
7

Disk Prefetching Mechanisms for Increasing HTTP

Streaming Video Server Throughput

BENJAMIN CASSELL, University of Waterloo

TYLER SZEPESI, University of Waterloo

JIM SUMMERS, University of Waterloo

TIM BRECHT, University of Waterloo

DEREK EAGER, University of Saskatchewan

BERNARD WONG, University of Waterloo

ACM Reference format:

Benjamin Cassell, Tyler Szepesi, Jim Summers, Tim Brecht, Derek Eager, and Bernard Wong . 2018. Disk

Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput. ACM Trans. Model. Per-

form. Eval. Comput. Syst. 3, 2, Article 7 (March 2018), 30 pages.

https://doi.org/10.1145/3164536

ABSTRACT

Most video streaming tra�c is delivered over HTTP using standard web servers. While traditional
web server workloads consist of requests that are primarily for small �les that can be serviced
from the �le system cache, HTTP video streaming workloads often service a long tail of large
infrequently requested videos. As a result, optimizing disk accesses is critical to obtaining good
server throughput.
In this paper we explore serialized, aggressive disk prefetching, a technique which can be used

to improve the throughput of HTTP streaming video web servers. We identify how serialization
and aggressive prefetching a�ect performance and, based on our �ndings, we construct and evalu-
ate Libception, an application-level shim library that implements both techniques. By dynamically
linking against Libception at runtime, applications are able to transparently obtain bene�ts from
serialization and aggressive prefetching without needing to change their source code. In contrast
to other approaches that modify applications, make kernel changes, or attempt to optimize ker-
nel tuning, Libception provides a portable and relatively simple system in which techniques for
optimizing I/O in HTTP video streaming servers can be implemented and evaluated.

We empirically evaluate the e�cacy of serialization and aggressive prefetching both with and
without Libception, using three web servers (Apache, nginx and the userver) running on two oper-
ating systems (FreeBSD and Linux). We �nd that, by using Libception, we can improve streaming
throughput for all three web servers by at least a factor of 2 on FreeBSD and a factor of 2.5 on Linux.
Additionally, we �nd that with signi�cant tuning of Linux kernel parameters, we can achieve sim-
ilar performance to Libception by globally modifying Linux’s disk prefetch behaviour. Finally, we
demonstrate Libception’s ability to reduce the completion time of a microbenchmark involving
two applications competing for disk resources.

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive

Version of Record was published in ACM Transactions on Modeling and Performance Evaluation of Computing Systems,

https://doi.org/10.1145/3164536.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

https://doi.org/10.1145/3164536
https://doi.org/10.1145/3164536

7:2 B. Cassell et al.

1 INTRODUCTION

Video streaming over HTTP is now the largest contributor to Internet tra�c. The catalogue of
available content from popular video streaming services has also been growing rapidly, and al-
though memory caching and SSD can be e�ective for the most popular content, HTTP streaming
video server workloads are often disk-bound [13]. Techniques for improving disk throughput in
such systems are therefore of considerable interest.
There has been much past work on improving disk access e�ciency. In the context of HTTP

video streaming, however, there are two complicating factors. First, unlike early video streaming
systems, HTTP-based video streaming is pull-based: the server responds to client requests for
video chunks, rather than pushing video data to the client at some server-determined rate. Sec-
ond, contemporary servers may be highly concurrent, responding to video chunk requests from
hundreds or thousands of clients concurrently.
A well-known approach to making disk access more e�cient for applications that access �les

sequentially is to perform larger reads from disk to prefetch data before it has been requested. In
prior work we observed that serializing reads may also be important in some contexts [35, 36].
By modifying a web server to both aggressively prefetch and serialize its reads, we were able
to signi�cantly improve performance on FreeBSD. This prior work did not investigate whether
the approach of combining aggressive prefetching with serialization could yield similarly large
bene�ts for other web servers or on other operating systems.
Implementing techniques for improving disk access e�ciency inside the application requires

detailed knowledge of the application code, and must be repeated for each application of interest.
This could be quite di�cult for applications with large code bases such as Apache and nginx. On
the other hand, a kernel implementation is operating system speci�c, requires detailed knowledge
of the relevant pieces of kernel code, and has the additional problem of potential adverse impacts
on other types of applications.
In this paper, we address the problem of improving disk access e�ciency in HTTP video stream-

ing servers by further exploring the impact of aggressive prefetching and serialization on web
servers. Using our �ndings, we develop Libception, an application-level shim library that imple-
ments both techniques. We then apply Libception to evaluate the performance improvements
provided by aggressive prefetching and serialization for the widely-used Apache and nginx web
servers as well as a customweb server, the userver, on two operating systems (FreeBSD and Linux).

Our contributions are as follows:

• We explore the application of serialization and aggressive prefetching in HTTP streaming
video web servers. We evaluate the individual contributions of these techniques towards
improving throughput and provide clear evidence for why they are e�ective. Our evaluation
shows that combining aggressive prefetching with serialization provides substantially better
performance than either technique alone.
• Based on our �ndings, we design and implement Libception, a portable, application-level
shim library that implements serialized disk access and aggressive prefetching. We demon-
strate that web servers can obtain the bene�ts of these techniques simply by dynamically
linking with Libception at runtime (using LD_PRELOAD), without the need for source code
changes. Comparing a web server that we had modi�ed to incorporate the techniques di-
rectly to the unmodi�ed server linked with Libception, we �nd essentially identical perfor-
mance.
• We show that the aggressive prefetching and disk I/O serialization techniques currently im-
plemented in Libception can approximately double the peak HTTP video streaming through-
put of a variety of web servers (Apache, nginx, and the userver), both on FreeBSD, and on

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:3

Linux when using the default kernel parameter settings, regardless of which Linux disk
scheduler is chosen.
• We discover that there is great scope for improving HTTP video streaming performance on
Linux, when not using Libception, by tuning kernel parameters. In particular, by tuning pa-
rameters to improve both prefetching and serialization, we �nd that throughput can be more
than doubled, yielding peak throughput slightly higher than that obtained with Libception.
In contrast, when using Libception, kernel parameter tuning yields only marginal additional
improvements.
• Finally, we use a microbenchmark to demonstrate Libception’s ability to improve perfor-
mance for another workload.With two instances of the utility diff competing for resources,
Libception is shown to reduce execution time for both instances of diff, cutting workload
completion time by over 50%.

This paper expands upon our International Conference on Performance Engineering (ICPE 2017)
paper [37]. New material in this paper includes additional background information on web server
architectures; a detailed description of our modi�cation of the userver to directly incorporate seri-
alization and aggressive prefetching; results from a low-level analysis to determine the bene�ts of
applying serialization and aggressive prefetching individually and together; experimental results
involving multiple disks; and microbenchmark performance results demonstrating Libception’s
e�ects outside of a video streaming workload.

2 BACKGROUND AND RELATEDWORK

HTTP streaming video workloads are typically disk-bound due to the large size of video �les and
the tendency of the popularity distributions of these �les to have a very long tail (meaning the large
majority of content is accessed infrequently) [13]. There are three general techniques for improv-
ing the bottleneck of disk performance: �le caching, disk scheduling and prefetching. Our research
is primarily interested in the e�ects of request scheduling and prefetching. File caching plays a sig-
ni�cant role in improving server throughput for our workload, but competes with prefetching for
system memory resources [5]. For the purposes of our experiments, we simply use the kernel �le
caching algorithm as-is.
In the following sections we describe prior work for disk scheduling and prefetching, and dis-

cuss how the results apply to an HTTP streaming video workload.We discuss handling concurrent
I/O streams, because the bulk of the research into scheduling and prefetching assumes a single-
threaded workload (which is not consistent with our workload). Finally, we discuss the architec-
tures used to implement web servers to enable the e�cient servicing of many concurrent streams
of video content.

2.1 Block I/O Scheduling

Block I/O schedulers play a major role in most modern operating systems, and typically act as a
layer between user I/O requests and requests to block device drivers. As of kernel version 2.6.33,
Linux provides three di�erent default options for scheduling block I/O devices: NOOP, deadline,
and completely fair queuing (CFQ). All three schedulers attempt to take advantage of di�erent
aspects of temporal and spatial locality between requests in order to yield higher throughput for
disk-bound workloads.
The NOOP scheduler is the least complicated of the Linux schedulers. It provides a simple �rst-

in-�rst-out (FIFO) queue for requests, and also performs basic request merging [2]. The deadline
scheduler maintains sector-sorted read and write queues, as well as queues which are organized by
expiration times. The deadline scheduler gives priority to expired requests in the secondary queues,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:4 B. Cassell et al.

and otherwise batches requests from the sector-sorted queues. It is tailored towards workloads that
require latency guarantees on I/O requests [2]. CFQ divides access to the disk into time slices which
are allocated between groups of per-process request queues and sized by process priority. CFQ
idles shortly on empty queues whose time-slices have not expired, even if other queues contain
outstanding requests [2].
Linux previously o�ered an anticipatory scheduler (AS), which was introduced as a means to

eliminate “deceptive idleness”. Deceptive idleness occurs when processes leave a small data pro-
cessing gap between I/O requests. During this time, naive schedulers may switch to servicing
other processes, introducing seeks that can degrade system performance [11]. The abilities of AS
are mostly a subset of CFQ, and as such AS was removed in version 2.6.33 of the Linux kernel [3].
The schedulers built into the Linux kernel are necessarily designed to handle a wide range of

workloads. However, there are characteristics of streaming video workloads that can be exploited
by specialized scheduling algorithms. There are many studies, aimed at broadcast streaming sce-
narios in which servers push data to clients, where scheduling is used as a means to maximize
throughput [7, 9, 31]. These studies contain valuable insights, but are not directly applicable to
HTTP streaming video servers, where clients individually pull requests from the server. As we
will demonstrate experimentally, the choice of block I/O scheduler is not very important for HTTP
streaming video workloads. Regardless of which scheduler is chosen, signi�cant throughput ben-
e�ts are gained from the use of other techniques to improve I/O.

