. for the exponential line, the
subset {2i : 0 ≤ i ≤ N}, the doubling dimension is 1, but the
grid dimension is logN .

For doubling metrics, the notion of well-formed rings is no longer
adequate, since we might need to boost the probability of selecting
a node from a sparser region. In fact, this is precisely the goal of
our ring-membership management in Section 2. Fortunately, math-
ematical literature provides a natural way to formalize this intu-
ition.

Say a measure is s-doubling [23] if for any ball B, the measure
of B is at most s times larger than that of a ball with the same
center and half the radius. Intuitively, a doubling measure is an
assignment of weights to nodes that makes a metric look growth-
constrained. It is known [23] that for any metric of doubling di-
mension α there exists a 2O(α)-doubling measure µ.

Say that at some point of time the ring Sui is µ-well-formed if it
is distributed as a random k-node subset of S = Bui \ B(u, i−1),
where nodes are drawn with probability µ(·)/µ(S). Using these
notions, one can obtain the guarantee in Thm. 4.1, where, instead of
the grid dimension, we plug in a potentially much smaller doubling
dimension of SM .

Theorem 4.5 Suppose the metric on SM has doubling dimension
α, and let µ be a 2α-doubling measure on SM . Fix δ ∈ (0, 1) and
ε ≤ 1; let k = O(1

ε
)α log(N/δ) be the cardinality of a Meridian

ring. If the Meridian rings are µ-well-formed, then with probability
at least 1 − δ they are ε-nice. In particular, Thm. 4.2 applies.

5. EVALUATION
We evaluated Meridian through both a large scale simulation pa-

rameterized with real Internet latencies and a physical deployment
on PlanetLab.

Simulation. We performed a large scale measurement study of
internode latencies between 2500 nodes to parameterize our simu-
lations. We collected pair-wise round-trip time measurements be-
tween 2500 DNS servers at unique IP addresses, spanning 6.25 mil-
lion node pairs. The study was performed on 10 different PlanetLab
nodes, with the median value of the runs taken for the round-trip
time of each pair of nodes. Data collection was performed on May
5-13, 2004; query interarrival times were dilated, and the query or-
der randomized, to avoid queuing delays at the DNS servers. The
latency measurements between DNS servers on the Internet were
performed using the King measurement technique [20].

In the following experiments, each test consists of 4 runs with
2000 Meridian nodes, 500 target nodes, k = 16 nodes per ring, 9
rings per node, s = 2, probe packet size of 50 bytes, β = 1

2
, and

α = 1ms, for 25000 queries in each run. The results are presented
either as the mean result of the 100000 total queries, or as the mean
of the median value of the 4 runs. All references to latency in this
section are in terms of round-trip time. Each simulation run begins
from a cold start, where each joining node knows only one existing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

MeridianVivaldi(h)+CANVivaldi(h)Vivaldi+CANVivaldiGNP+CANGNP

E
rr

or
 (

m
s)

Figure 4: Light bars show the median error for discovering
the closest node. Darker bars show the inherent embedding
error with coordinate systems. Meridian’s median closest node
discovery error is an order of magnitude lower than schemes
based on embeddings.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

fr
ac

tio
n

of
 p

ai
rs

Relative error of closest node selection

Meridian
GNP(15L,8D) + CAN

Vivaldi(2D+Height) + CAN
Vivaldi(6D) + CAN

Vivaldi(6D) + CAN + 2 Active Probes
Vivaldi(6D) + CAN + 3 Active Probes

Figure 5: Meridian’s relative error for closest node discovery is
significantly better than virtual coordinates.

node in the system and discovers other nodes through the gossip
protocol.

We compare Meridian to virtual coordinates computed through
network embeddings. We computed the coordinates for our 2500
node data set using GNP, Vivaldi and Vivaldi with height [15]. GNP
is a global virtual coordinate system based on static landmarks. We
configured it for 15 landmarks and 8 dimensions, and used the N -
clustered-medians protocol for landmark selection. Vivaldi is a vir-
tual coordinate scheme based on spring simulations and was con-
figured to use 6 dimensions with 32 neighbors. Vivaldi with height
is a recent scheme that performs a non-Euclidean embedding which
assigns a two dimensional location plus a height value to each node.
We randomly select 500 targets from our data set of 2500 nodes.

