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ABSTRACT
The trend towards global applications and services has created an in-
creasing demand for transaction processing on globally-distributed
data. Many database systems, such as Spanner and CockroachDB,
support distributed transactions but require a large number of wide-
area network roundtrips to commit each transaction and ensure
the transaction’s state is durably replicated across multiple datacen-
ters. This can significantly increase transaction completion time,
resulting in developers replacing database-level transactions with
their own error-prone application-level solutions.

This paper introduces Carousel, a distributed database system
that provides low-latency transaction processing for multi-partition
globally-distributed transactions. Carousel shortens transaction
processing time by reducing the number of sequential wide-area
network roundtrips required to commit a transaction and replicate
its results while maintaining serializability. This is possible in part
by using information about a transaction’s potential write set to
enable transaction processing, including any necessary remote read
operations, to overlap with 2PC and state replication. Carousel
further reduces transaction completion time by introducing a con-
sensus protocol that can perform state replication in parallel with
2PC. For a multi-partition 2-round Fixed-set Interactive (2FI) trans-
action, Carousel requires at most two wide-area network roundtrips
to commit the transaction when there are no failures, and only one
roundtrip in the common case if local replicas are available.

CCS CONCEPTS
• Information systems → Distributed database transactions;
• Computer systems organization → Dependable and fault-to-
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1 INTRODUCTION
Geographically distributed database systems have become part of
the critical infrastructure for organizations that operate in more
than one geographic location. Two prominent examples of ge-
ographically distributed database systems are Spanner [11] and
CockroachDB [8]. These systems partition their data and store each
partition at the datacenter where it will most frequently be used.
They also use a consensus protocol, such as Paxos [25] or Raft [40],
to replicate each partition to enough additional datacenters to meet
their users’ fault tolerance requirements.

Although most transactions for these systems are designed to
access data from just one partition, multi-partition transactions are
often unavoidable for many applications. For example, a number
of applications choose to partition their users’ data based on their
users’ geographic locations. Using this partitioning key, a trans-
action to add someone to a user’s friends list would only require
access to a single partition in the common case since most members
in a social group are from the same geographic region. However,
this is not true for traveling users; the same transaction for them
will typically require access to two partitions. Furthermore, appli-
cation workloads often consist of multiple transactions that would
benefit from data partitioning on different data attributes. Any one
partitioning scheme would likely require some transactions to ac-
cess multiple partitions. Application requirements also change over
time, and new transactions based on updated requirements may
not be well suited for an existing partitioning scheme.

To support multi-partition transactions, most geographically
distributed database systems perform transaction processing by
first fetching the required data to a single site, and then using the
two-phase commit protocol (2PC) to ensure that transactions are
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atomically committed or aborted. Updates are typically sent to-
gether with the first 2PC message and are applied if the transaction
commits. Therefore, unless all of the required data is already avail-
able at a single site, separate wide-area network roundtrips are
required to fetch the data and commit the transaction.

An additional requirement for many distributed database sys-
tems is for them to remain available even in the event of a datacenter
outage. Spanner and CockroachDB achieve this by using a consen-
sus protocol to replicate both the updates to the database and the
changes to the 2PC state machine for each transaction to 2𝑓 + 1
datacenters, where 𝑓 is the maximum number of simultaneous fail-
ures that the systems can tolerate. However, simply layering 2PC
on top of a consensus protocol can introduce additional wide-area
network roundtrips that can significantly increase the completion
time of multi-partition transactions.

In this paper, we introduce Carousel, a globally-distributed data-
base system that provides low-latency transaction processing for
multi-partition geo-distributed transactions. We are particularly
interested in deployments where data is not fully replicated at every
site. Much like in Spanner and CockroachDB, Carousel uses 2PC to
ensure that transactions are committed atomically, and a consensus
protocol to provide fault tolerance and high availability. However,
instead of sequentially processing, committing, and replicating each
transaction, Carousel introduces two techniques to parallelize these
stages, enabling it to significantly reduce its transaction completion
time compared to existing systems.

The first technique uses hints provided by the transaction to
overlap transaction processing with the 2PC and consensus proto-
cols. Carousel specifically targets 2-round Fixed-set Interactive (2FI)
transactions, where each transaction consists of a round of reads
followed by a round of writes with read and write keys that are
known at the start of the transaction. Unlike one-shot transactions,
the write values of a 2FI transaction can depend on the read results
frommultiple data partitions. The client can also choose to abort the
transaction after receiving the read values. Such transactions are
quite common in many applications. Carousel uses properties from
this class of transactions to safely initiate 2PC at the start of the
transaction, and execute most of the 2PC and consensus protocols
independently of the transaction processing. This enables Carousel
to return the result of a 2FI transaction to the client after at most
two wide-area network roundtrips when there are no failures.