2.2 Prefetching

Prefetching is a well-studied technique, and refers to reading data from the disk into memory
before it is actually requested by the user. This allows subsequent read requests to return immedi-
ately instead of blocking on disk operations. Prior research has shown the e�ectiveness of using
prefetching as a means of o�-setting latency and CPU stalls [6, 24, 39]. Papathanasiou and Scott
demonstrated that aggressive prefetching (prefetching far beyond what is requested by the user)
can be used to o�set request latency [22]. However, latency of disk access is not a signi�cant con-
cern for HTTP streaming video workloads. Clients use bu�ering to cope with potentially high
network latencies, so lower latencies incurred by disk I/O are unlikely to a�ect the quality of
service experienced by end users.
Instead, HTTP streaming video would bene�t from using prefetching as a vehicle for increas-

ing disk throughput. Examples of systems that have studied prefetching within this context are
DiskSeen, a system that modi�es the Linux kernel to introduce history-aware prefetching into the
operating system [12], and libprefetch, which uses both kernel and application modi�cations to
provide application-directed prefetching [38]. Unlike previous work, our research considers disk
request serialization in combination with highly aggressive prefetching, and does not require code
changes at the user level nor in the kernel.
Prefetching is commonly performed at the hardware level, in addition to the software level. We

refer to prefetching done by the disk itself as “lookahead”. Ruemmler andWilkes demonstrated that
lookahead could improve read times by up to 42% on Unix-based systems [29], and subsequently
showed that e�ective use of on-disk caches for lookahead can yield optimal results for sequential
workloads by eliminating unnecessary rotational delays [28].

An important issue in prefetching concerns how much data to request with each read opera-
tion. A larger prefetch amortizes the overhead cost of a disk access over more bytes of data but
can have adverse consequences, such as the eviction of useful data from the cache. Panagiotakis,
et al. [21] demonstrate that using a large �xed prefetch size to service 100 sequential streams

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:5

improves throughput by up to 4 times compared to not prefetching. Li, et al. [14] provide a 2-
competitive algorithm that uses hard drive performance speci�cations to determine a prefetch size.
In prior work, we found that the best prefetch size depends on both available system resources and
speci�c workload characteristics [34]. We provide an automated algorithm for dynamically deter-
mining a good prefetch size [34], and we demonstrate that it is possible to further increase the
e�ciency of servicing a streaming video workload by exploiting knowledge of speci�c workload
characteristics to implement a prefetch algorithm [33]. For this paper, we implement a simple
prefetch algorithm in Libception that uses �xed-size prefetches, with a default size of 2 MB (we
experiment with di�erent �xed prefetch sizes in Sections 6.4 and 6.5). In the future, for use in a
production server or for di�erent workloads, we could implement an automated workload-speci�c
prefetch algorithm in Libception.

2.3 Concurrent I/O Streams

It is important to consider the trade-o� between reading from disk e�ciently using large prefetches
and servicing concurrent disk requests fairly. Panagiotakis et. al demonstrated rapid degradation of
I/O throughput as additional I/O streams are introduced across a variety of Linux schedulers [21].
The Argon system [40] focused on meeting service-level agreements by using disk-head time-

slicing to ensure minimum levels of throughput to competing applications. Unlike Argon’s target
workload, HTTP streaming video workloads only require that clients avoid re-bu�ering (it is not
uncommon for clients to bu�er about 5 – 30 seconds of video [1, 4]). Because HTTP streaming
clients are insensitive to disk latency, there is scope to reduce fairness between individual clients
in exchange for higher disk throughput.

2.4 Web Server Architecture

Web servers are an important class of applications that must manage hundreds or thousands of
concurrent I/O streams. To handle concurrent connections e�ciently, a web server must ensure
that when servicing oneHTTP request, the servicing of other requests is not unnecessarily blocked.
In particular, when it is necessary to issue disk I/O to service one request, it does not block the
servicing of a request that can be serviced from the �le system cache. There are two web server
architectures designed to allow concurrent processing; thread-per-connection (used by Apache)
where each connection is serviced using its own thread or event-driven that makes use of non-
blocking I/O so that a single event-loop thread can be used on each core to service multiple clients
(used by the userver and nginx). Unfortunately, not all operating systems provide support for non-
blocking disk I/O, so the event-based AMPED architecture was developed, then used to implement
the Flash web server [20]. With AMPED, a pool of helper threads is used to read data from disk
into memory, and then notify the main when the data is available in the �le system cache.

One issue with either thread-per-connection or the AMPED architecture is tuning; an adminis-
trator must con�gure the number of threads in the pool. Our approach is a variation of AMPED
that we call ASAP (Asynchronous, Serialized Aggressive Prefetching) which does not require con-
�guring a pool of threads. This architecture has been used in previous work [35, 36]. We call this
architecture asynchronous because data is read from disk using a separate thread from the main
event loop, similar to Flash/AMPED. It is serialized because we use a single helper thread per
disk to serialize all application read requests, to reduce the interleaving of disk accesses for the
portions of di�erent �les requested from the numerous clients being served. Finally, we use aggres-
sive prefetching when we access the disk, to exploit the property that requests from an individual
client are highly sequential because users tend to continue watching the same video.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:6 B. Cassell et al.

Our work in this paper investigates the speci�c reasons why the ASAP architecture is e�ective.
We also demonstrate the utility of this approach by implementing Libception to provide similar
bene�ts to the Apache and nginx web servers, as well as other applications that involve large
amounts of concurrent I/O.

3 DESIGN AND IMPLEMENTATION

In this section, we describe two di�erent approaches to improving the throughput of web servers
for HTTP streaming video workloads. First, we modify an existing web server, the userver, and use
the modi�ed server to conduct experiments to determine the contributions of individual aspects of
the ASAP architecture. Second, we develop a library shim, Libception, that provides applications
with the necessary capabilities for both I/O serialization and aggressive prefetching without the
need for source code or kernel modi�cations.

3.1 ASAP Design

The sendfile system call is widely used inmodern web servers to obtain high throughput because
it or a variant is supported onmost modern operating systems and it provides “zero copy” transfers
of �les from the �le system cache to the NIC.
One way web applications use sendfile is to ask it to send an entire �le at a time. In this case

the caller blocks until all of the bytes have been sent and multiple threads (or processes) are used
to ensure that some threads can make progress while others threads are blocked. This approach is
used by the Thread-per-connection architecture.
Web servers that use an event-driven architecture, such as nginx and the userver, use sendfile

in a non-blocking mode. In this case the sendfile call sends as much data as can be accommo-
dated by the socket bu�er before returning the number of bytes actually written. A kernel event
mechanism (e.g., select, poll, epoll, kevent) is used to obtain noti�cations when the socket
bu�er can be written to again. Unfortunately, because the sendfile call blocks for disk I/O when
the data being sent is not found in the �le system cache, a special approach is required to prevent
the main event loop from blocking. Our approach is to use the SF_NODISKIO �ag (supported by
FreeBSD) when calling sendfile, which causes sendfile to return EBUSY rather than blocking
for disk I/O [26]. When EBUSY is returned, a separate helper thread is used to perform disk I/O
(using read). When the helper thread �nishes accessing the disk, it signals the main event loop
which then reissues the sendfile call. This new call does not block because the requested data is
in the �le system cache. In addition to serializing access to a disk, a helper thread also performs
aggressive prefetching by reading more data than was requested by the client.

The use of the SF_NODISKIO �ag makes these modi�cations speci�c to a particular version of
FreeBSD. Therefore, in this paper we use ourmodi�ed version of the uservermainly to evaluate the
e�ectiveness of theASAP architecture. For amore portable implementation of serialized aggressive
prefetching, we developed the Libception shim library.

3.2 Libception Design

The Libception library is portable, operates in user space, and has been tested on FreeBSD, Linux
and Mac OS X. It is comprised of two components: The �rst component is Deception, a dynam-
ically linked shared object which inserts itself between the application and libc calls. Deception
intercepts I/O requests from the application and forwards them to the system’s second component,
Reception. Reception is a server process that runs separately from applications using Deception.
Reception receives, services, and responds to requests generated by applications using Deception

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:7

(including prefetching data when necessary). Figure 1 shows a high-level overview of the compo-
nents of Libception.

Fig. 1. Libception design

3.2.1 Deception. Deception is the primary interface for communication between user applica-
tions and the Libception library. It is implemented as a shared object that is dynamically linked
at launch-time by the application that wishes to make use of it. On Unix-based operating sys-
tems, including Linux and FreeBSD, this is done by setting the LD_PRELOAD environment vari-
able when launching an application. Likewise, on Mac OS X this is accomplished by setting the
DYLD_INSERT_LIBRARIES environment variable. Once loaded, Deception begins silently intercept-
ing calls to a variety of libc I/O-related functions including open, read and sendfile. This tech-
nique allows applications to take advantage of the Libception library’s bene�ts without requiring
any source code modi�cations. Furthermore, because Deception is implemented in user space, it
requires no changes to the underlying operating system.
Most calls to Deception perform several validity checks, and then determine whether or not the

application’s I/O request is already resident in the system’s �le cache. This is done by using the
system calls mmap and mincore to check all memory blocks of the request (excluding blocks that
would be prefetched if the request went to disk). If a request is found to be contained entirely in
memory, Deception passes the call to the original libc function (which returns without needing to
go to disk). Otherwise, disk I/O is required, and a Libception I/O request is constructed and sent
to Reception using Unix sockets (which duplicates any necessary �le descriptors).
Should a disk read be necessary, Deception waits on a response from Reception before it pro-

ceeds. To ensure transparency, Deception always �nishes by executing the application’s original
libc call and returning to it the appropriate return codes (even if a parameter input fails sanity
checks). This allows Deception to run invisibly, without a�ecting the guarantees of the API for
the associated libc call. This in turn means that the application can expect the same control and
user-functionality for libc I/O calls that it would be a�orded if Libception was not being employed.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:8 B. Cassell et al.

Some additional non-I/O libc functions are also intercepted by Deception (such as getpid and
fork). These functions are intercepted for functionality purposes, do not communicate with the
Reception layer, and are also invisible to the user (as they terminate bymaking the original libc calls
as well). All initialization for Deception is handled transparently at launch by GCC constructor
functions and all cleanup is likewise handled unobtrusively at termination by GCC destructor
functions which are run when the Libception shared object is loaded and unloaded, respectively.

The basic design principles for Libception are also applicable to other operating systems, such
as Microsoft Windows. Although the process for implementing these techniques on Windows are
more complicated than setting an environment variable, there are several options for re-routing
the Win32 API calls that deal with disk I/O. For example, a Windows-based version of Libception
could use Microsoft Detours [15] to forward I/O calls to an external Reception process. We leave
the details of such an implementation to future work.