We first examine the inherent embedding error in absolute coor-
dinate systems and determine the error involved in finding the clos-
est neighbor. The dark bars in Figure 4 show the median embed-
ding error of each of the coordinate schemes, where the embedding
error is the absolute value of the difference between the measured
distance and predicted distance over all node pairs. While these
systems incur significant errors during the embedding, they might
still pick the correct closest node. To evaluate the error in finding
the closest node, we assume the presence of a geographic query
routing layer, such as a CAN deployment, with perfect information
at each node. This assumption biases the experiment towards vir-
tual coordinate systems and isolates the error inherent in network
embeddings. The resulting median errors for all three embedding
schemes, as shown by the light bars in Figure 4, are an order of
magnitude higher than Meridian. Figure 5 compares the relative
error CDFs of different closest node discovery schemes. Meridian

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 6 8 10 12 14 16
 200

 250

 300

 350

 400

M
ed

ia
n

er
ro

r
(m

s)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

Nodes/Ring

2000 nodes: Median error (ms)
1000 nodes: Median error (ms)

2000 nodes: Average query latency (ms)
1000 nodes: Average query latency (ms)

Figure 6: A modest number of nodes per ring achieves low er-
ror. Average latency is determined by the slowest node in each
ring and the hop count, and remains constant within measure-
ment error bounds.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 200

 250

 300

 350

 400

M
ed

ia
n

er
ro

r
(m

s)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

Beta value

Median error (ms)
Average query latency (ms)

Figure 7: An increase in β significantly improves accuracy for
β ≤ 0.5. The average query latency increases with increasing
β, as a bigger β increases the average number of hops taken in
a query.

has a lower relative error than the embedding schemes by a large
margin over the entire distribution.

We also examine the improvement in closest node discovery ac-
curacy using Vivaldi coordinates with the addition of latency data
from active probes. We modify Vivaldi+CAN to return the top M
candidates based on their coordinates and actively probe the target
to determine the closest candidate. Figure 5 shows the results for
M = 2 and M = 3. Active probing greatly improves the accuracy
of closest node discovery, but is still significantly less accurate than
Meridian. Note that selecting the M closest targets for M > 1 in
a scalable (< O(N)) manner requires additional, complex exten-
sions to CAN that are equivalent to a multi-dimensional expanding
ring search.

The accuracy of Meridian’s closest node discovery protocol de-
pends on several parameters, such as the number of nodes per ring
k, acceptance interval β, the constant α, and the gossip rate. The
most critical parameter is the number of nodes per ring k, as it de-
termines the coverage of the search space at each node. Figure 6
shows that median error drops sharply as k increases. Hence, a
node only needs to keep track of a small number of other nodes
to achieve high accuracy. The results indicate that as few as eight
nodes per ring can return very accurate results with a system size
of 2000 nodes.

High accuracy must also be coupled with low query latency for
interactive applications that have a short lifetime per query and can-
not tolerate a long initial setup time. The closest node discovery
latency is dominated by the sum of the maximum latency probe
at each hop plus the node to node forwarding latency; we ignore

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 200

 240

 280

 320

 360

 400

M
ed

ia
n

er
ro

r
(m

s)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

System size

Median error (ms)
Average query latency (ms)

Figure 8: Median error and average query latency as a function
of system size, for k = �log1.6N�; both remain constant as the
network grows, as predicted by the analytical results.

 4

 5

 6

 7

 8

 9

 10

 11

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 q
ue

ry
 lo

ad
 (

K
B

)

System size

Figure 9: The average load of a closest node discovery query
increases sub-linearly with system size (k = �log1.6N�).

processing overheads because they are negligible in comparison.
Meridian bounds the maximum latency probe by 2β + 1 times the
latency from the current intermediate node to the destination, as
any probe that requires more time cannot be a closer node and its
result is discarded. The average query latency curve in Figure 6
shows that queries are resolved quickly regardless of k. Average
query latency is determined by the hop count and the slowest node
in each ring, subject to the maximum latency bound; both increase
only marginally as k increases from four to sixteen.

