
ClosestNode.com: An Open-Access, Scalable, Shared
Geocast Service for Distributed Systems

Bernard Wong Emin Gün Sirer
Dept. of Computer Science, Cornell University, Ithaca, NY 14853

{bwong, egs}@cs.cornell.edu

ABSTRACT
ClosestNode.com is an accurate, scalable, and backwards-comp-

atible service for mapping clients to a nearby server. It provides a
DNS interface by which unmodified clients can look up a service
name, and get the IP address of the closest server. A shared sys-
tem for performing such a mapping amortizes the administration
and implementation costs of proximity-based server selection. It is
aimed at minimizing the amount of effort required for system devel-
opers to make new and existing infrastructure services proximity-
aware.

1. INTRODUCTION
There has been much recent activity on overlays, peer-to-peer

systems, web services, distributed online games, content distribu-
tion, and many other distributed systems where service compo-
nents are distributed geographically. This work, fueled by recently
emerging techniques for self-organization and enabled by the emer-
gence of the PlanetLab testbed for deployment, has three salient
features. First, these systems rely critically on service components
that are distributed widely. Second, the scale of distribution is so
large that simple techniques, such as keeping track of all compo-
nents, are unlikely to work well. Third, and most importantly,
clients of these systems benefit significantly from being directed to
the nearest suitable service component. Selecting a close-by server
is critical in order to ensure that the services provide low latency,
achieve high sustainable throughput, and scale well by reducing
aggregate load on the network.

Directing clients to the nearest suitable server requires an accu-
rate and scalable mechanism for locating the closest server. Ide-
ally, this mechanism would support existing applications without
changes to client software. The problem is trivial if any of these
three critical properties are ignored. If accuracy in finding the clos-
est node is not an issue, a client can be directed to any server. If
scale is not an issue, a client can simply measure its latency to all
servers regardless of system size and pick the one that offers the
lowest latency. And if support for legacy clients is not an issue, ev-
ery client can be forced to download complex client-side software
for performing extensive measurements and finding the mapping
to the nearest server. Yet many realistic systems require all three
properties at once. For instance, clients of an Akamai-like con-
tent distribution network [18, 4, 21] typically need to be routed to
the nearest caching server from a URL accessed through an un-
modified browser. A client wishing to download a software pack-
age through an automated software installer needs to be routed to
the nearest server containing the package without having to mod-
ify the installer software. Clients of overlays and peer-to-peer ser-

vices [14] typically need to be routed to the nearest overlay node
transparently.

Past work on directing clients to closest server replicas can be
classified into systems based on virtual coordinates [9, 10, 3, 7, 19,
17, 11, 2, 6, 8] and active probing [22, 5, 13, 20, 16, 1]. While these
systems provide the basic algorithms for determining the approxi-
mate position of a node in the network and finding a nearby server,
there is a significant gap between the interface they provide and the
interface required to support legacy clients. The legacy clients ben-
efit most from a simple nameserver interface through which they
can do a lookup for the closest desired server, whereas past systems
typically provide a complex interface for reasoning about node po-
sitions that is not tied into a naming service.

The work required to create a new system that maps clients to
nearby servers is non-trivial. The system must be able to return
accurate results even for unreachable clients that are behind net-
work address translators or firewalls. Its manner of probing clients
must be sufficiently benign to avoid triggering sensitive intrusion
detection systems. This includes rate-limiting probes, aggressive
caching of latency data to avoid repeated probes, and user-specified
blacklists to exclude probing specific clients. Currently, this effort
must be repeated for each new service.

In this paper, we outline ClosestNode.com, a shared service for
providing proximity server selection for distributed systems that
amortizes the cost of development over many services. To ensure
transparent support for legacy clients, we use DNS as the inter-
face for initiating closest node selection lookups. Consequently,
any current systems that rely on DNS for resolving service names
to IP addresses can easily transition to ClosestNode.com with no
changes to the clients other than providing them with an updated
domain name. The system works by assigning a service, say Cob-
Web, to the domain cobweb.closestnode.com, where DNS lookups
to the domain will trigger a closest node selection lookup to the
requesting client. ClosestNode.com uses Meridian [22], an accu-
rate, lightweight, and scalable node selection framework, as its un-
derlying node selection mechanism, essentially acting as a DNS
to Meridian gateway. Past work has shown that Meridian achieves
high-accuracy and scalability; coupling it with DNS provides back-
wards compatibility.