3.2.2 Reception. In our experiments, Reception is launched as a separate user space process
by the user, prior to running applications with the Deception shim. It could also be launched as
a daemon process in a production environment. Reception is primarily responsible for accepting,
serializing and servicing incoming I/O requests from one or more Deception shims. Reception
furthermore modi�es requests as necessary (for example, by enlarging read sizes to introduce
readahead), executes the prefetch itself, and �nally responds to Deception. These tasks are divided
between a single Receptionist thread, and one or more DiskIODaemon threads.
The Receptionist thread acts as a server, accepting requests over Unix sockets. I/O requests

received by the Receptionist thread are sorted by device, and are placed in one of multiple queues
to be serviced by the appropriate DiskIODaemon thread. The Receptionist server thread also may
delegate requests to a separate maintenance thread that performs utility tasks, such as statistics
collection and aggregation.
DiskIODaemon threads are responsible for performing I/O for di�erent devices. By default, Re-

ception runs in a single DiskIODaemon mode, with all requests being serviced sequentially in
the system by one thread. Alternatively, the user may set Reception to create individual DiskIO-
Daemon threads for individual devices in the system. In this case, the Receptionist de-multiplexes
incoming I/O requests to the DiskIODaemon threads based on the underlying device for the �le
descriptor in the request.
Regardless of whichmode is selected, DiskIODaemon threads each use their own lock-protected

request queue, which is �lled by the Receptionist, and drained by the DiskIODaemon thread. Only
one request is removed from this queue at a time by the DiskIODaemon thread, ensuring that I/O
to whichever device it is servicing is serialized. As requests are pulled from this queue, they are
expanded to include any necessary prefetch information, and are then sent to disk. Once �nished
servicing the request, the DiskIODaemon thread sends a message to the Deception shim that made
the request, allowing it to unblock and proceed.
Libception additionally contains options that allow it to perform prefetch-free serialization,

serialization-free prefetching, and simple request tracking without either serialization or prefetch-
ing (useful, for instance, in latency pro�ling or other statistics gathering). Serialization-only mode
indicates to Libception not to extend reads provided by the user and is identical to prefetching
with a prefetch size of zero. Prefetch-only mode transfers the burden of extending and performing
requests from Reception to Deception. In this mode, instead of communicating with Reception,
Deception shims simply immediately extend their requests and perform application-side pread

calls before completing the original I/O request.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:9

4 EXPERIMENTAL METHODOLOGY

We used the methodology described in [35] to generate experimental workloads and benchmarks.
Our workload represents a large number of HTTP streaming video clients requesting videos with
characteristics similar to requests for YouTube videos in 2011. We use a small number of client
machines to generate tra�c simulating thousands of concurrent sessions. Each session represents
an end user viewing video. The video selected for each session is chosen using a Zipf distribution
with an α value of 0.8. This video is watched for some fraction of its duration. It is an important
characteristic of video workloads that users do not typically watch to the end of a video, so this
property is re�ected in our workloads: The percentage of a video that any given user requests is
in line with the watching patterns of a typical YouTube-like workload.
Another important characteristic of our workload is that the network is not the primary bot-

tleneck. Net�ix, for example, uses Open Connect Appliance (OCA) servers that have operational
throughputs between 9 Gbps and 36 Gbps [17], but are provisioned with up to 40 Gbps of net-
work capacity [19]. Instead, the workload is heavily disk-bound. This can be seen in the �ndings
of our recent work characterizing the properties of a Net�ix video workload [33]. Video providers
maintain a large catalogue of content in order to appeal to a broad audience. Net�ix, for instance,
has a catalogue which is approximately 2 Petabytes in size [33]. Large video libraries have long
tails [13], meaning they contain a large amount of infrequently viewed content. Cost e�ective stor-
age is achieved by storing videos on large, inexpensive hard disk drives and the infrequent access
means that the data being requested must be serviced from disk.
Videos are stored on the server hard drives by storing each video in a separate �le. We stored

data for a video in a single �le rather thanmultiple chunks because we found this approach is more
e�cient in prior experiments [36]. The disk is populated with 20,000 video �les which have an av-
erage duration of 265 seconds, with a similar distribution as YouTube videos [8]. The �les represent
videos with a �xed bit rate of 420 kbps. This bit rate was chosen based on information available
at the time of creation of the benchmark [10]. With these duration and bit rate characteristics, our
average �le size is 13 MB.
Each client session consists of a sequence of requests for 10 second intervals of video data, which

are 0.5 MB in size. The �rst three requests in a session are made as quickly as the server can deliver
the results, then subsequent requests are made on a �xed 10 second interval. This represents the
�lling of a playout bu�er at the beginning of a session, followed by requests to re�ll the bu�er
as it is consumed at the bit rate of the video. This is a simpli�ed model of a pull-based video
client; it does not attempt to represent user actions like pausing the video, skipping to di�erent
points in the playback, or changing the quality level of the video. These actions were rare in the
YouTube workload we modelled, but our methodology is �exible enough that we could represent
these actions for workloads where they are signi�cant.
The average duration of a video session is 160 seconds, using a distribution derived from real-

world measurements. During experiments, video sessions are started at a chosen rate, using a
Poisson distribution for session initiation. Experiments consist of 14,400 sessions, with amaximum
of about 650 concurrent sessions. A total of 118 GB of video data is requested from 6581 di�erent
videos. Each video is viewed 2.2 times on average and 67.8% of videos are requested a single time
during the experiment.
The clients monitor the service time for each request, and if it takes longer than 10 seconds

to completely receive the data from a request, the client terminates the session and stops making
further requests. For our experiments, we are interested in determining the highest aggregate client
request rate that can be serviced, so that we can compare di�erent web servers and con�gurations.
To determine this rate, the maximum failure-free rate, we conduct a number of benchmark runs

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:10 B. Cassell et al.

with a range of di�erent aggregate rates of requests. From this, we determine the highest rate that
results in fewer than 0.3% session failures. This value was chosen to permit clients to perform a
small but very limited amount of re-bu�ering.
The clients are connected to the server over a local-area network with high bandwidth and low

delay. To better represent the conditions available to real-world users, we use dummynet [25],
which allows us to simulate di�erent network types. We throttle 50% of client sessions in the
workload to 3.5 Mbps, and the other 50% of client sessions to 10.0 Mbps, in order to represent a
mix of end-user cable and DSL access speeds. Furthermore, we add 50 ms of delay to the network
in each direction in order to model more realistic wide-area network conditions.
The equipment and environment we use to conduct our experiments were selected to ensure

that network and processor resources are not a limiting factor in the experiments. We use two
server machines, one for FreeBSD experiments and the other for Linux experiments. Both are HP
DL380 G5 systems which contain two four-core Intel E5400 2.8 GHz processors and 8 GB of RAM.
The Linux system uses Ubuntu 12.04 with a Linux 3.2.0 kernel, and a Western Digital Red (WDC
WD10EFRX) 1.0 TB 5,400 RPM 3.5 inch SATA3 disk to store video �les (chosen for its combination
of relatively high throughput and low power consumption). The FreeBSD system uses FreeBSD
8.0 and stores videos on an HP 146 GB 10,000 RPM 2.5 inch SAS disk. Table 1 shows the raw
throughput and seek times for the two di�erent drives, obtained using the diskinfo command.
Note that these are raw throughput numbers that do not include �le system overhead so actual
application throughput numbers will be lower. We use FreeBSD 8.0 so we can try to match the
performance obtained previously with a modi�ed web server [35]. Video �les accessed during
experiments are stored on a separate disk from the operating system.

Drive Throughput (MB/s) Seek Time (msec)
Outer Middle Inner Full 1/2 1/4

HP 122 107 73 10.5 8.0 6.8
WD Red 133 115 67 32.6 23.1 18.9

Table 1. Raw Throughput and Seek Times

In all of our experiments client machines are used to generate the load of thousands of viewers
on the servers. In Section 5 twelve client machines are used and in the remainder of the paper we
use four clients. Therefore, the workloads are slightly di�erent and as a consequence, care must be
taken if comparing the disk throughput results shown in Table 2 and Figure 7. Each of the client
systems contains either dual 2.4 or dual 2.8 GHz Xeon processors and 2 GB or 3 GB of memory.
Client machines run Ubuntu 10.04 on top of version 2.6.32-30 of the Linux kernel. They also use a
version of httperf [16] that was modi�ed locally to support new features in a workload generation
module named wsesslog. These modi�cations also allow the clients to track additional statistics.
All clients are connected to the server via multiple 1 Gbps network links through multiple 24-port
switches, helping to further ensure that the network is not a bottleneck.

5 UNDERSTANDING ASAP

In previous work [35, 36], we demonstrated the overall bene�ts of using the ASAP architecture
to modify a web server, and focused on the problem of choosing the most e�ective prefetch size
based onworkload characteristics. However, our investigation used aweb server that wasmodi�ed
to apply both serialization and aggressive prefetching when accessing the disk. In this section,
we perform a low-level analysis to determine the individual bene�ts of applying serialization or

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:11

aggressive prefetching techniques on their own, to gain insights into the reasons that ASAP is
e�ective in improving throughput.
We conduct experiments with four di�erent con�gurations of the userver on FreeBSD. One

con�guration is unmodi�ed and has no prefetching or serialization (vanilla), one serializes read
requests but does not do any prefetching (serialized), one uses aggressive prefetching without
serialization (prefetching), and one implements the full ASAP architecture (ASAP). We provide
details of the implementation of each con�guration in the sections that follow.