The second technique borrows ideas from Fast Paxos [28] to par-
allelize 2PC with consensus. In Carousel, each database is divided
into multiple partitions, and each partition is stored by a consensus
group of servers. The servers in the same consensus group are in
different datacenters, and the consensus group leader serves as
the partition leader. During a transaction, instead of sending 2PC
prepare requests only to the partition leaders, who would normally
forward the requests to their followers, prepare requests are sent to
every node in the participating partitions. Each node responds with
a prepare result using only its local information. If the coordinator
receives the same result from a supermajority (⌈ 32 𝑓 ⌉+1) of the nodes
from a partition, it can safely use that result for the partition. This
technique enables Carousel to reduce transaction completion time
and complete a 2FI transaction in one wide-area network roundtrip
in the common case if local replicas are available.

This paper makes three main contributions:
• We describe the design of Carousel and show that by tar-
geting 2FI transactions, Carousel can return the result of a
transaction to the client after at most two wide-area network
roundtrips when there are no failures.

• We incorporate ideas from Fast Paxos to parallelize 2PC with
consensus, which further reduces transaction completion
time in the common case.

• We evaluate Carousel using workloads from the Retwis [30]
and YCSB+T [15] benchmarks on both an Amazon EC2 de-
ployment and a local cluster. Our results show that Carousel
has lower transaction completion time than TAPIR [50], a
state-of-the-art transaction protocol.

2 BACKGROUND AND RELATEDWORK
Modern geo-distributed storage systems shard and replicate data
across datacenters to provide scalability, high availability, and fault
tolerance. There are many methods for managing replicas and
supporting distributed transactions across data partitions. In this
section, we first briefly review different replication techniques. We
then describe how existing storage systems support transactions
spanning multiple data partitions.

2.1 Replication Management
Many geo-distributed storage systems (e.g., [4, 8, 11]) replicate
transaction states and data by using a consensus protocol to toler-
ate failures. One of the most widely used consensus protocols is
Paxos [25, 26], which needs 2𝑓 + 1 replicas to tolerate 𝑓 simulta-
neous failures. In the common case, Paxos uses one roundtrip to
choose one proposer’s proposal and requires another roundtrip to
enforce consensus on the proposed value. Multi-Paxos [48] adopts
a long-lived leader to be the sole proposer, which eliminates Paxos’
first roundtrip in the absence of a leader failure. Fast Paxos [28] re-
duces the end-to-end latency by sending a client’s request to every
member in a consensus group instead of only to the leader. If at
least ⌈ 32 𝑓 ⌉ + 1 members agree on the request (i.e., a supermajority),
the client can learn the consensus result in one roundtrip. If a super-
majority cannot be achieved because of concurrent requests, Fast
Paxos will fall back to a slow path that requires a leader to coordi-
nate the consensus process. Generalized Paxos [27] further reduces
the latency of achieving consensus on non-conflicting concurrent
requests by leveraging the commutativity between operations.

Compared with Paxos, Raft [40] explicitly separates the con-
sensus process into leader election and log replication in order to
improve the understandability and its implementation. Past work
has also looked at addressing other issues with consensus proto-
cols, such as load imbalance [35, 36], low throughput [42], and high
replication cost [29].

In addition to consensus protocols, there are also replication pro-
tocols, such as Viewstamped Replication [39] and Zab [20], which
can provide similar guarantees to Paxos. Renesse et al. [49] provide
a summary that details the differences between these protocols.

2.2 Distributed Transactions with Replication
To support transactions where data is distributed and replicated
in different geographical datacenters, many storage systems (e.g.,



Megastore [4], Spanner [11], and CockroachDB [8]) layer trans-
action management, such as concurrency control and two-phase
commit (2PC), on top of a consensus protocol. Such an architecture
facilitates reasoning about the system’s correctness and allows for a
relatively straightforward implementation. However, this approach
incurs high latency to commit a distributed transaction because it
sequentially executes the layered protocols, with each layer requir-
ing one or more wide-area network roundtrips (WANRTs).