The β parameter captures the tradeoff between query latency and
accuracy as shown in Figure 7. Increasing β increases the query la-
tency, as it reduces the improvements necessary before taking a hop
and therefore increases the number hops taken in a query. How-
ever, increasing β also provides a significant increase in accuracy
for β ≤ 0.5; this matches our analysis (see Thm. 4.2). Accuracy is
not sensitive to β for β > 0.5.

We examine the scalability of the closest node discovery applica-
tion by evaluating the error, latency and aggregate load at different
system sizes. Figure 8 plots the median error and average query
latency. We set k = �log1.6N� such that the number of nodes per
ring varies with the system size; setting k to a constant would favor
small system sizes, and this particular log base yields k = 16 for
2000 nodes. As predicted by the theoretical analysis in Section 4,
the median error remains constant as the network grows, varying
only within the error margin. The error improves for really small
networks where it is feasible to test all possible nodes for proximity.
Similarly, the query latency remains constant for all tested system
sizes.

Scalability also depends on the aggregate load the system places
on the network, as this can limit the number of concurrent closest
node discoveries that can be performed at a particular system size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

fr
ac

tio
n

of
 n

od
es

In-degree ratio

20ms ball
50ms ball

Figure 10: The in-degree ratio shows the average imbalance
in incoming links within spherical regions. More than 90% of
regions have a ratio less than 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

C
um

ul
at

iv
e

fr
ac

tio
n

of
 n

od
es

Relative error of central leader election

Meridian 2 targets
Vivaldi 2 targets

GNP 2 targets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

C
um

ul
at

iv
e

fr
ac

tio
n

of
 n

od
es

Relative error of central leader election

Meridian 8 targets
Vivaldi 8 targets

GNP 8 targets

Figure 11: Central leader election accuracy.

Figure 9 plots the total bandwidth required throughout the entire
network to resolve a query, that is, the total number of bytes from
every packet associated with the query, and shows that it grows sub-
linearly with system size, with 2000 nodes requiring a total of 10.4
KB per query.

A desirable property for load-balancing, and one of the assump-
tions in our theoretical analysis (see Thm. 4.4) is stochastic inde-
pendence of the ring sets. We verify this property indirectly by
measuring the in-degree ratio of the nodes in the system. The in-
degree ratio is defined as the number of incoming links to a node A
over the average number of incoming links to nodes within a ball
of radius r around A. If the ring sets are independent, then the
in-degree ratio should be close to one; a ratio of one indicates that
links to the region bounded by radius r around A are distributed
uniformly across the nodes in the area. Figure 10 shows that Merid-
ian distributes load evenly. More than 90% of the balls have an
in-degree ratio less than two for balls of radius 20ms and 50ms.

Another useful property, as well as an assumption in our theo-
retical analysis (see Thm. 4.2), is that ring members are well dis-
tributed. To determine the effectiveness of Meridian’s ring mem-
bership management protocol, we examine the latency ratio of the
nodes. The latency ratio for a node A and a target node B is de-
fined as the latency of node C to B over the latency of A to B,
where C is the neighbor of A that is closest to B. We find that, for
β = 1

2
, further progress can be made via an extra hop to a closer

node more than 80% of the time. For β = 0.9, an extra hop can be
taken over 97% of the time. This indicates that the ring membership

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

P
er

ce
nt

ag
e

su
cc

es
s

(%
)

Percentage of nodes that can satisfy constraints (%)

Meridian
Vivaldi

GNP

Figure 12: The percentage of successful multi-constraint
queries is above 90% when the number of nodes that can satisfy
the constraints is 0.5% or more.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 4 6 8 10 12 14 16
 260

 280

 300

 320

 340

 360

 380

F
ai

lu
re

 p
er

ce
nt

ag
e

(%
)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

Nodes/Ring

Failure percentage (%)
Averagey query latency (ms)

Figure 13: An increase in the number of nodes per ring k
significantly reduces the failure percentage of multi-constraint
queries for k ≤ 8.

management protocol selects a useful and diverse set of ring mem-
bers. Compared to a random replacement protocol, we find that
the standard deviation of relative error is 38ms when using hyper-
volumes for selection and 151ms when using random replacement;
hypervolume-based selection is more consistent and robust.