The results of all experiments conducted using these di�erent con�gurations are contained in
Table 2. For the vanilla and serialized con�gurations of the userver, the size column speci�es the
size of network socket bu�er used to send requested data. For the prefetching and ASAP con�gu-
rations of the userver, the size column speci�es the prefetch size. The reason for these choices and
signi�cance of these results are discussed in the sections that follow.

userver Size Request Rate Disk Tput ms/t
version KB req/s MB/s

vanilla 128 60.0 18.8 4.31
vanilla 2048 70.0 21.6 2.81

serialized 128 60.0 18.8 3.67
serialized 512 120.0 34.4 2.00
serialized 2048 120.0 34.4 2.00

prefetching 2048 120.0 37.4 1.83
prefetching 4096 140.0 47.0 1.53

ASAP 512 120.0 34.5 2.57
ASAP 2048 200.0 55.6 1.40

Table 2. Disk metrics across userver versions for di�erent prefetch/socket bu�er sizes (FreeBSD, HP drive)

There are two performance measurements reported, disk throughput (Disk Tput) and transac-
tion time (ms/t). In FreeBSD, all disk accesses are performed with a series of transactions that can
be up to 128 KB in size. If a function speci�es a read larger than 128 KB, the request is split into
multiple transactions which are issued iteratively. The execution time for a transaction consists
of the time necessary to seek to the location on disk, as well as the time to read the data. If two
consecutive transactions are contiguous on disk and the transactions are issued in quick succes-
sion, the second seek time will be zero; otherwise the time depends on the distance between the
transactions. Di�erences in the average transaction time re�ect both the number of contiguous
transactions and the distance between non-contiguous transactions.
We compute the transaction time using two values reported by iostat: the number of transac-

tions n that were performed in each second of elapsed time and the percentage of the time the disk
was busy b. The transaction time is reported in milliseconds per transaction (ms/t) and calculated
as: 1000 ms ∗ b/n. We do not report transaction sizes because they are approximately the same
for all experiments (128 KB). Since the average transaction size is stable, transaction times can be
directly compared between experiments.
To illustrate the reason for the di�erences between transaction times, we used dtrace to inter-

cept calls to the remove_bioq kernel function, and recorded the physical location of each disk
transaction, in the order they were scheduled by the kernel. We then created graphs, such as
the one shown in Figure 2, that show short representative portions of the traces and provide in-
sights into the reasons that serialization or aggressive prefetching improve throughput. Each of

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:12 B. Cassell et al.

Figures 2 through 5 start from the �rst transaction at the same speci�c location on disk, but the
locations of subsequent transactions vary widely due to di�erences in the algorithms used by the
di�erent userver con�gurations, and the non-determinism of concurrent clients.

In the following four sections, we analyze the performance of each con�guration of the userver
and show that while the serialized and prefetching con�gurations have lower transaction times
and therefore higher disk throughput than the vanilla userver, ASAP is clearly the best alternative.
Then in Section 5.5, we compare the spatial locality of disk accesses over the entire workload for
each userver variation.

5.1 Vanilla userver

Using the vanilla userver, we attempted to improve transaction times by changing the socket
bu�er size. The socket bu�er size indirectly determines the size of read requests, because we call
sendfile in response to a noti�cation that the socket bu�er could be re�lled. The larger the socket
bu�er, the higher the potential for larger re�lls. We report the results of experiments using socket
sizes of 128 KB and 2048 KB, in Table 2, in the rows labelled vanilla. Using the larger socket bu�er
size of 2048 KB increases disk throughput to 21.6 MB/s, compared to the 18.8 MB/s when using
128 KB sockets. This leads to a corresponding increase in the maximum failure-free rate to 70 req/s,
which is the highest request rate we could achieve with the vanilla userver.

Figure 2 shows a short trace of disk accesses by the vanilla userver when using a socket bu�er
size of 2048 KB at a request rate of 70 req/s. The vanilla userver uses many processes to service
clients and access the disk, so there aremany instances when disk accesses are interleaved between
multiple �les located at di�erent locations on disk. This interleaving of disk accesses causes many
extra seeks and lower disk throughput, which we can increase using serialization.

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108

 0 50 100 150 200 250

L
og

ic
al

 B
lo

ck
 A

dd
re

ss

Transaction Number

Fig. 2. Disk access pa�ern of vanilla userver (FreeBSD, HP drive)

5.2 Serialized userver

In order to quantify the e�ect of the interleaving of disk transactions, we modi�ed the userver to
serialize disk reads using a semaphore that is shared among all processes servicing client requests.
When sendfile (with the SF_NODISKIO �ag) indicates that data is not in the �le system cache, a
process waits on the semaphore before calling sendfile again without the SF_NODISKIO option.
When sendfile returns, the process signals the semaphore and continues processing. With this
modi�cation, disk accesses by concurrent processes are serialized, without changing any of the
other implementation details of the userver.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:13

Figure 3 shows the low-level access pattern when using the serialized userver and a socket
bu�er size of 2048 KB, at a request rate of 110 req/s. Disk access is no longer interleaved as heavily
compared to the vanilla userver, so the number of long-distance seeks is greatly reduced.

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108

 0 50 100 150 200 250

L
og

ic
al

 B
lo

ck
 A

dd
re

ss

Transaction Number

Fig. 3. Disk access pa�ern of serialized userver (FreeBSD, HP drive)

We repeated this experiment using 3 di�erent socket bu�er sizes, and the results are labelled
serialized in Table 2. The results when using 128 KB socket bu�ers are similar to the vanilla userver,
but there is a large improvement in disk throughput when using a 512 KB or 2048 KB socket bu�er
(from 18.8 to 34.4 MB/s). The larger socket bu�er sizes enable an increase in the maximum failure-
free rate from 60 req/s in the worst case to 120 req/s in the best case, which is also an improvement
from the best vanilla throughput of 70 req/s.
However, there is no di�erence in the results when using either 512 KB or 2048 KB socket bu�er

sizes. This is due to the use of 512 KB client request sizes in our workload. The extra space in the
2048 KB socket bu�ers beyond 512 KB is never used, so the results will be identical for any socket
bu�er size of 512 KB or larger with our workload. One could imagine improving this situation by
changing the clients and video encoding to implement larger requests. However, this reduces the
granularity at which rate adaptation changes can occur [4].

5.3 Prefetching userver

The prefetching con�guration of the userver issues larger disk I/O requests to the kernel than the
vanilla userver, but does not serialize those larger requests.

For the prefetching con�guration, we again used the SF_NODISKIO �ag to detect when disk ac-
cesses are necessary. Instead of using sendfile to access the disk, we instead issue a read system
call to prefetch a speci�ed amount of data from disk. We do not make direct use of the data re-
turned by read, this function is called solely for the side e�ect of reading data into the �le system
cache so it can be accessed by a subsequent call to sendfile. The net e�ect is that amount of data
requested (and prefetched) on a �le cache miss is determined by the read call rather than the size
of the client request that is used for sendfile.
Figure 4 shows the access pattern with 2048 KB reads, and a request rate of 120 req/s. Data

is usually read in long contiguous blocks, but there are times where disk access is interleaved
between multiple �les.
Comparing the results between the prefetching and serialized con�gurations in Table 2 (with a

size of 2048 KB) shows that disk throughput is higher for the prefetching con�guration, but the
request rate of 120 req/s is the same. This occurs because our workload represents typical view-
ers who rarely watch to the end of a video. For this reason, some prefetched data may not be

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:14 B. Cassell et al.

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108

 0 50 100 150 200 250

L
og

ic
al

 B
lo

ck
 A

dd
re

ss

Transaction Number

Fig. 4. Disk access pa�ern with prefetching userver (FreeBSD, HP drive)

subsequently requested, which wastes disk throughput. When using a prefetch size of 2048 KB,
the bene�t from higher disk throughput is completely o�set by the cost of reading unnecessary
data. But when the prefetch size is increased to 4096 KB, the bene�ts of higher disk throughput out-
weighs the costs of unnecessary disk I/O. A slightly higher request rate of 140 req/s can be achieved
with the prefetching con�guration with disk throughput increasing to 47.0 MB/s, compared to the
120 req/s for the serialized con�guration.

5.4 ASAP userver

The serialized and prefetching con�gurations demonstrate the bene�t of serializing disk accesses
and larger read sizes, respectively. Both cases increase the number of sequential disk reads when
compared with the vanilla userver. The results of applying both serialization and aggressive
prefetching using the ASAP con�guration are shown in Figure 5. This trace was collected using
a prefetch size of 2048 KB and a request rate of 200 req/s, with disk throughput now reaching
55.6 MB/s. In this case signi�cantly more data is read in long sequential blocks than in the previ-
ously examined cases, maximizing the bene�ts of aggressive prefetching by using serialization to
prevent the interleaving of disk accesses that can reduce disk performance.

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108

 0 50 100 150 200 250

L
og

ic
al

 B
lo

ck
 A

dd
re

ss

Transaction Number

Fig. 5. Disk access pa�ern with ASAP userver (FreeBSD, HP drive)

5.5 Sequentiality of Disk Access

In the preceding sections we show short representative excerpts of the disk I/O performed by the
di�erent con�gurations of the userver. In this section, we consider all of the disk accesses that

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:15

occurred during the experiments to create CDFs that represent the spatial locality of entire exper-
iments. We considered the location of each disk transaction issued during a userver experiment
to �nd sequences of transactions that are adjacent on disk. It requires a disk seek (and rotation
delay) to move from the end of one sequence of adjacent requests to the start of another, but disk
transactions that are adjacent on disk do not require a seek. So experiments with longer sequences
will have higher disk throughput than experiments with shorter sequences.

Figure 6 shows four di�erent CDFs (Cumulative Distribution Functions) corresponding to the
four di�erent userver con�gurations. The data was obtained from the four experiments that use
a 2048 KB prefetch or socket bu�er size in Table 2. The CDFs show the percentage of total bytes
that are read in sequences that are shorter than a given length. For example, about 10% of the
total bytes read using the ASAP con�guration are part of sequences that are less than 1792 KB in
length. Considering all 4 CDF curves, there are a number of in�ection points at 128 KB, 384 KB,
576 KB and 1920 KB. These do not directly correspond to either the client request size of 512 KB
or the 2048 KB prefetch size because FreeBSD uses a 128 KB transaction size and also performs
prefetching, adding a 64 KB readahead to some requests.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 256 512 768 1024 1280 1536 1792 2048 2304 2560

%
 o

f
T

ot
al

 B
yt

es
 R

ea
d

Sequence Length (KB)

Vanilla
Serialized

Prefetching
ASAP

Fig. 6. CDF of percentage of bytes read in sequences during userver experiments (FreeBSD, HP drive)

The vanilla userver issues mostly short sequences, with 11% of bytes read in sequences shorter
than or equal to 128 KB and more than 99% in sequences 576 KB or shorter. The serialized userver
con�guration prevents the interleaving of disk transactions while servicing client requests, which
results in a large reduction in the proportion of short sequences compared to the vanilla userver.
Fewer than 3% of bytes are read in sequences of 128 KB or less and there are many fewer bytes read
in sequences of 384 KB or less, compared to vanilla. The higher proportion of longer sequences is
the reason that the serialized con�guration allows higher disk throughput than the vanilla userver,
but with both of these con�gurations, there are almost no sequences longer than 576 KB.

The prefetching con�guration results in much longer sequences. Only 22% of bytes are read in
sequences of 576 KB or less and 16% of bytes are read in sequences longer than 1920 KB (i.e. only
84% are shorter). However, there is notmuch of a net increase in disk throughput for the prefetching
con�guration when compared to the serialized version (from 34.4 MB/s to 37.4 MB/s), because
nearly 15% of bytes are read in sequences 128 KB or shorter (as opposed to 3% for serialized),
which o�sets the bene�ts of the longer sequences.