The main goal of ClosestNode.com is to make the transition of
a traditional distributed service to one that takes advantage of net-
work proximity as simple and painless as possible. By supporting
oblivious clients and requiring only minimal changes to the infras-
tructure service itself, the majority of infrastructure services run-
ning on PlanetLab today can be quickly made proximity-aware by
using ClosestNode.com. We have recently built a content distri-
bution network, called CobWeb [18], that uses ClosestNode.com



for directing clients to the nearest content cache. Using Closes-
tNode.com was easy to perform on the server side and provided a
transparent interface on the client side.

2. FRAMEWORK
Our basic framework consists of a small number of DNS servers

acting as authoritative name servers for services built on top of
ClosestNode.com. A service, say CobWeb, first registers with Clos-
estNode.com on our website and is provided with a domain cob-
web.closestnode.com. The only changes required to the service are
to execute a daemon process on each of its servers, and to provide
the ClosestNode.com database with a small number of servers that
act as entry points to the service. The daemon, based on the Merid-
ian [22] system for geographic query routing, builds and maintains
an overlay that is used for routing queries; the maintenance over-
head is modest, rarely exceeding 1 kB/sec. When a DNS request
comes in for cobweb.closestnode.com, the ClosestNode.com DNS
server receiving the request will issue a Meridian closest node dis-
covery query to one of the entry point servers of CobWeb. Since
the client may reside in an unroutable portion of the IP space, and
since we do not require any changes to the client, Meridian uses the
client’s upstream recursive DNS server as the query target, and fol-
lows the Meridian closest-node protocol to locate a nearby server.
Once the closest node discovery query completes, the ClosestN-
ode.com DNS server returns the IP address of the closest node in
response to the original DNS query request. Figure 1 illustrates the
protocol.

The Meridian closest-node protocol, described fully in [22], or-
ganizes the servers into a lightweight, loosely structured overlay.
The overlay is structured to provide each server with near-authora-
tative information about nodes in its own vicinity, as well as knowl-
edge of a sufficient number of diverse and distant nodes to facilitate
efficient overlay traversal. A server receiving a Meridian closest
node discovery request first determines its own latency to the tar-
get, and then requests its neighbors that can potentially be closer
to the target than itself by some threshold to determine their re-
spective latency to the target. If any of the neighbors are closer to
the target by the required threshold, the query is forwarded to the
neighbor closest to the target and query processing repeats on that
server. Otherwise, the IP address of the closest known server to the
target is returned to the requester.

The Meridian daemon process issues both ICMP ECHO packets
as well as DNS requests for localhost to determine a server’s la-
tency to the client’s DNS server. Using different, equivalent prob-
ing methods is necessary for gathering accurate latency data for
cases where the clients issuing queries are behind firewalls. For
clients that can not be successfully probed, longest prefix match
of the DNS server IP address to the entry point nodes are used for
server selection. Meridian uses rendezvous hosts to relay control
messages and queries to servers behind NATs and firewalls, and
thus enables deployment of servers anywhere in the network.

Although Meridian has been previously shown to achieve high
accuracy for closest node queries, the accuracy of the ClosestN-
ode.com framework is also dependent on the client being close
to its upstream recursive DNS server. This is the typical config-
uration for both corporate and home users, as it is advantageous
for ISPs and institutions to use an upstream recursive DNS server
for caching purposes and to locate it near it clients to reduce DNS
query latency.

The shared authoritative name servers are unlikely to pose bot-
tlenecks to scalability for realistic workloads. Should the query
load on ClosestNode.com increase to the point where authoritative
name servers pose impediments to scalability, load on individual

Figure 1: The ClosestNode.com’s DNS server initiates a clos-
est node discovery protocol in response to a DNS lookup. The
closest node discovery protocol selectively probes the client’s
upstream DNS server, and routes the query to closer servers in
exponentially-closer steps. The IP address of the closest server
is returned to the client to complete the query.