Past efforts to improve the performance of either transaction
or replication management do not address the high latency of se-
quentially executing the protocols in a layered system architecture.
For example, Calvin [46] introduces a deterministic transaction
scheduler to increase throughput, and can use a consensus proto-
col to replicate data in order to provide fault tolerance. Because
Calvin is unable to run its transaction scheduling protocol and
data replication protocol in parallel, it requires multiple WANRTs
to complete a transaction in a geo-distributed environment. Com-
pared with Calvin, Carousel targets geo-distributed transactions
and completes a transaction in at most two WANRTs when there
are no failures. Furthermore, unlike Carousel, Calvin does not sup-
port transactions that require interactivity between clients and
servers, which are common in practice [41]. Other systems, such
as Rococo [37], CLOCC [1, 31], and Lynx [51], increase throughput
and reduce transaction completion time by introducing different
concurrency control mechanisms for distributed transactions. How-
ever, these systems still need to sequentially perform transaction
and replication management.

Restricting 2PC to involve only nodes within a datacenter can
reduce the number of WANRTs that are required to commit a trans-
action. One such an approach is Replicated Commit [34], which
builds Paxos on top of 2PC and can commit a transaction in one
WANRT. However, Replicated Commit requires reading data from
a quorum of replicas. The number of roundtrips required by the
reads can significantly increase the transaction completion time.
Granola [13] and Microsoft’s Cloud SQL Server [5] also layer repli-
cation management on top of transaction management. These sys-
tems focus on a single-datacenter deployment, and they are not
geo-replicated datastores [2]. Consus [16] executes a transaction
within each datacenter independently and achieves consensus on
whether to commit the transaction among the datacenters. This
method avoids quorum reads and requires three one-way messages
across datacenters to complete a transaction in the common case.
Both Consus and Replicated Commit require fully replicating all
data in every datacenter. This requirement is not cost-effective for
a deployment that consists of a moderate to large number of data-
centers because the replication costs increase with the number of
datacenters [51].

Another approach to reduce the latency of committing a transac-
tion is to merge transaction management with replication manage-
ment. MDCC [23] uses Generalized Paxos to commit concurrent
transactions that have commutative writes. TAPIR [50] proposes
an inconsistent replication protocol and resolves consistency is-
sues among replicas in its transaction management systems. Both
TAPIR and MDCC use clients as transaction coordinators and have
a slow path to commit a transaction when there are conflicts, which
may increase the tail latency. In this case, both TAPIR and MDCC
require three or more WANRTs to complete a transaction when

data replicas are not available in the client’s datacenter. In con-
trast, Carousel completes a transaction in at most two WANRTs
when there are no failures. To achieve this, Carousel piggybacks
prepare requests on read requests to execute transaction processing
in parallel with 2PC and consensus. Using the same approach in
TAPIR will cause inconsistent data replicas when TAPIR’s coordina-
tors fail. This is because TAPIR’s transaction coordinators are not
fault-tolerant, and TAPIR’s commit operations do not guarantee
consistency among replicas.

Limiting the expressiveness of transactions is another method
for reducing transaction completion time. For example, Janus [38]
targets one-shot transactions [21] that consist of stored procedures.
By imposing a restriction that a stored procedure can only access
data from a local partition, Janus can complete a transaction in
one WANRT. Although Janus can also avoid aborting transactions,
it may require three WANRTs to commit conflicting transactions.
Sinfonia’s mini-transactions [3] require keys and write values to
be pre-defined. This enables Sinfonia to process and commit a
transaction in parallel in order to reduce transaction completion
time. Both one-shot transactions and mini-transactions prevent
clients from interactively performing read and write operations to
servers. For comparison, Carousel’s 2-round Fixed-set Interactive
(2FI) transaction model (see Section 3.2) allows clients to perform
a round of reads followed by a round of writes for a fixed set of
read/write keys. Also, the 2FI model does not require write values
to be pre-defined at the start of a transaction.

An alternative approach to achieve low latency in a distributed
storage system is to adopt weak consistency or reduce transac-
tions’ isolation level, such as eventual consistency in Bayou [44],
Dynamo [14], PNUTS [9], Cassandra [24], and TAO [6]; causal con-
sistency in COPS [32] and Eiger [33]; and parallel snapshot isolation
in Walter [43]. However, applications that require strong consis-
tency have to build their own application-level solutions, which
is error-prone and can introduce additional delays to complete a
transaction. Carousel provides both serializability and low latency.

3 DESIGN OVERVIEW
In this section, we describe our assumptions regarding the design
requirements for Carousel and the properties of its target workloads.
We then outline Carousel’s system architecture.