We evaluate how Meridian performs in central leader election by
measuring its relative error as a function of group size. Figure 11
shows that, as group size gets larger, the relative error of the cen-
tral leader election application drops. Intuitively, this is because the
larger group sizes increase the number of nodes eligible to serve as
a well-situated leader, and simplify the task of routing the query to
a suitable node. Central leader election based on virtual coordinates
incurs significantly higher relative error than Meridian for a group
size of two. The accuracy gap between coordinate schemes and
Meridian closes as the group size increases, as large groups sim-
plify the problem and even random selection becomes competitive
with more accurate selection.

We evaluate our multi-constraint protocol by the percentage of
queries that it can satisfy, parameterized by the difficulty of the
set of constraints. For each multi-constraint query we select four
random target nodes and assign a constraint to each target node
chosen uniformly at random between 40 and 80 ms. The difficulty
of a set of constraints is determined by the number of nodes in the
system that can satisfy them. The fewer the nodes that can satisfy
the set of constraints, the more difficult is the query.

Figure 12 shows a histogram of the success rate broken down
by the percentage of nodes in the system that can satisfy the set of
constraints. For queries that can be satisfied by 0.5% of the nodes
in the system or more, the success rate is over 90% for Meridian
and less than 11% when using coordinate schemes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 160

 180

 200

 220

 240

 260

 280

 300
F

ai
lu

re
 p

er
ce

nt
ag

e
(%

)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

System size

Failure percentage (%)
Average query latency (ms)

Figure 14: The percentage of multi-constraint queries that can-
not be resolved with Meridian and average query latency. Both
are independent of system size.

As in closest node discovery, k, the number of nodes per ring,
has the largest influence on the performance of the multi-constraint
protocol. Figure 13 shows that the failure rate decreases as the
number of nodes per ring increases. It also shows a decrease in
average query latency as the number of nodes per ring increases.
An increase in β decreases the failure percentage and increases the
average latency of a multi-constraint query, though the performance
of the multi-constraint protocol is mostly independent of β.

The scalability properties of the multi-constraint system are very
similar to the scalability of closest node discovery. Figure 14 shows
that the failure rate and the average query latency are independent
of system size. The average load per multi-constraint query (not
shown) grows sub-linearly and is approximately four times the av-
erage load of closest node discovery query. The non-increasing
failure rate and the sub-linear growth of the query load make the
multi-constraint protocol highly scalable.

Physical Deployment. We have implemented and deployed the
Meridian framework and all three applications on PlanetLab. The
implementation is small, compact and straightforward; it consists
of approximately 6500 lines of C++ code. Most of the complexity
stems from support for firewalled hosts.

Hosts behind firewalls and NATs are very common on the Inter-
net, and a system must support them if it expects large-scale de-
ployment over uncontrolled, heterogeneous hosts. Meridian sup-
ports such hosts by pairing each firewalled host with a fully acces-
sible peer, and connecting the pair via a persistent TCP connection.
Messages bound for the firewalled host are routed through its fully
accessible peer. A ping, which would ordinarily be sent as a direct
UDP packet or a TCP connect request, is sent to the proxy node in-
stead, which forwards it to the destination, which then performs the
ping to the originating node and reports the result. A node whose
proxy fails is considered to have failed, and must join the network
from scratch to acquire a new proxy. Since a firewalled host cannot
directly or indirectly ping another firewalled host, firewalled hosts
are excluded from ring membership on other firewalled hosts, but
included on fully-accessible nodes.

A large overlay network that performs active probes can poten-
tially be used as a platform for launching denial-of-service attacks.
This problem can be avoided either by controlling the set of clients
that may inject queries via authentication, or by placing limits on
the probing frequency of the overlay nodes. Our implementation
chooses the latter and caches the result of latency probes. This
considerably reduces the load the overlay nodes can place on a tar-
get, as each overlay node can only be coerced to send at most one
probe per target within a cache timeout.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
um

ul
at

iv
e

fr
ac

tio
n

of
 p

ai
rs

Relative error of closest node selection

Meridian (PlanetLab)
Meridian (Simulation)

Figure 15: The relative error of closest node discovery for a
Meridian deployment on PlanetLab versus simulation. Merid-
ian achieves results comparable to or better than our simula-
tions in a real-world deployment.