DNS servers can be reduced by simply adding additional servers.
The effort of administering the service, however, is constant and
shared among all the different services using ClosestNode.com.

For high churn systems, the ClosestNode.com DNS servers use a
heartbeat counter to the entry point nodes to ensure the liveness of
the entry points and avoid long timeouts waiting for a reply from a
offline entry point node. ClosestNode.com enables additional entry
point nodes to be added dynamically in order to compensate for
failures of entry-point nodes. The ClosestNode.com servers also
enable the services to custom-tailor the caching policy for latency
measurements. Each service can specify its desired DNS time-to-
live value, which trades-off lookup overhead against the maximum
time limit for a stale mapping.

ClosestNode.com performs several optimizations to reduce look-
up latencies perceived by clients. First, each ClosestNode.com
DNS server selects the closest entry point node for each service
as its primary entry point, reducing the round trip time between the
ClosestNode.com DNS server and the entry point node. Second,
the number of hops taken by the closest node discovery protocol
can be capped to bound the maximum latency, trading off server
selection accuracy for latency. Finally, to totally remove additional
delays for the most sensitive services, the initial DNS lookup is re-
solved immediately to the IP address of the entry point node that
shares the longest IP prefix with the client’s DNS server. This
response is returned with a very low time-to-live, and the Clos-
estNode.com DNS server performs a normal closest node discov-
ery query in the background that is cached and propagated across
all of the ClosestNode.com DNS servers. When the same client
DNS server requests for the same domain after the initial answer
expires, the ClosestNode.com DNS server can return the more ac-
curate cached result.

3. NODE SELECTION ALTERNATIVES
The main design decision for the node selection mechanism is

between schemes based on virtual coordinates and active probing.
In networks where nodes are relatively stable and long-lived, virtual



coordinates typically incur a lower average node selection latency
than active node selection schemes. Virtual coordinates in such
networks can be computed once and used many times. However,
in infrastructure services with transient clients, the cost to assign
virtual coordinates to a given client can not be amortized as the
typical client only performs one selection. Since the network over-
head for latency probes required to perform node selection using
active probing can be made comparable to the overhead incurred
by virtual coordinate systems to localize a client [22], existing vir-
tual coordinate systems do not have a special advantage over active
probing.

However, by mapping Internet latencies into a low dimensional
Euclidean space, virtual coordinate schemes incur inherent embed-
ding errors that result in inaccurate node selection. Virtual coor-
dinates are also insufficient to solve the the node selection prob-
lem itself. Coordinate systems must be paired with either a central
database with the coordinates of every node, or a CAN [12] like
structured overlay that would significantly increase the complexity
of the system. Selection schemes based on databases of IP address
to geographical region [15] mappings can reduce the closest node
discovery latency to that of a database lookup, but are fragile to IP
assignment changes and are typically less accurate than passive or
active selection schemes.

4. FUTURE WORK
Although minimizing latency is the primary goal of server se-

lection for most systems, we plan on incorporating other metrics
in determining the most appropriate server to select. This includes
system load, available bandwidth, and price of each link. Services
can provide their own utility functions based on these metrics, and a
scheme similar to ClosestNode.com, perhaps better titled BestFitN-
ode.com, can determine a client to server mapping that maximizes
utility.

To simplify the deployment of ClosestNode.com, we plan on
deploying a single Meridian overlay across PlanetLab that can be
shared across multiple services. Each registered service would pro-
vide its entire list of servers, and a mapping from each PlanetLab
node to its closest server in the list can be determined periodically
and stored in a database that is available to the ClosestNode.com
DNS servers. When a closest node request arrives for a regis-
tered service, the closest PlanetLab node can be determined, and
the server closest to the PlanetLab node can then be returned as the
closest node. This makes adopting ClosestNode.com trivial and en-
ables caching and cross-service sharing of latency data. However,
the accuracy of the server selection will likely suffer compare to
the current system, and this deployment mode is targeted only for
services that can not readily deploy their own Meridian overlay.