3.1 Assumptions
Our design requirements and usage model assumptions are largely
based on published information on Spanner [11]. Carousel’s design
is influenced by the following assumptions:

Geo-distributed data generation and consumption. Many
applications have global users to produce and consume data. We
assume that our target application has multiple datacenters in geo-
distributed locations to store user data and serve users from their
regions. Carousel assumes that data servers are running within
datacenters, and Carousel clients are application servers running
in the same datacenters as the data servers.

Scalability, availability, and fault-tolerance. Modern distri-
buted storage systems shard data into partitions to improve scala-
bility, and each partition is replicated at multiple geo-distributed



sites to provide high availability and fault-tolerance. Carousel tar-
gets the fail-stop failure model and an asynchronous environment,
where the communication delay between two servers can be un-
bounded. Therefore, it is necessary to use a consensus protocol
to manage replicas. To tolerate 𝑓 simultaneous failures, standard
Paxos or Raft requires the presence of 2𝑓 + 1 replicas. We also wish
to keep the choice of replication factor independent of the total
number of deployed sites, as it is not cost effective to replicate all
partitions at every site in deployments with a large number of sites.
Furthermore, as the number of sites increases, fully replicating
data at every site will increase the quorum size required to achieve
consistency, which may incur higher latency due to the wider differ-
ences in network latency among sites. As a result, Carousel targets
deployments where data is not fully replicated at every site.

Replica locations. Because data is not fully replicated at every
site, some transactions must access data in remote sites. There are
two main types of transactions based on the locations of replicas:

• Local-Replica Transactions (LRTs): every partition that the
transaction accesses has a replica at the client’s site.

• Remote-Partition Transactions (RPTs): the transaction ac-
cesses at least one partition that does not have replicas at
the client’s site.

Compared with previous work (e.g., [23, 34, 38, 50]) that focuses on
reducing transaction completion time for LRTs, Carousel aims to
reduce transaction completion time for RPTs. However, Carousel
still achieves latency that is as low as other systems’ latencies for
LRTs or transactions that only involve one partition.

Wide-area network latency. We assume that the processing
time in geo-distributed transactions is low, so that the wide-area
network latency dominates the transaction completion time be-
cause 2PC and consensus protocols may require multiple wide-area
network roundtrips. Reads to remote sites, such as in RPTs, further
increase the number of wide-area network roundtrips. Therefore,
the goal of Carousel is to minimize the number of wide-area net-
work roundtrips to complete a transaction.

Interactive transactions. As found by Baker et al. [4], many
applications prefer interactive transactions involving both reads
and writes, especially in order to support rapid development. Many
existing geo-distributed systems (e.g., [4, 11, 23, 34, 50]) target inter-
active transactions. Carousel also targets interactive transactions
by supporting 2FI transactions.

3.2 2FI Transactions
In this paper, we introduce a new transaction model, which we
call the 2-round Fixed-set Interactive (2FI) model. A 2FI transaction
performs one or more keyed record read and write operations in
two rounds: a read round, followed by a write round. In addition,
all read and write keys must be known in advance.

One important property of 2FI transactions is that, while write
keys must be known in advance, write values need not be known.
Write values can depend on reads. This is important, because it
means that 2FI transactions can directly implement common read-
modify-write patterns in transactions. For example, a 2FI transac-
tion can read a counter, increment its value, and write the updated
value back to the counter, within the scope of a single transaction.

In this sense, 2FI transactions are more expressive than other re-
stricted transaction models, such as mini-transactions [3], which
require write values to be known in advance.

Although 2FI transactions must have read and write keys spec-
ified in advance, there is no restriction on which keys are read
and written. In particular, if the database is partitioned, there is
no restriction limiting a 2FI transaction to a single partition. This
distinguishes 2FI from models, such as the one-shot model[21, 38],
which limit read and write operations to a single partition.1

Finally, an important property of 2FI transactions is that all read
operations can be performed concurrently during the first round,
since all read keys are known in advance. In the geo-distributed,
partial replication setting targeted by Carousel, this property is
particularly significant. Since data are only partially replicated,
local reads may be impossible. The 2FI model ensures that all read
operations can be performed with at most one wide-area network
roundtrip, unless there are failures. However, the flip side of this
restriction is 2FI transactions cannot perform dependent reads and
writes. Dependent reads and writes are those for which the key to
be read or written depends on the value of a previous read. This is
the major restriction imposed by 2FI.

Dependent reads and writes do occur in real transactional work-
loads, although their frequencywill of course be application specific.
As noted by Thomson and Abadi [45], one situation that gives rise
to dependent reads and writes is access through a secondary index.
For example, in TPC-C, Payment transactions may identify the
paying customer by customer ID (the key) or by customer name.
In the latter case, the customer key is not known in advance. The
transaction must first look up the customer ID by name (using a
secondary index), and then access the customer record. This re-
quires a sequence of two reads, the second dependent on the first,
which is not permitted in a 2FI transaction.