We deployed the Meridian implementation over 166 PlanetLab
nodes. We benchmark the system with 1600 target web servers
drawn randomly from the Yahoo web directory, and examine the
latency to the target from the node selected by Meridian versus the
optimal obtained by querying every node. Meridian was configured
with k = 8, s = 2, β = 1

2
, and α = 1ms. Overall, median error in

Meridian is 1.8ms, and the relative error CDF in Figure 15 shows
that it performs better than simulation results from a similarly con-
figured system.

6. RELATED WORK
Meridian is a general network location service that we have ap-

plied to three separate location-related problems. We separate past
work on these problems into approaches that rely on network em-
beddings and those that do not, and survey both in turn.

Network Embedding: Recent work on network coordinates can be
categorized roughly into landmark-based systems and simulation-
based systems. Both types can embed nodes into a Euclidean coor-
dinate space. Such an embedding allows the distance between any
two nodes to be determined without direct measurement.

GNP [42] determines the coordinates of a node by measuring its
latency to a fixed set of landmarks and then solving a multidimen-
sional, iterative, nonlinear minimization problem. ICS [40] and
Virtual Landmarks [57] both aim to reduce the computational cost
of the GNP embedding algorithm by replacing it with a computa-
tionally cheaper, linear approximation based on principal compo-
nent analysis, though the speedup may incur a loss in accuracy. To
avoid the load imbalance and lack of failure resilience created by
a set of fixed landmarks, PIC [12] and PCoord [39] use landmarks
only for bootstrapping and calculate their coordinates based on the
coordinates of peers. This can lead to compounding of embedding
errors over time in a system with churn. NPS [43] is similar to
PIC and PCoord but further imposes a hierarchy on nodes to avoid
cyclic dependencies in computing coordinates and to ensure con-
vergence. Lighthouse [44] avoids fixed landmarks entirely and uses
multiple local coordinate systems that are joined together through
a transition matrix to form a global coordinate system.

Simulation-based systems map nodes and latencies into a phys-
ical system whose minimum energy state determines the node co-
ordinates. Vivaldi [15] is based on a simulation of springs, and can
be augmented with an additional height vector to increase accu-
racy. Big-Bang Simulation [52] performs a simulation of a particle
explosion under a force field to determine node positions.

IDMaps [19] is a system that can compute the approximate dis-
tance between two IP addresses without direct measurement based

on strategically placed tracer nodes. IDMaps incurs inherent errors
based on the client’s distance to its closest tracer server and re-
quires deploying system wide infrastructure. Other work [18] has
also examined how to delegate probing to specialized nodes in the
network.

Recent theoretical work [32,54] has sought to explain the empir-
ical success of network embeddings and IDMaps-style approaches.

Server Selection: Our closest node discovery protocol draws its
inspiration from the Chord DHT [55], which performs routing in a
virtual identifier space by halving the virtual distance to the target
at each step. Proximity based neighbor selection [9, 8] populates
DHT routing tables with nearby nodes, which decreases lookup la-
tency, but does not directly address location-related queries. The
time and space complexity of two techniques are discussed in [27]
and [30], but these techniques focus exclusively on finding the near-
est neighbor, apply only to Internet latencies modeled by growth-
constrained metrics, and have not been evaluated with a large scale
Internet data.

In beaconing [33], landmark nodes keep track of their latency
to all other nodes in the system. A node finds the closest node by
querying all landmarks for nodes that are roughly the same distance
away from the landmarks. This approach requires each landmark to
retain O(N) state, and can only resolve nearest neighbor queries.
Binning [47] operates similarly, using approximate bin numbers in-
stead of direct latency measurements. Mithos [58] provides a gradi-
ent descent based search protocol to find proximate neighbors in its
overlay construction. It is similar to Meridian as it is iterative and
performs active probing but it requires O(N) hops to terminate. It
is also more prone to terminate prematurely at a local minimum
than Meridian as it does not promote diversity in its neighbor set.
Various active-probing based nearest neighbor selection schemes
are proposed in [51]. These schemes require O(N) state per node,
which limits their scalability, and are non-trivial to adapt to other
positioning problems. Tiers [3] reduces the state requirement by
forming a proximity-aware tree and performing a top-down search
to discover the closest node. Hierarchical systems suffer inherently
from load imbalance as nodes close to the root of the hierarchy
service more queries, which limits scalability when the workload
increases with system size.