5. SUMMARY
ClosestNode.com is a scalable, shared geocast service for dis-

tributed systems. The system amortizes the cost of providing prox-
imity-based server selection by sharing infrastructure across multi-
ple services. ClosestNode.com uses Meridian as its node selection
mechanism, and supports oblivious clients by acting as a DNS to
Meridian gateway, enabling server selection via DNS lookups. The
goal of ClosestNode.com is to minimize the amount of work for
distributed system builders to provide proximity-based server se-
lection. The system is free and open to access, and has been in con-
tinuous use since July 2005 by CobWeb, a high-volume content dis-
tribution network running on PlanetLab. We encourage developers
of other large scale distributed systems to try ClosestNode.com and
get the benefit of an accurate, scalable and backwards-compatible
system for directing clients to nearby servers.

6. REFERENCES
[1] S. Banerjee, C. Kommareddy, and B. Bhattacharjee. Scalable Peer

Finding on the Internet. In Global Internet Symposium, Taipei,
Taiwan, Nov. 2002.

[2] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet Coordinates for Distance Estimation. In Intl. Conference on
Distributed Computing Systems, Tokyo, Japan, Mar. 2004.

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. In SIGCOMM, Portland,
OR, Aug. 2004.

[4] M. Freedman, E. Freudenthal, and D. Mazires. Democratizing
Content Publication with Coral. In Symposium on Networked Systems
Design and Implementation, San Francisco, CA, Mar. 2004.

[5] C. Kommareddy, N. Shankar, and B. Bhattacharjee. Finding Close
Friends on the Internet. In Intl. Conference on Network Protocols,
Riverside, CA, Nov. 2001.

[6] L. Lehman and S. Lerman. PCoord: Network Position Estimation
Using Peer-to-Peer Measurements. In Intl. Symposium on Network
Computing and Applications, Cambridge, MA, Aug. 2004.

[7] H. Lim, J. Hou, and C. Choi. Constructing Internet Coordinate
System Based on Delay Measurement. In Internet Measurement
Conference, Miami, Florida, Oct. 2003.

[8] Y. Mao and L. Saul. Modeling Distances in Large-Scale Networks by
Matrix Factorization. In Internet Measurement Conference,
Taormina, Sicily, Italy, Oct. 2004.

[9] T. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In INFOCOM, New York, NY, June
2002.

[10] T. Ng and H. Zhang. A Network Positioning System for the Internet.
In USENIX, Boston, MA, June 2004.

[11] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for Scalable Distributed Location. In Intl. Workshop on
Peer-To-Peer Systems, Berkeley, CA, Feb. 2003.

[12] S. Ratnasamy, P. Francis, M. Hadley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In SIGCOMM, San Diego,
CA, Aug. 2001.

[13] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server Selection. In
INFOCOM, New York, NY, June 2002.

[14] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A Public DHT Service
and Its Uses. In SIGCOMM, Philadelphia, PA, Aug. 2005.

[15] M. Schiffman. ipgeo. http://www.packetfactory.net/projects/ipgeo,
2005.

[16] K. Shanahan and M. Freedman. Locality Prediction for Oblivious
Clients. In Intl. Workshop on Peer-To-Peer Systems, Ithaca, NY, Feb.
2005.

[17] Y. Shavitt and T. Tankel. Big-Bang Simulation for Embedding
Network Distances in Euclidean Space. In INFOCOM, San
Francisco, CA, Apr. 2003.

[18] Y. Song, V. Ramasubramanian, and E. Sirer. Optimal Resource
Utilization in Content Distribution Networks. In Computing and
Information Science Technical Report TR2005-2004, Cornell
University, Nov. 2005.

[19] L. Tang and M. Crovella. Virtual Landmarks for the Internet. In
Internet Measurement Conference, Miami, Florida, Oct. 2003.

[20] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware Overlay
Network. In Hot Topics in Networks, Princeton, NJ, Oct. 2002.

[21] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Request
Redirection on CDN Robustness. In Symposium on Operating
Systems Design and Implementation, Boston, MA, Dec. 2002.

[22] B. Wong, A. Slivkins, and E. Sirer. Meridian: A Lightweight
Network Location Service without Virtual Coordinates. In
SIGCOMM, Philadelphia, PA, Aug. 2005.