Although the 2FI model prohibits such transactions, there is an
application-level workaround that can be used to perform depen-
dent reads and writes when necessary. The key idea is to eliminate
the dependency by introducing a reconnaissance transaction [45]. In
the TPC-C Payment example, the application would first perform
a reconnaissance transaction that determines the customer ID by
accessing a secondary index keyed by customer name. This is a
2FI transaction, since the name is known in advance. Then, the
application issues a modified Payment transaction, using the cus-
tomer ID returned by the reconnaissance transaction. The Payment
transaction is modified to check that the customer’s name matches
the name used by the reconnaissance transaction. If it does not, the
Payment transaction is aborted, and both transactions are retried.
The modified Payment transaction is also 2FI, since the customer
key (the ID) is known when the transaction starts, thanks to the
reconnaissance transaction.

3.3 Architecture
Carousel provides a key-value store interface with transactional
data access. It consists of two main components: a client-side li-
brary and Carousel data servers (CDSs) that manage data parti-
tions. Carousel uses a directory service, such as Chubby [7] or

12FI transactions are neither stronger than nor weaker than one-shot transactions,
since one-shot transactions do not require read and write keys to be known in advance.



Client Library
Begin()→ Transaction Object
Transaction Object
ReadAndPrepare(readKeySet, writeKeySet)→ readResults
Write(key, val)
Commit() → committed/aborted
Abort()

Figure 1: Carousel’s client interface.

Zookeeper [19], to keep track of the locations of the partitions and
their data servers. Carousel’s client-side library caches the location
information and infrequently contacts the directory service to up-
date its cache. Carousel uses consistent hashing [22] to map keys
to partitions.

Carousel’s clients are application servers that run in the same
datacenters as CDSs. Each client has a unique ID and a Carousel
client-side library. The library provides a transactional interface
as shown in Figure 1. To execute a transaction, the client first
calls the Begin() function to create a transaction object that assigns
the transaction a unique transaction ID (TID). A TID is a tuple
consisting of the client ID and a transaction counter that is unique
to the client. The client uses the transaction object to perform all
reads by calling the ReadAndPrepare() function once. The client
uses theWrite() function to perform writes, and the write data is
buffered by Carousel’s client-side library until the client issues a
commit or abort for the transaction. Furthermore, if a client does
not specify write keys when calling the ReadAndPrepare() function,
Carousel will execute the transaction as a read-only transaction.

To provide fault-tolerance, Carousel replicates data partitions in
different datacenters. Each datacenter consists of a set of CDSs, and
a CDS stores and manages one or more partitions. Carousel extends
Raft to manage replicas, and the replicas of a partition together form
a consensus group. A consensus group requires 2𝑓 + 1 replicas to
tolerate up to 𝑓 simultaneous replica failures, and Carousel reliably
stores transactional states and data on every member in the group.

When a transaction accesses (reads or writes) data from a par-
tition, that partition becomes one of its participant partitions. The
leader of a participant partition’s consensus group is called a partic-
ipant leader, and other replicas in the group are participant followers.
For each transaction, Carousel selects one consensus group to serve
as the coordinating consensus group for that transaction. The leader
of the coordinating consensus group is referred to as the transaction
coordinator.

The Carousel client always selects a local participant leader to
serve as the transaction coordinator, if such a local leader exists.
Otherwise, the Carousel client can choose any local consensus
group leader to act as the transaction coordinator. Carousel expects
that partitions are deployed such that each datacenter has at least
one consensus group leader so that clients can always choose a
local coordinator. It is also possible for Carousel to intentionally
create consensus groups that are not CDSs to serve as coordinators.
Unlike protocols that use clients as transaction coordinators, such
as TAPIR [50], Carousel’s coordinators are fault tolerant, as their
states are reliably replicated to their consensus group members.

Carousel uses optimistic concurrency control (OCC) and 2PC to
provide transactional serializability. Each data record in Carousel
has a version number that monotonically increases with transac-
tional writes, and our OCC implementation uses the version number
to detect conflicting transactions.

4 PROTOCOL
In this section, we first describe Carousel’s basic transaction pro-
tocol that takes advantage of the properties of 2FI transactions
(see Section 3.2) to perform early 2PC prepares. We then introduce
a consensus protocol that can safely perform state replication in
parallel with 2PC, and describe how that is used in an improved
version of Carousel. Finally, we introduce additional optimizations
for Carousel to further reduce its transaction completion time.