The ASAP con�guration combines the high proportion of long sequences from the prefetching
con�guration with the low proportion of short sequences from the serialized con�guration, with
fewer than 1% of bytes in sequences shorter than 128 KB and 55% of bytes read in sequences longer
than 1920 KB to enable disk throughput to reach 55.6 MB/s.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:16 B. Cassell et al.

From these experiments and analysis, we conclude that the spatial locality of disk transactions
issued by the ASAP con�guration is much higher than the vanilla userver, and results in a nearly
three-fold increase in maximum throughput compared to the unmodi�ed vanilla userver. We also
conclude that both serialization and aggressive prefetching are required to maximize the failure-
free request rate. However, wewere required tomodify the source code of the userver to implement
the ASAP architecture. In the following section we show that it is possible to utilize Libception to
achieve the same improvements, without changing the source code or recompiling web servers.

6 LIBCEPTION PERFORMANCE

We now evaluate the maximum failure free throughput (often referred to henceforth as through-
put) of the Apache, nginx, and userver web servers while utilizing Libception on FreeBSD and
Linux servers. In all cases, we have tuned the web server to the best of our ability so that it pro-
vides the greatest maximum failure free throughput. Unless otherwise speci�ed, the prefetch size
used by Libception is 2 MB (we examine other sizes in Sections 6.4 and 6.5).

6.1 Evaluation on FreeBSD

In previous work [35, 36] we demonstrated how modi�cations to the userver web server to per-
form serialization and aggressive prefetching within the application signi�cantly increased server
throughput when servicing streaming video workloads. Unfortunately, these bene�ts rely on mod-
ifying the web server to use the SF_NODISKIO option [27] to the sendfile system call which is
only available on FreeBSD. This �ag causes sendfile calls that would block on disk I/O to instead
return EBUSY.
The basic architecture of the userver using ASAP is to have a separate thread which performs

large disk reads (thus implementing asynchronous, serialized, aggressive prefetching). This was
relatively straightforward in the userver because it integrates well with its event-driven architec-
ture and we were very familiar with the relatively small code base of the userver.
In this section we are interested in providing similar bene�ts to the more widely used Apache

and nginx web servers without directly modifying either application. Note that nginx running on
FreeBSD is of interest because the servers in the Net�ix Open Connect Content Delivery Network
use nginx on FreeBSD [18]. This is particularly relevant because Net�ix currently accounts for a
large fraction of peak Internet tra�c in the United States [30].
We avoid making code modi�cations to the web servers because they each have a much larger

code base than the userver and because Apache uses a signi�cantly di�erent software architecture
(thread-per connection) [23]. Additionally, we want to determine if Libception can improve web
server performance without using the non-portable SF_NODISKIO option to the sendfile system
call.
Figure 7 shows the maximum failure free throughput obtained when using each of the Apache

(labelled “A”), nginx (labelled “N”) and userver (labelled “U”) web servers. Throughput is shown
without Libception (labelled “Vanilla”), when using Libception (labelled “Libception”), and for the
modi�ed version of the userver that uses the SF_NODISKIO option (labelled “ASAP”). Additionally,
this graph shows both the disk throughput and the web server throughput as observed by all of
the client machines.
These results show that Libception is able to more than double disk throughput and total server

throughput for all three web servers. As well, when using Libception, the maximum failure free
throughput obtained by each server is equal to that obtained by the modi�ed ASAP userver. This is

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:17

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

A N U A N U U

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

ASAPLibceptionVanilla

Fig. 7. FreeBSD throughput without and with Libception and with ASAP (HP drive)

despite Libception’s use of mincore prior to each call to sendfile (rather than relying on the non-
portable SF_NODISKIO option) to determine whether or not data needs to be prefetched before call-
ing sendfile. Although previous work reports that mincore call overhead can be signi�cant [26],
these video server workloads are disk-bound and can therefore easily tolerate the increase in CPU
overhead.
It is worth pointing out that, in these experiments, not all of the data that is requested needs to

be read from disk. For example, two clients requesting the same video content in quick succession
will only require the data to be read from disk one time. Therefore, the di�erence between the total
server throughput and the disk throughput is due to �le system cache hits.

To the best of our knowledge, the version of FreeBSD used for these experiments does not
provide any options to control the block I/O scheduler. There were also relatively few options
available to in�uence kernel prefetching decisions and we were not able to signi�cantly improve
throughput using kernel parameters.

6.2 Evaluation on Linux

As noted previously, one of the key goals of Libception is to provide improved throughput for
HTTP video web servers using techniques that are portable across di�erent Unix-based operating
systems. As a result, we now examine the performance of Apache, nginx and the userver on Linux.
Recall that the disks used on the FreeBSD and Linux systems are di�erent so we can not compare
performance across the di�erent operating systems.
Figure 8 shows the disk throughput and maximum failure free throughput obtained using each

of the di�erent web servers on Linux running with and without Libception. As was the case for
FreeBSD, Libception again provides signi�cant improvements in disk and server throughput. On
Linux server throughput is increased by a factor of about 2.5 times when using Libception.

To our surprise, despite years of research on prefetching techniques in operating systems, these
applications and workloads do not appear to perform very well on either FreeBSD or Linux.

6.3 Evaluating Linux Block I/O Schedulers

The default Linux con�guration on our system uses the CFQ block I/O scheduler [2]. We expected
that the anticipatory nature of the Linux CFQ scheduler might be well-suited to this workload.
Because web servers simultaneously process requests from thousands of clients, we expected that
blocks from di�erent requests might provide reordering opportunities that could be exploited by
CFQ to improve disk and server throughput. For completeness we now examine the performance
of all web servers with each of the three block I/O schedulers available in Linux. Figure 9 shows

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:18 B. Cassell et al.

 0

 10

 20

 30

 40

 50

 60

Apache nginx userver Apache nginx userver

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

LibceptionVanilla

Fig. 8. Linux throughput without and with Libception (WD drive)

the throughput obtained without Libception while using the CFQ (labelled “C”), deadline (labelled
“D”) and NOOP (labelled “N”) schedulers. Figure 10 shows the results obtained using the same
schedulers but this time while using Libception.

 0

 10

 20

 30

 40

 50

 60

C D N C D N C D N

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

nginxuserverApache

Fig. 9. Servers without Libception using di�erent block I/O schedulers (Linux, WD drive)

Interestingly, Figure 9 shows that without Libception the server throughput is slightly higher
with the deadline and NOOP schedulers than with the CFQ scheduler. On the other hand, when
using Libception (see Figure 10) all web servers obtain the same maximum failure free throughput
of nearly 50 MB/second regardless of the block I/O scheduler used. We believe that this is because
Libception is serializing all of the reads that go to disk and as a result the schedulers only ever see
a single outstanding request, which leaves no room for scheduling policies to make a di�erence.
Note that we have spent some time attempting to adjust the parameters designed to control the
behaviour of the deadline and CFQ block I/O schedulers. We did not see throughput improvements
when compared with the default values.

In summary, the di�erent schedulers do not signi�cantly improve web server throughput on
this workload. More importantly, Libception provides signi�cant increases in throughput that are
not possible using the block I/O scheduling algorithms.

6.4 Evaluation Insights

In this section we �rst conduct a sequence of experiments designed to understand the relative
importance of the prefetching and serialization components of Libception. For the remainder of the
paperwe focus solely on the nginx server and the CFQ block I/O scheduler.We chose nginx because

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:19

 0

 10

 20

 30

 40

 50

 60

C D N C D N C D N

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

nginxuserverApache

Fig. 10. Servers with Libception using di�erent block I/O schedulers (Linux, WD drive)

it is used by Net�ix for serving HTTP video streaming workloads. We chose CFQ because it is the
default block I/O scheduler on our Linux server and because the schedulers did not signi�cantly
a�ect performance when using Libception (see Figure 10).
Figure 11 shows the maximum failure free throughput obtained using nginx without Libception

(labelled “Vanilla”), with Libception using only serialization (labelled “Serialized”), with Libcep-
tion using only prefetching (labelled “Prefetching”), and with Libception using both serialization
and prefetching (labelled “Libception”). As can be seen in this �gure, serialization alone actually
reduces throughput. We believe that this is primarily due to the relatively small size of reads that
the application performs. These small reads, in conjunction with serialization, result in small re-
quests being issued one at a time, which causes very poor performance. On the other hand, using
prefetchingwithout serialization does signi�cantly increase both disk and server throughput when
compared with the “Vanilla” server. Finally, by combining both aggressive prefetching and serial-
ization, a further increase of approximately 25% beyond that of prefetching is alone is achieved.
These experiments demonstrate that, while aggressive prefetches are essential, the full potential
of Libception is not realized unless the requests to the disk are serialized.

 0

 10

 20

 30

 40

 50

 60

Vanilla Serialized Prefetching Libception

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

Fig. 11. nginx Vanilla, and nginx with Libception using serialization only, prefetching only, and both (Linux,

WD drive)

In previous work [35, 36] and in all experiments in this paper up to this point, the prefetch size
was set to 2 MB.We now examine a range of prefetch sizes and study the impact on the throughput
of nginx while using Libception with prefetching but without serialization (see Figure 12) and with
both prefetching and serialization (see Figure 13)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:20 B. Cassell et al.

Figure 12 shows that, without serialization, throughput does not improve until a prefetch size
of 2 MB or greater is used. It also demonstrates that prefetch sizes of 3 and 4 MB provide slightly
better throughput than a prefetch size of 2 MB.

 0

 10

 20

 30

 40

 50

 60

V 0.5MB 1MB 2MB 3MB 4MB 5MB

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

Fig. 12. nginx with Libception using various prefetch sizes without serialization (Linux, WD drive)

Figure 13 shows that when using Libception, with both serialization and prefetching, small
prefetch reads actually slightly reduce server throughput. However a prefetch size of 1 MB does
signi�cantly improve server throughput, which is not the case when prefetching is used with-
out serialization. When using both serialization and prefetching, throughput peaks with prefetch
sizes of 2 – 4 MB, and also shows that serialization provides additional bene�ts (about 10%) when
compared with prefetching alone.