Early work on locating nearby copies of replicated services [22]
examined combining traceroutes and hop counts to perform a rough
triangulation, and to determine the closest replica at a centralized
O(N) server using Hotz’s distance metric [28]. Dynamic server
selection was found in [6] to be more effective than static server
selection due to the variability of route latency over time and the
large divergence between hop count and latency. Simulations [7]
using a simple dynamic server selection policy, where all replica
servers are probed and the server with the lowest average latency is
selected, show the positive system wide effects of latency-based
server selection. Our closest node discovery application can be
used to perform such a selection in large-scale networks.

7. CONCLUSIONS
Selecting nodes based on their network location is a critical build-

ing block for many large scale distributed applications. Network
coordinate systems, coupled with a scalable node selection sub-
strate, may provide one possible approach to solving such prob-
lems. However, the generality of absolute coordinate systems comes
at the expense of accuracy and complexity.

In this paper, we outlined a lightweight, accurate and scalable
framework for solving positioning problems without the use of ex-
plicit network coordinates. Our approach is based on a loosely
structured overlay network and uses direct measurements instead of

virtual coordinates to perform location-aware query routing with-
out incurring either the complexity, overhead or inaccuracy of an
embedding into an absolute coordinate system or the complexity of
a geographic peer-to-peer routing substrate.

We have argued analytically that Meridian provides robust per-
formance, delivers high scalability, and balances load evenly across
nodes. We have evaluated our system through a PlanetLab deploy-
ment as well as extensive simulations, parameterized by data from
measurements of 2500 nodes and 6.25 million node pairs. The
evaluation indicates that Meridian is effective; it incurs less error
than systems based on an absolute embedding, is decentralized,
requires relatively modest state and processing, and locates nodes
quickly. We have shown how the framework can be used to solve
three network positioning problems frequently-encountered in dis-
tributed systems; it remains to be seen whether the lightweight ap-
proach advocated in this paper can be applied to other significant
problems.

Acknowledgments
We would like to thank our shepherd, Jon Crowcroft, Jon Klein-
berg and the anonymous reviewers for many helpful comments and
suggestions. We are grateful to Frank Dabek, Russ Cox, Frans
Kaashoek, Robert Morris, Eugene Ng and Hui Zhang for sharing
with us the Vivaldi and GNP software and data.

8. REFERENCES
[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris.

Resilient Overlay Networks. In Symposium on Operating Systems
Principles, Banff, AB, Canada, October 2001.

[2] P. Assouad. Plongements Lipschitziens dans Rn. Bull. Soc. Math.
France, 111(4), 1983.

[3] S. Banerjee, C. Kommareddy, and B. Bhattacharjee. Scalable Peer
Finding on the Internet. In Global Internet Symposium, Taipei,
Taiwan, November 2002.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating
System Support for Planetary-Scale Network Services. In Networked
Systems Design and Implementation, San Francisco, CA, March
2004.

[5] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. In SIGCOMM, Portland,
OR, August 2004.

[6] R. Carter and M. Crovella. Server Selection Using Dynamic Path
Characterization in Wide-Area Networks. In INFOCOM, Kobe,
Japan, April 1997.

[7] R. Carter and M. Crovella. On the Network Impact of Dynamic
Server Selection. Computer Networks, 31, 1999.

[8] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting Network
Proximity in Peer-to-Peer Overlay Networks. In Technical Report
MSR-TR-2003-82, Microsoft Research, 2002.

[9] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Proximity Neighbor
Selection in Tree-Based Structured Peer-to-Peer Overlays. In
Technical Report MSR-TR-2003-52, Microsoft Research, 2003.

[10] U. G. Center. QHull. UIUC Geometry Center, QHull Computational
Geometry Package, http://www.qhull.org, 2004.

[11] Y. Chu, S. Rao, and H. Zhang. A Case for End System Multicast. In
SIGMETRICS, Santa Clara, CA, June 2000.