4.1 Basic Carousel Protocol
Each Carousel transaction proceeds through a sequence of three
execution phases. First is the Read phase, which begins with a
ReadAndPrepare call from the client. During the Read phase, Carou-
sel contacts the participant leaders to obtain values for all keys in the
transaction’s read set. In general, this phase may require one wide-
area network roundtrip (WANRT), since some of the participant
leaders may be remote from the client. Next is the Commit phase,
which begins when the client calls Commit, supplying new values
for some or all of the keys in the transaction’s write set. During this
phase, the client contacts the transaction coordinator to commit
the transaction. The coordinator replicates the transaction’s writes
to the coordinator’s consensus group before acknowledging the
commit to the client. The Commit phase requires one WANRT to
replicate the transaction’s writes. After committing, the transaction
enters theWriteback phase, during which the participant leaders
are informed of the commit decision. This phase requires additional
WANRTs. However, theWriteback phase is fully asynchronous with
respect to the client.

In addition to the Read, Commit, and Writeback phases, which
occur sequentially, the Carousel protocol includes a fourth phase,
called Prepare which runs concurrently with the Read and Commit
phases. This concurrent Prepare phase is a distinctive feature of
Carousel. The purpose of the Prepare phase is for each participant
leader to inform the coordinator whether it will be able to commit
the transaction within its partition.

Figure 2 shows an example of the basic Carousel protocol when
there are no failures. In this example, the client, the coordinator,
and one participant leader are located in one datacenter (𝐷𝐶1),
and a second participant leader is located in a remote datacenter
(𝐷𝐶2). To simplify the diagram, the participant followers are not
shown, and neither are the other members of the coordinator’s
consensus group. In the remainder of this section, we describe each
of Carousel’s execution phases in more detail. In our description,
we use circled numbers (e.g., 1○) to refer to the corresponding
numbered points in the protocol shown in Figure 2.

4.1.1 Read Phase. During the read phase, a client sends ( 1○)
read requests to each participant leader, identifying the keys to be
read from that partition. The participant leaders respond ( 3○, 5○)
to the client with the latest committed value of each read key. After
reading, the client may update some or all of the keys in its write



Figure 2: An example of Carousel’s basic transaction proto-
col. Solid and dashed arrows stand for intra-datacenter and
inter-datacenter messages, respectively, and dashed rectan-
gles represent replication operations.

set by calling Write. Such updates are simply recorded locally by
the Carousel client. The application finally calls either Commit (or
Abort), which initiates Carousel’s Commit phase.

4.1.2 Commit Phase. If the application decides to commit, the
Carousel client initiates the Commit phase by sending ( 7○) a commit
request, including all updated keys and their new values, to the
coordinator. Upon receiving commit, the coordinator replicates ( 8○)
the transaction’s updates to its consensus group, which requires
one WANRT. After replicating the updates, the coordinator must
wait to receive ( 9○, 10○) prepared messages from all participant
leaders before it can commit the transaction. These prepared mes-
sages are generated as a result of the Prepare phase, which we will
describe later in Section 4.1.4.

If all participant leaders successfully prepare, the coordinator
decides ( 11○) to commit the transaction and immediately sends
( 12○) committed to the client. This is safe because the transaction’s
updates are replicated in the coordinator’s consensus group, and
prepare decisions have been replicated in all participant partitions
during the Prepare phase. If there is a coordinator failure, Carousel
can recover the transaction’s data and state from the correspond-
ing consensus groups (see Section 4.3). If any participant leader
indicates that it has failed to prepare the transaction, then the coor-
dinator aborts the transaction and replies to the client with aborted.
In this case, the coordinator can reply immediately, without waiting
for writes to be replicated and without waiting for messages from
other participants. To ensure that the coordinator’s response to
the client is consistent with the actual outcome of the transaction,
Carousel prohibits the coordinator from unilaterally aborting the
transaction once it has replicated the transaction’s write data. It

may abort only once it learns that at least one participant leader
failed to prepare.

If the application chooses to abort the transaction rather than
commit it, the client sends abort to the coordinator. The coordi-
nator may abort the transaction immediately, without waiting for
prepared messages from participant leaders.