 0

 10

 20

 30

 40

 50

 60

V 0.5MB 1MB 2MB 3MB 4MB 5MB

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

Fig. 13. nginx with Libception using serialization and various prefetch sizes (Linux, WD drive)

6.5 Using Insights to Improve Linux

We now use the insights obtained from the previous section to modify Linux kernel parameters in
an attempt to improve the performance of nginx when running on Linux without the use of Libcep-
tion. The question being examined is: can we �nd and tune appropriate Linux kernel parameters
in order to obtain throughput that equals that obtained using Libception?

It was not too di�cult to �nd a Linux kernel parameter that wewere able to adjust to increase the
amount of data being read from disk by the kernel.When obtaining data from disk the Linux kernel
may (depending on several factors the details of which aren’t relevant to this discussion) extend
the read beyond what the user has requested. Roughly speaking, a readahead size is tracked per �le

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:21

and under proper conditions grows for each successive read. However, the maximum readahead
size for all �les on a device is limited by the kernel parameter read_ahead_kb, which can be set
di�erently for each device. The default setting for this parameter for the version of Linux used in
our experiments is 128 KB. This is quite small compared to the aggressive prefetches we use in
Libception (e.g., 2 MB in many cases) in order to obtain signi�cant increases in throughput.
Figure 14 demonstrates how the throughput of nginx changes as the value of the readahead pa-

rameter is increased. As an example of howwe set the readahead size to 1024 KB on disk drive used
to store video �les (/dev/sdb1), we use the command blockdev --setra 1024 /dev/sdb1. As
can be seen in this graph, read_ahead_kb values of 0.5 MB and 1 MB provide signi�cant improve-
ments over the default value of 128 KB (labelled “V” for Vanilla). Larger values for read_ahead_kb
do not perform as well as 1 MB. While throughput obtained with 1 MB is about 45 MB/second it is
not as high as that obtained using Libception (50 MB/second). Understanding why this is the case
involved signi�cantly more work.

 0

 10

 20

 30

 40

 50

 60

V 0.5MB 1MB 2MB 3MB 4MB 5MB

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

Fig. 14. nginx without Libception using various read_ahead_kb sizes (Linux, WD drive)

Although the size of the prefetch for �les were actually reaching the limit imposed by
read_ahead_kb, using the Linux blktrace facility we were able to determine that requests to
the disk were being limited to 512 KB. We believe that, as a result, some requests for reads to dif-
ferent �les were being interleaved (this is similar to the Libception case where prefetching is used
but serialization is not).
By examining the Linux kernel source we were eventually able to determine that

another kernel parameter was placing further limits on the size of reads. This value
/sys/block/sdb/queue/max_sectors_kb (for the disk /dev/sdb) uses the default size of 512 KB.
We expect that the default values for these two limits (read_ahead_kb and max_sectors_kb) are
chosen in order to ensure fairness across di�erent disk requests and to keep latencies low.
To ensure that max_sectors_kb does not limit the size of disk readswe set its value to 16MB.We

then adjust read_ahead_kb and examine the throughput obtained by nginx. Figure 15 shows the
results of these experiments and demonstrates the importance of setting both kernel parameters to
proper values in order to obtain good throughput on this workload. In this case a read_ahead_kb
size of 1 or 2 MB, now results in throughput of about 58 MB/second, which is slightly better than
that obtained using Libception.
Figure 16 now shows results obtained using Libception in addition to using modi�ed Linux

kernel parameters. In this case max_sectors_kb is set to 16 MB to ensure that it does not limit
read sizes and the Libception prefetch size and read_ahead_kb are adjusted together using the
values shown along the x-axis of the graphs. The column labelled “V” is showing the vanilla case

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:22 B. Cassell et al.

 0

 10

 20

 30

 40

 50

 60

V 0.5MB 1MB 2MB 3MB 4MB 5MB

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

Fig. 15. nginx without Libception using various read_ahead_kb sizes, with max_sectors_kb = 16MB (Linux,

WD drive)

where nginx runs without Libception and the default kernel parameter values are used. Although
these results show a slight improvement inmaximum failure free throughput when compared with
just using Libception, they are still lower than adjusting the kernel parameters alone and not using
Libception.

 0

 10

 20

 30

 40

 50

 60

V 0.5MB 1MB 2MB 3MB 4MB 5MB

M
ax

. t
pu

t (
M

B
/s

)

Disk Tput
Actual Tput

Fig. 16. nginx with Libception using various prefetch and read_ahead_kb sizes, with max_sectors_kb = 16

MB (Linux, WD drive)

We observe that for some con�gurations of the experiments conducted in this section, the disk
throughput exceeds the total server throughput. In these cases data that is being prefetched is
actually being evicted before it is requested by and sent to the client. This means that, for the
amount of memory in the current system, prefetching has become too aggressive and is causing
evictions. We expect that in these cases, increasing the amount of memory in the systemwill likely
increase total server throughput because there will be less memory pressure created by aggressive
prefetching. It seems that, in HTTP video streaming workloads, it may be more important to have
memory acting as a bu�er for large aggressive prefetching (in order to obtain high disk throughput)
than as a �le system cache.

6.6 Evaluating Latencies

When servicing HTTP video server workloads, server throughput is strongly in�uenced by disk
throughput. This is because video services like YouTube and Net�ix have large numbers of videos
that are viewed infrequently (i.e., the popularity distribution of videos has a long tail). In order

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:23

to improve disk throughput Libception prefetches relatively large amounts of data and serializes
access to each disk. This naturally increases disk throughput while potentially increasing latencies
for some requests. The potential for increased latencies should be relatively harmless when ser-
vicing video server workloads because clients are designed to be able to tolerate fairly signi�cant
latencies by using a play out bu�er. The play out bu�er is �lled before play begins and is used to
seamlessly continue playing the video even during periods where the client may experience laten-
cies due to the network or HTTP server. For example, a client with a 10 second play out bu�er
can tolerate nearly 10 seconds of latency for some requests. As long as the data being requested
arrives (and can be decoded before) within 10 seconds of when it is requested, the user will not
experience any problems.
Before delving into further empirical analysis, it is important to note that all of our results place

an implicit bound on latency. Client timeouts occur when a request has not received a correspond-
ing response after 10 seconds. This latency includes the time to transmit the request, service the
request at the server, and transmit the response. Therefore, if a client completes a session without
errors, all of the latencies must have been acceptable.
In order to better understand the latencies incurred by using Libception and the aggressive

tunings of Linux kernel parameters that support high server throughput, we now examine the
latencies experienced by server processes. We use an existing system call tracing facility that ex-
ists in the userver to record the time required for every call to sendfile in memory and print
those times to disk after the server has �nished servicing all requests. While client-side latency
measurement would give an indication of end-user quality of experience, latency measurement at
the server simpli�es the collection process. Furthermore, as noted in Section 4, in our workload
the network does not serve as a bottleneck. Therefore, server-side latencies should be re�ective of
client-side latencies, minus network transfer time.
Figure 17 shows the cumulative distribution function of sendfile call times without Libception

and with default kernel parameters (labelled “Vanilla”), with Libception, and with the aggressive
kernel parameter tunings. The “Vanilla” and “Libception” lines are created using data from one
run with the userver using the con�guration that obtains the highest error free rate (i.e., the two
userver con�gurations used in Figure 8). The “Aggressive Kernel Params” line was created by
setting read_ahead_kb to 2 MB and max_sectors_kb to 16 MB and using the same request rate
as used for the con�guration of nginx shown in Figure 15.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10 100 1000 10000

Vanilla

Libception

Kernel Params

Fr
ac

. w
ith

 la
te

nc
y

<
 x

sendfile call latency (msec)

Vanilla
Libception

Aggressive Kernel Params

Fig. 17. userver sendfile latency CDF (Linux, WD drive)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:24 B. Cassell et al.

Figure 17 shows that Libception has the smallest density of requests that are serviced in the
lowest range of latencies (i.e., below 0.1 ms). This is due to the extra overhead incurred from the
mincore system call, which is used to determine if the data being requested is in memory or if it
should be prefetched from disk. In cases where the data is already in memory, the lowest latencies
are achieved by calling sendfile directly. For requests where the desired data is not in memory
at the time of the sendfile call, the “Vanilla” con�guration results in a blocking call to sendfile
because the data being requested needs to be read from disk. When a disk read occurs using either
Libception or aggressively tuned kernel parameters, the application-initiated read is serialized and
increased in size (to 2 MB in this case) to implement prefetching. Although this incurs some over-
head for that individual request, subsequent reads will often be served directly from the �le system
cache with comparatively low latencies. The net result is a signi�cant reduction in latencies for a
large number of sendfile calls. While about 49% of sendfile calls take less than 1 ms under the
“Vanilla” con�guration, about 85% of sendfile calls take less than 1 ms for the Libception con�g-
uration, and about 95% of sendfile calls take less than 1 ms for the aggressive kernel parameters
con�guration.
The key observation from this experiment is that, although one might expect latencies to in-

crease because of large serialized prefetches, for this workload they actually decrease for a large
number of data requests.

6.7 Evaluation Summary

Table 3 summarizes themain results from our experiments. Entries markedwith an asterisk are not
possible to obtain (e.g., the ASAP userver requires an option to sendfile that is only available on
FreeBSD so it can’t be run on Linux). Entries marked with “–” are not included due to space and/or
because they are unlikely to provide new insights. On FreeBSD, the use of Libception more than
doubled the peak server throughput for Apache, nginx and userver. We were not able to improve
the poor performance achieved by these web servers without Libception by tuning FreeBSD kernel
parameters. Comparing the results for the userver modi�ed to directly incorporate aggressive
prefetching and serialization shows that the overhead of implementing these techniques in a shim
library, rather than directly, is negligible for our HTTP video streaming workload (on FreeBSD the
throughput obtained with Libception for all servers matches that obtained with ASAP).

Default Libception Kernel Libception
Tuning + Kernel

Tuning

FreeBSD

nginx 39.75 83.71 * *
Apache 30.10 83.88 * *
userver 39.74 83.56 * *
ASAP 83.99 – * *

Linux

nginx 25.11 49.06 58.29 53.85
Apache 25.18 49.26 – –
userver 25.16 49.18 – –
ASAP * * * *

Table 3. Summary of Results: Throughput in MB/sec.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:25

These FreeBSD results raise the question of whether they might re�ect some de�ciency in the
block I/O scheduler in that system. This prompted us to take a careful look at performance on
Linux, which supports three di�erent block I/O schedulers. We found that use of Libception ap-
proximately doubled the peak server throughput on Linux, for all three web servers, regardless of
the choice of block I/O scheduler. However, using our insights from Libception as a guide and in
some cases examining the Linux kernel source code, we were able to discover kernel parameters
that we could tune to obtain slightly better performance than that with Libception. In contrast
to Libception which is highly portable, we could not run our modi�ed version of the userver on
Linux since it makes use of a system call option that is not available on that system. Finally, a po-
tential concern might be that these throughput improvements have signi�cant cost with respect
to latency, but as shown in Section 6.6 this does not appear to be the case.