[12] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet Coordinates for Distance Estimation. In Intl. Conference on
Distributed Computing Systems, Tokyo, Japan, March 2004.

[13] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram.
Querying Peer-to-Peer Networks Using P-Trees. In Intl. Workshop on
the Web and Databases, Paris, France, June 2004.

[14] W. Cui, I. Stoica, and R. Katz. Backup Path Allocation based on a
Correlated Link Failure Probability Model in Overlay Networks. In
Intl. Conference on Network Protocols, Paris, France, November
2002.

[15] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. In SIGCOMM, Portland,
OR, August 2004.

[16] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-Area Cooperative Storage with CFS. In Symposium on
Operating Systems Principles, Banff, AB, Canada, October 2001.

[17] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for
Replicated Database Maintenance. In Symposium on Principles of
Distributed Computing, Vancouver, BC, Canada, August 1987.

[18] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel Server
Selection Technique for Improving the Response Time of a
Replicated Service. In INFOCOM, San Francisco, CA, March 1998.

[19] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang.
IDMaps: A Global Internet Host Distance Estimation Service.
Transactions on Networking, 9:525–540, October 2001.

[20] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating Latency
between Arbitrary Internet End Hosts. In Internet Measurement
Workshop, Marseille, France, November 2002.

[21] A. Gupta, R. Krauthgamer, and J. Lee. Bounded Geometries,
Fractals, and Low-Distortion Embeddings. In Symposium on
Foundations of Computer Science, Cambridge, MA, October 2003.

[22] J. Guyton and M. Schwartz. Locating Nearby Copies of Replicated
Internet Servers. In SIGCOMM, Cambridge, MA, August 1995.

[23] J. Heinonen. Lectures on Analysis on Metric Spaces. Springer
Verlag, Universitext 2001.

[24] K. Hildrum, R. Krauthgamer, and J. Kubiatowicz. Object Location in
Realistic Networks. In Symposium on Parallelism in Algorithms and
Architectures, Barcelona, Spain, June 2004.

[25] K. Hildrum, J. Kubiatowicz, S. Ma, and S. Rao. A Note on Finding
the Nearest Neighbor in Growth-Restricted Metrics. In Symposium
on Discrete Algorithms, New Orleans, LA, January 2004.

[26] K. Hildrum, J. Kubiatowicz, and S. Rao. Another Way to Find the
Nearest Neighbor in Growth-Restricted Metrics. In UC Berkeley
CSD ETR, UCB/CSD-03-1267, UC Berkeley, August 2003.

[27] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed Object
Location in a Dynamic Network. In Symposium on Parallel
Algorithms and Architectures, Winnipeg, MB, Canada, August 2002.

[28] S. Hotz. Routing Information Organization to Support Scalable
Interdomain Routing with Heterogeneous Path Requirements. PhD
thesis, Univ. of Southern California, 1994.

[29] K. Johnson, J. Carr, M. Day, and M. Kaashoek. The Measured
Performance of Content Distribution Networks. In Web Caching and
Content Delivery Workshop, Lisbon, Portugal, May 2000.

[30] D. Karger and M. Ruhl. Finding Nearest Neighbors in
Growth-restricted Metrics. In Symposium on Theory of Computing,
Montreal, QC, Canada, May 2002.

[31] D. Kempe, J. Kleinberg, and A. Demers. Spatial Gossip and
Resource Location Protocols. In Symposium on Theory of
Computing, Heraklion, Greece, July 2001.

[32] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and
Embedding using Small Sets of Beacons. In Symposium on
Foundations of Computer Science, Rome, Italy, October 2004.

[33] C. Kommareddy, N. Shankar, and B. Bhattacharjee. Finding Close
Friends on the Internet. In Intl. Conference on Network Protocols,
Riverside, CA, November 2001.

[34] R. Krauthgamer and J. Lee. The Intrinsic Dimensionality of Graphs.
In Symposium on Theory of Computing, San Diego, CA, June 2003.

[35] R. Krauthgamer and J. Lee. Navigating Nets: Simple Algorithms for
Proximity Search. In Symposium on Discrete Algorithms, New
Orleans, LA, January 2004.

[36] R. Krauthgamer and J. Lee. The Black-Box Complexity of Nearest
Neighbor Search. In Intl. Colloquium on Automata, Languages and
Programming, Turku, Finland, July 2004.