4.1.3 Writeback Phase. The purpose of Carousel’s Writeback
phase is to distribute the transaction’s updates and commit decision
to the participants. The coordinator initiates this phase by sending
( 13○) a commit message to each participant leader. This message
includes the transaction’s commit decision and, if the transaction
committed, its updates. Each participant leader then replicates this
information to its consensus group and returns an acknowledg-
ment to the coordinator. While the participants are updating their
state, the coordinator replicates the transaction commit decision
to its consensus group. This is not necessary to ensure that the
transaction commits, but it simplifies recovery in the event of a
coordinator failure. The entire Writeback phase requires two WAN-
RTs. However, none of this latency is exposed to the Carousel client
application.

4.1.4 Prepare Phase. Carousel’s Prepare phase starts at the same
time as the Read phase, and runs concurrently with Read and Com-
mit. When the application calls ReadAndPrepare, the Carousel
client piggybacks a prepare request on the read request that it
sends to each participant leader. The prepare request to each par-
ticipant leader includes the transaction’s read and write set for that
partition, and also identifies the transaction coordinator.

When a participant leader receives a prepare request, it uses the
transaction’s read and write set information to check for conflicts
with concurrent transactions. To do this, each participant leader
maintains a list of pending (prepared, but not yet committed or
aborted) transactions, along with their read and write sets. The
leader checks for read-write and write-write conflicts between the
new transaction and pending transactions. If there are none, it adds
the new transaction to its pending list, marks the new transaction
as prepared, and replicates ( 4○, 6○) the prepare decision, along with
the new transaction’s read set, write set, and read versions, to the
participant followers in the partition’s consensus group. Finally,
the participant leader sends ( 9○, 10○) a prepared message to the
transaction coordinator. If the participant leader’s conflict checks
do detect a conflict, it will fail to prepare the transaction. In this
case, it will replicate an abort decision to its consensus group, and
then send an abort message to the coordinator.

When the client piggybacks its prepare messages to the par-
ticipant leaders, it also sends a similar prepare message to the
transaction coordinator. When it receives this message, the coordi-
nator replicates ( 2○) the transaction’s read set and write set to its
consensus group. This ensures that the coordinator is aware of all
of the transaction’s participants.

If there are no failures, the Prepare phase requires at most two
WANRTs. One WANRT is required (in general) to send prepare
requests from the client to the participant leaders, and to return the
participant leaders’ prepare decisions to the coordinator (which is
located in the same datacenter as the client). The second WANRT is
required for each participant leader to replicate its prepare decision
to its consensus group. However, since the Prepare phase runs



(a) No conflicts

(b) Conflicts

Figure 3: An example of CPC.

concurrently with the Read and Commit phases, each of which
requires one WANRT, the total number of WANRT delays observed
by the client is at most two.

4.2 Parallelizing 2PC and Consensus
In the basic Carousel transaction protocol, 2PC and consensus
together require two wide-area network roundtrips (WANRTs) to
complete Carousel’s Prepare phase. In this section, we introduce
Carousel’s Prepare Consensus (CPC) protocol, which can safely
run in parallel with 2PC while replicating the transaction’s internal
state. This allows Carousel’s Prepare phase to complete after one
WANRT in many situations.

CPC borrows ideas from both Fast Paxos [28] and MDCC [23] to
introduce a fast path that can prepare a transaction in one WANRT
if it succeeds. However, the fast path may not succeed if the trans-
action is being prepared concurrently with conflicting transactions.
In this case, CPC must instead complete the Prepare phase using
its slow path, which is just the Prepare phase in Carousel’s basic
transaction protocol. Unlike in Fast Paxos and MDCC where the
slow path only starts after the fast path fails, CPC executes both
paths in parallel. As a result, CPC can prepare a transaction in at
most two WANRTs when there are no failures.

We use an example in Figure 3 (a) to illustrate CPC when there
are no conflicting transactions. In CPC, a client sends ( 1○) a prepare
request to every participant leader and follower, which starts both

the fast path and the slow path. Like in Carousel’s basic transaction
protocol, this request includes the transaction’s read and write
keys. Upon receiving the prepare request, on the fast path, each
participant will independently prepare the transaction by checking
read-write and write-write conflicts with concurrent transactions.
To do this, each participant maintains a persistent list of pending
transactions along with their read and write keys. This list is called
a pending-transaction list. If there are no conflicts, a participant will
send ( 2○) a prepared message to the coordinator; otherwise, the
participant will send an abort message. Meanwhile, on the slow
path, the participant leader replicates ( 3○) its prepare result to its
consensus group.

On the fast path, the coordinator can determine a participant
partition’s prepare decision for a transaction if both of the following
conditions are satisfied:

(1) It receives the same prepare decision from a supermajority 2

of the consensus group members, where every member in
the supermajority is up-to-date.