7 RESULTS WITH TWO DISKS

We have conducted some experiments using FreeBSD and the HP disk drives where the HTTP
streaming video workloads are serviced using two disks. In this case a �le set was created on one
disk using the same methodology as was used for the single-disk experiments. A copy of the �le
set was made on the second disk, and videos were then randomly selected from only the �rst or
second disk (but not both). This static division prevented multiple copies of the same �le from
being cached in memory. Note that this means that the workload di�ers from the workload used in

previous experiments in this paper because the same number of clients are used but requests are now

spread across two disks. As a result, one cannot directly compare the results from previous experiments

using only one disk with these experiments (i.e., the throughput from the two disk experiments may

not necessarily be expected to be double the throughput of the one disk experiments). To drive an
appropriate amount of load across two disks request rates were increased dramatically for these
experiments.
When servicing this workload without Libception the average throughput observed on the two

disks using iostatwas 20 and 21MB/sec and the actual server throughput obtainedwas 65MB/sec.
When using Libception with a prefetch size of 2 MB, the average observed disk thoughput im-
proved to 46 and 45 MB/sec and actual server throughput increased to 134 MB/sec. This provides
some evidence for our claim that Libception can be used with multiple disks and that serialization
should be done on a per-disk drive basis.

8 POTENTIAL FOR IMPROVING PERFORMANCE OF OTHERWORKLOADS

Other disk I/O-bound workloads with concurrently-issued requests could also bene�t from Lib-
ception. To demonstrate this, we use a simple diff microbenchmark that compares the corre-
sponding �les in two versions of the Linux kernel (versions 3.7.1 and 3.8-rc2), with output sent to
/dev/null. We measure the completion time for a workload consisting of just a single instance of
this microbenchmark, as well as that for a workload with two instances running in parallel (using
two copies of each kernel), with and without the use of Libception. Experiments are carried out on
Linux with default kernel parameter settings using each of the three available block I/O schedulers.
The results are shown in Figure 18.

As shown by the three pairs of bars on the left-hand side of Figure 18, when running a sin-
gle instance of our diff microbenchmark, Libception does not signi�cantly impact completion
time. However, with two instances running in parallel generating multiple concurrent disk I/Os,
Libception reduces the workload completion time by over 50% compared to results obtained with-
out Libception (shown on the right-hand side of Figure 18). As expected, the choice of block I/O
scheduler has little impact on these results.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:26 B. Cassell et al.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

cfq deadline noop cfq deadline noop

One diff running Two diffs running

R
un

tim
e

(s
)

vanilla
libception

Fig. 18. diff runtime (Linux, WD drive)

Our understanding from examining the Linux kernel source code is that, when the �rst read
from a �le occurs, an initial readahead size is calculated based on the requested amount of data.
In the case of diff, the requested read size is 4 KB and Linux determines that up to 4 KB will be
read synchronously to satisfy the read request, which unblocks the process. Another 12 KB is also
read asynchronously in anticipation of future sequential reads.
For �les larger than 16 KB, additional reads will be needed. Figure 19 shows the CDF of �le sizes

and total number of bytes for �les of di�erent sizes for version 3.7.1 of the kernel (plots for version
3.8-rc2 are indistinguishable and are not included). The curve for total bytes shows that �les larger
than 16 KB account for about 50% of the total bytes read, even though they constitute less than 10%
of the �les. Note that even though the �les are substantially smaller than in our HTTP streaming
video workload, multiple reads for the same �le are still common.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096 16384 65536 262144

Fr
ac

tio
n

File Size (bytes)

Linux 3.7.1 size
Linux 3.7.1 total bytes

Fig. 19. CDF of file sizes and total bytes in version 3.7.1 of the Linux kernel

When two instances of our diffmicrobenchmark are run in parallel on vanilla Linux using the
CFQ scheduler, disk I/O becomes much less e�cient owing to the interleaving of disk I/Os from
the two instances. This reduction in disk I/O e�ciency is quanti�ed in Table 4 by the average disk
I/O service and wait times, as obtained from iostat. Comparing the average disk I/O service and
wait times in Table 4 for the two diff instance workload on vanilla Linux, to that when using
Libception, it can be seen that Libception greatly improves disk I/O e�ciency for this workload.
Libception also reduces the total I/O count, as can be seen from the products of the average reads
per second values in Table 4 and the respective completion times shown in Figure 18. The net

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:27

result is a large reduction in total disk busy time, and therefore workload completion time. These
results illustrate that other applications besides HTTP streaming video servers may also bene�t
from using Libception.

System and Utilization Avg Service Avg Avg Avg
Workload (%) Time (ms) Tput (MB/s) reads/s Wait (ms)

vanilla one di� 96.6 3.2 3.9 387.2 19.6

vanilla two di�s 99.7 8.2 1.3 130.2 45.0

Libception one di� 94.3 3.5 4.2 339.7 19.4

Libception two di�s 98.6 5.0 2.9 231.3 17.3

Table 4. Disk performance data from iostat

9 DISCUSSION

Perhaps surprisingly, our results show that, without Libception, none of the web servers we in-
vestigated yield good performance for HTTP video streaming workloads, on either FreeBSD, or
Linux with default kernel parameter settings. This �nding suggests that web server implementa-
tions are still optimized for more traditional web workloads, despite the rapid growth of HTTP
video streaming. Also, web server developers might assume that, after many years of research and
development, prefetching (or readahead) in operating systems, to e�ciently use a magnetic disk
is a “solved problem”, but evidently this is not the case. Although with Linux, it was eventually
possible to achieve good performance after kernel parameter tuning, it is noteworthy that such
manual tuning was required. For services like Net�ix and YouTube, due to the large amounts of
video available, the wide variety of bit rates at which each video is encoded, and because of the
large number of videos that are viewed infrequently, it is not economically viable to store it all
on SSDs. As a result, obtaining good performance when servicing video from disks is still impor-
tant in these settings. We have found Libception to be a relatively simple and portable platform for
implementing and evaluating techniques for improving disk I/O e�ciency. In particular, using Lib-
ception wewere able to readily evaluate the bene�ts of aggressive prefetching and I/O serialization
for HTTP video streaming workloads, using multiple web servers and operating systems.
As demonstrated in Section 6.4 and Section 6.5, selecting a prefetch size which is too small

results in low disk throughput. Likewise, selecting a prefetch size which is too large leads to a
drop in system throughput. As a result obtaining peak server throughput requires choosing the
most appropriate prefetch size. In previous work we have explored how the best prefetch size
and the bene�ts obtained from prefetching are sensitive to workload and system properties [34].
We show how the best prefetch size can be a�ected by the amount of available system memory,
the distribution of the popularity of videos requested, hard drive characteristics, and the bit rates
of �les being served. For example, we demonstrate that increasing the prefetch size can increase
disk throughput if su�cient system memory is available. However, if there is insu�cient system
memory available then prefetched data may be evicted from the �le cache before it can be used,
reducing overall system throughput. Likewise, we demonstrate that the physical properties of
the disk, including transfer times and seek times, signi�cantly impact the bene�ts conferred by
prefetching.
In order to avoid having to exhaustively and repeatedly determine the best prefetch size when

workload or system characteristics change, we have designed an algorithm for dynamically and
automatically adjusting the prefetch size with the goal of obtaining peak server throughput [34].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

7:28 B. Cassell et al.

We demonstrate that a gradient descent algorithm, which minimizes a score based on a combina-
tion of disk transfer times and �le system cache miss ratio, is e�ective at selecting prefetching
sizes that result in high server throughput. This adaptive algorithm results in throughputs that
rival those obtained by exhaustive manual tuning across a variety of di�erent workload and sys-
tem characteristics. We believe that such a strategy could be added to Libception, allowing it to
continue providing high throughput while also eliminating the need to manually set a prefetch
size.
In more recent work [32, 33] we have analyzed log �les of HTTP requests to characterize the

workloads of two di�erent types of production Net�ix servers. We use simulation to show that
workload-speci�c adjustments can be used to increase server throughput. However, some of these
improvements require knowledge of request streams and other information about the workload
that may be di�cult to infer in Libception. An interesting question is how much information can
be provided to Libception, without requiring changes to web server code and whether or not it
such changes can compete with the performance that can be obtained by directly modifying the
web server. We intend to explore such questions in future work.

We additionally intend to explore Libception’s utility for improving other workloads, for exam-
ple a workload combining multiple applications with di�erent I/O needs sharing the same disks.
When all involved applications request large amounts of data, Libception can continue to pro-
vide aggressive prefetching and request serialization. However, applications that perform small,
random reads will not bene�t from these techniques. For these applications, large prefetching is
wasteful as data cached during readahead may never be accessed or it may not be accessed before
it is evicted frommemory. Rather, prefetching should beminimized for these applications ensuring
that only useful data is read. Similarly, serialization would not help to improve read performance
for such applications since their reads are small enough that they can be handled with one disk
request (and the operating system will not interleave requests from other processes with these re-
quests). Therefore, in order to satisfy both types of applications, Libception would need to balance
the trade-o� between the performance of the throughput-dependent applications making large
sequential reads and the latency needs of applications performing small random reads, since small
reads may be delayed by the large prefetching reads.
Our work has focused on improving the throughput of streaming video content that is serviced

from hard disk drives (HDDs). With large video services like Net�ix where the popularity distri-
bution of content has a long tail (i.e., there are large numbers of �les that are not accessed often),
storing infrequently accessed �les on relatively expensive solid state devices (SSDs) rather than
HDDs is not cost e�ective. However, SSDs are being used to store hot content in Net�ix servers
to increase overall throughput. Examining techniques designed for improving the throughput of
systems using SSDs is a topic for future research.