[37] R. Krauthgamer, J. Lee, M. Mendel, and A. Naor. Measured Descent:
A New Embedding Method for Finite Metrics. In Symposium on
Foundations of Computer Science, Rome, Italy, October 2004.

[38] R. Lawrence. Running Massively Multiplayer Games as a Business,
March 2004. Keynote speech from Networked Systems Design and
Implementation.

[39] L. Lehman and S. Lerman. PCoord: Network Position Estimation

Using Peer-to-Peer Measurements. In Intl. Symposium on Network
Computing and Applications, Cambridge, MA, August 2004.

[40] H. Lim, J. Hou, and C. Choi. Constructing Internet Coordinate
System Based on Delay Measurement. In Internet Measurement
Conference, Miami, Florida, October 2003.

[41] P. Maniatis, M. Roussopoulos, T. Giuli, D. Rosenthal, M. Baker, and
Y. Muliadi. Preserving Peer Replicas by Rate-Limited Sampled
Voting. In Symposium on Operating Systems Principles, Bolton
Landing, NY, October 2003.

[42] T. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In INFOCOM, New York, NY, June
2002.

[43] T. Ng and H. Zhang. A Network Positioning System for the Internet.
In USENIX, Boston, MA, June 2004.

[44] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for Scalable Distributed Location. In Intl. Workshop on
Peer-To-Peer Systems, Berkeley, CA, February 2003.

[45] C. Plaxton, R. Rajaraman, and A. Richa. Accessing Nearby Copies
of Replicated Objects in a Distributed Environment. In Symposium
on Parallel Algorithms and Architectures, Newport, RI, June 1997.

[46] S. Ratnasamy, P. Francis, M. Hadley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In SIGCOMM, San Diego,
CA, August 2001.

[47] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server Selection. In
INFOCOM, New York, NY, June 2002.

[48] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In
Middleware, Heidelberg, Germany, November 2001.

[49] A. Rowstron and P. Druschel. Storage Management and Caching in
PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility. In
Symposium on Operating Systems Principles, Banff, AB, Canada,
October 2001.

[50] S. Savage, A. Collins, and E. Hoffman. The End-to-End Effects of
Internet Path Selection. In SIGCOMM, Cambridge, MA, September
1999.

[51] K. Shanahan and M. Freedman. Locality Prediction for Oblivious
Clients. In Intl. Workshop on Peer-To-Peer Systems, Ithaca, NY,
February 2005.

[52] Y. Shavitt and T. Tankel. Big-Bang Simulation for Embedding
Network Distances in Euclidean Space. In INFOCOM, San
Francisco, CA, April 2003.

[53] A. Slivkins. Distance Estimation and Object Location via Rings of
Neighbors. In Symposium on Principles of Distributed Computing,
Las Vegas, NV, July 2005.

[54] A. Slivkins. Distributed Approaches to Triangulation and
Embedding. In the Symposium on Discrete Algorithms, Vancouver,
BC, Canada, January 2005.

[55] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In SIGCOMM, San Diego, CA, August 2001.

[56] K. Talwar. Bypassing the Embedding: Approximation Schemes and
Compact Representations for Growth Restricted Metrics. In
Symposium on Theory of Computing, Chicago, IL, June 2004.

[57] L. Tang and M. Crovella. Virtual Landmarks for the Internet. In
Internet Measurement Conference, Miami, Florida, October 2003.

[58] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware Overlay
Network. In Hot Topics in Networks, Princeton, NJ, October 2002.

[59] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz. Introspective
Failure Analysis: Avoiding Correlated Failures in Peer-to-Peer
Systems. In Intl. Workshop on Reliable Peer-to-Peer Distributed
Systems, Osaka, Japan, October 2002.

[60] B. Wong, A. Slivkins, and E. Sirer. Meridian: A Lightweight
Network Location Service without Virtual Coordinates. In
Computing and Information Science Technical Report TR2005-1982,
Cornell University, May 2005.

[61] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure
for Fault-Tolerant Wide-Area Location and Routing. In Technical
Report UCB/CSD-01-1141, UC Berkeley, April 2001.