10 CONCLUSIONS

HTTP video streaming has become an important class of web server workloads. Such workloads
have signi�cantly di�erent characteristics than the web server workloads that have been the focus
of most prior work on web server performance. In particular, most requests to HTTP video stream-
ing servers are for large chunks of data stored on disk, so these servers are frequently disk-bound.
In this work, we have explored aggressive prefetching and serialization as techniques for im-

proving the performance of HTTP streaming video web servers. Using our �ndings, we have de-
signed, implemented and evaluated Libception, an application-level shim library that incorporates
these techniques to improve disk access e�ciency. HTTP video streaming servers can achieve the
bene�ts of these techniques simply by using LD_PRELOAD to dynamically link with Libception

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

Disk Prefetching Mechanisms for Increasing HTTP Streaming Video Server Throughput 7:29

at runtime, preventing the need for any source code modi�cation. Experiments with three web
servers (Apache, nginx and the userver) and two operating systems (FreeBSD and Linux) show
that with the aggressive prefetching and disk I/O serialization techniques currently implemented
in Libception, peak server throughput can be doubled. Only after studying the Linux kernel source
code and adjusting the appropriate tunable kernel parameters was it possible to achieve perfor-
mance competitive with Libception. We believe that Libception could be applied to investigate
other techniques for improving HTTP video streaming performance, and possibly for improving
the performance of other disk-intensive applications.

ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for partial
support for this project through Discovery Grants. Brecht has also received an NSERC Discovery
Accelerator Supplement in support of this work. Cassell, Summers and Szepesi were partially sup-
ported by NSERC graduate scholarships and Cassell and Summers were partially supported by a
University of Waterloo Cheriton Scholarship. Cassell was partially supported by an OGS scholar-
ship. The authors would also like to thank the anonymous reviewers for their comments.

REFERENCES

[1] Adhikari, V. K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., and Zhang, Z.-L. Unreeling Net�ix: Under-

standing and improving multi-CDN movie delivery. In Proc. IEEE International Conference on Computer Communica-

tions (INFOCOM) (2012), pp. 1620–1628.

[2] Axboe, J. Linux block IO – present and future. In Proc. Ottawa Linux Symposium (OLS) (2004), pp. 51–61.

[3] Axboe, J. Linux kernel Git commit.

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=492af6350a5ccf087e4964104a276ed358811458,

2009.

[4] Begen, A., Akgul, T., and Baugher, M. Watching video over the web: Part 1: Streaming protocols. IEEE Internet

Computing 15, 2 (2011), 54–63.

[5] Butt, A. R., Gniady, C., and Hu, Y. C. The performance impact of kernel prefetching on bu�er cache replacement

algorithms. In Proc. ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems

(2005), pp. 157–168.

[6] Cao, P., Felten, E.W., Karlin, A. R., and Li, K. Implementation and performance of integrated application-controlled

�le caching, prefetching, and disk scheduling. ACM Transactions on Computer Systems (TOCS) 14, 4 (1996), 311–343.

[7] Dhage, S. N., Patil, S. K., and Meshram, B. B. Survey on: Interactive video-on-demand (VoD) systems. In Proc.

IEEE International Conference on Circuits, Systems Communication and Information Technology Applications (CSCITA)

(2014), pp. 435–440.

[8] Finamore, A., Mellia, M., Munafò, M. M., Torres, R., and Rao, S. G. YouTube everywhere: Impact of device and

infrastructure synergies on user experience. In Proc. ACM SIGCOMM Internet Measurement Conference (IMC) (2011),

pp. 345–360.

[9] Ghose, D., and Kim, H. J. Scheduling video streams in video-on-demand systems: A survey. Springer Multimedia

Tools and Applications 11, 2 (2000), 167–195.

[10] Gill, P., Arlitt, M., Li, Z., and Mahanti, A. Youtube tra�c characterization: a view from the edge. In Proc. ACM

SIGCOMM Internet Measurement Conference (IMC) (2007), pp. 15–28.

[11] Iyer, S., and Druschel, P. Anticipatory scheduling: A disk scheduling framework to overcome deceptive idleness in

synchronous I/O. In ACM Symposium on Operating Systems Principles (SOSP) (2001), pp. 117–130.

[12] Jiang, S., Ding, X., Xu, Y., and Davis, K. A prefetching scheme exploiting both data layout and access history on

disk. ACM Transactions on Storage (TOS) 9, 3 (2013), 10:1–10:23.

[13] Kasbekar, M. On e�cient delivery of web content. GreenMetrics Keynote Talk, 2010.

[14] Li, C., Shen, K., and Papathanasiou, A. E. Competitive prefetching for concurrent sequential I/O. In Proc. ACM

European Conference on Computer Systems (EuroSys) (2007), pp. 189–202.

[15] Microsoft. Detours. https://www.microsoft.com/en-us/research/project/detours/.

[16] Mosberger, D., and Jin, T. httperf – a tool for measuring web server performance. ACM SIGMETRICS Performance

Evaluation Review (PER) 26, 3 (1998), 31–37.

[17] Netflix. Appliance hardware. https://openconnect.net�ix.com/en_gb/hardware, 2017.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=492af6350a5ccf087e4964104a276ed358811458
https://www.microsoft.com/en-us/research/project/detours/
https://openconnect.netflix.com/en_gb/hardware

7:30 B. Cassell et al.

[18] Netflix. Appliance software. https://openconnect.net�ix.com/en_gb/software, 2017.

[19] Netflix. Requirements for deploying embedded appliances.

https://openconnect.net�ix.com/en_gb/requirements-for-deploying, 2017.

[20] Pai, V., Druschel, P., and Zwaenepoel, W. Flash: An e�cient and portable Web server. In Proc. USENIX (1999).

[21] Panagiotakis, G., Flouris, M. D., and Bilas, A. Reducing disk I/O performance sensitivity for large numbers of

sequential streams. In Proc. IEEE International Conference on Distributed Computing Systems (ICDCS) (2009), pp. 22–

31.

[22] Papathanasiou, A. E., and Scott, M. L. Aggressive prefetching: An idea whose time has come. In Proc. USENIX

Workshop on Hot Topics in Operating Systems (HotOS) (2005).

[23] Pariag, D., Brecht, T., Harji, A., Buhr, P., Shukla, A., and Cheriton, D. R. Comparing the performance of web

server architectures. In Proc. ACM European Conference on Computer Systems (EuroSys) (2007), pp. 231–243.

[24] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka, J. Informed prefetching and caching. In

Proc. ACM Symposium on Operating Systems Principles (SOSP) (1995), pp. 79–95.

[25] Rizzo, L. Dummynet: a simple approach to the evaluation of network protocols. ACM SIGCOMM Computer Commu-

nication Review (CCR) 27, 1 (1997), 31–41.

[26] Ruan, Y., and Pai, V. S. Making the “Box” transparent: System call performance as a �rst-class result. In Proc. USENIX

Annual Technical Conference (ATC) (2004).

[27] Ruan, Y., and Pai, V. S. Understanding and addressing blocking-induced network server latency. In Proc. USENIX

Annual Technical Conference (ATC) (2006).

[28] Ruemmler, C., , and Wilkes, J. An introduction to disk drive modeling. IEEE Computer 27, 3 (1994), 17–28.

[29] Ruemmler, C., and Wilkes, J. UNIX disk access patterns. In Proc. USENIX Winter Conference (1993), pp. 405–420.

[30] Sandvine. Global Internet phenomena report, 2012.

[31] Steinmetz, R. Multimedia �le systems survey: Approaches for continuous media disk scheduling. Elsevier Computer

Communications 18, 3 (1995), 133–144.

[32] Summers, J. Understanding and E�ciently Servicing HTTP Streaming Video Workloads. PhD thesis, University of

Waterloo, 2016. https://uwspace.uwaterloo.ca/handle/10012/10956.

[33] Summers, J., Brecht, T., Eager, D., and Gutarin, A. Characterizing the workload of a Net�ix streaming video server.

In Proc. IEEE International Symposium on Workload Characterization (IISWC) (2016).

[34] Summers, J., Brecht, T., Eager, D., Szepesi, T., Cassell, B., and Wong, B. Automated control of aggressive prefetch-

ing for HTTP streaming video servers. In Proc. ACM International Conference on Systems and Storage (SYSTOR) (2014),

pp. 5:1–5:11.

[35] Summers, J., Brecht, T., Eager, D., and Wong, B. Methodologies for generating HTTP streaming video workloads

to evaluate web server performance. In Proc. ACM International Systems and Storage Conference (SYSTOR) (2012),

pp. 2:1–2:12.

[36] Summers, J., Brecht, T., Eager, D., andWong, B. To chunk or not to chunk: Implications for HTTP streaming video

server performance. In Proc. ACM International Workshop on Network and Operating System Support for Digital Audio

and Video (NOSSDAV) (2012), pp. 15–20.

[37] Szepesi, T., Cassell, B., Brecht, T., Eager, D., Summers, J., and Wong, B. Using Libception to understand and

improve HTTP streaming video server throughput. In Proc. International Conference on Performance Engineering

(ICPE) (2017), pp. 51–62.

[38] VanDeBogart, S., Frost, C., and Kohler, E. Reducing seek overhead with application-directed prefetching. In Proc.

USENIX Annual Technical Conference (ATC) (2009).

[39] Varki, E., Hubbe, A., and Merchant, A. Improve prefetch performance by splitting the cache replacement queue.

In Proc. IEEE International Conference on Advanced Infocomm Technology (ICAIT) (2012), pp. 98–108.

[40] Wachs, M., Xu, L., Kanevsky, A., and Ganger, G. R. Exertion-based billing for cloud storage access. In Proc. USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud) (2011).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 2, Article 7. Publication date: March 2018.

https://openconnect.netflix.com/en_gb/software
https://openconnect.netflix.com/en_gb/requirements-for-deploying

	1 Introduction
	2 Background and Related Work
	2.1 Block I/O Scheduling
	2.2 Prefetching
	2.3 Concurrent I/O Streams
	2.4 Web Server Architecture

	3 Design and Implementation
	3.1 ASAP Design
	3.2 Libception Design

	4 Experimental Methodology
	5 Understanding ASAP
	5.1 Vanilla userver
	5.2 Serialized userver
	5.3 Prefetching userver
	5.4 ASAP userver
	5.5 Sequentiality of Disk Access

	6 Libception Performance
	6.1 Evaluation on FreeBSD
	6.2 Evaluation on Linux
	6.3 Evaluating Linux Block I/O Schedulers
	6.4 Evaluation Insights
	6.5 Using Insights to Improve Linux
	6.6 Evaluating Latencies
	6.7 Evaluation Summary

	7 Results with Two Disks
	8 Potential for Improving Performance of other Workloads
	9 Discussion
	10 Conclusions
	References