(2) The participant leader must be part of the supermajority.
A groupmember is up-to-date if (a) it uses the same data versions

to prepare the transaction as the participant leader; and (b) it is in
the same term as the participant leader. A term is defined in Raft [40]
as a period of time when a consensus group has the same leader,
and it changes when a new leader is elected. The data versions and
the term information are also stored in each participant’s pending-
transaction list. These requirements are needed to tolerate leader
failures, which we will describe in Section 4.3. Furthermore, the
need for the participant leader to be part of the supermajority stems
from the requirement that CPC must safely run the fast path in
parallel with the slow path. Specifically, CPC ensures that if the
fast path succeeds, the fast path and the slow path will arrive at the
same prepare decision, which is the participant leader’s decision.

In the case where both of these conditions are satisfied for a par-
ticipant partition, and the supermajority of the participants have
chosen to prepare the transaction, the coordinator considers ( 4○)
the transaction to be prepared on the partition. Under the same
two conditions, if the supermajority of the participants abort the
transaction, the coordinator considers that the partition aborts the
transaction. By sending prepare requests directly to every partici-
pant, CPC can determine if a transaction is prepared on a participant
partition in one WANRT when both conditions are satisfied; that is,
the fast path succeeds. For a partition where the fast path succeeds,
the coordinator simply drops ( 5○) the response from the slow path.
Finally, on the slow path, the participant leader completes ( 6○)
replicating its prepare result to the participant followers, which can
be done asynchronously and is not on the critical path.

For cases where multiple conflicting transactions are concur-
rently processed, it is possible for the transactions to not satisfy
the two conditions. In this scenario, the fast path fails for the trans-
actions, and the coordinator waits for the response from the slow
path that executes in parallel with the fast path. We now use Fig-
ure 3 (b) to illustrate the case when the fast path fails because of

2A supermajority consists of ⌈ 32 𝑓 ⌉ + 1 members from a consensus group that has
total 2𝑓 + 1 members. This supermajority size is required for the consensus group
to agree on an operation in one network roundtrip while tolerating up to f member
failures [28].



conflicting transactions. The first three steps for this case are the
same as the first three steps for the non-conflicting transaction
case. However, in this example, the coordinator does not receive
the same prepare decision from a supermajority of participants
from the same partition. It must then wait for a response from the
participant leader executing the slow path. Once it receives ( 5○) the
slow-path response, it uses the participant leader’s prepare decision
as the partition’s decision. Just as in the non-conflicting case, the
participant leader completes ( 6○) replicating its prepare decision
to its followers.

4.3 Handling Failures
To meet the fault tolerance and availability demands of large-scale
distributed applications, Carousel must provide uninterrupted oper-
ations (with reduced performance) even with up to 𝑓 simultaneous
replica failures in a single partition. In this section, we describe in
turn how Carousel handles client, follower, and leader failures.

4.3.1 Client Failures. While executing a transaction, the client
sends periodic heartbeat messages to the coordinator of the trans-
action. Until the coordinator receives a commit message from the
client, it will abort the transaction if it fails to receive ℎ consecutive
heartbeat messages from the client. After receiving the client’s com-
mit message, the coordinator will attempt to commit the transaction
even if the client fails before the transaction completes.

4.3.2 Follower Failures. Carousel uses Raft to handle follower
failures. Raft can operate without blocking with up to 𝑓 follower
failures. Therefore, Carousel can execute a transaction with up to
𝑓 follower failures in a partition.

4.3.3 Leader Failures. In Carousel’s basic protocol, the state of
each participant leader is replicated to its consensus group using
Raft [40] after each state change and before the state change has
been made visible to the coordinator. As a result, in the event of a
participant leader failure, Raft will elect a new participant leader for
the partition, and the new participant leader has all of the necessary
state information to continue processing its pending transactions.

Handling a participant leader failure during the Prepare phase of
a transaction is more complicated when using Carousel’s Prepare
Consensus (CPC) protocol that overlaps consensus with 2PC. This
is due to the need for a newly elected participant leader to arrive
at the same prepare decisions that may have been exposed to the
coordinator via the fast path. For example, the coordinator has
determined a transaction to be prepared via the fast path, but the
participant leader fails before starting to replicate its prepare result
to its consensus group. In this case, the new participant leader must
reliably replicate the same prepare result to its consensus group
because the coordinator may have decided to commit the transac-
tion and have notified the client. To achieve this, CPC introduces
a failure-handling protocol that builds on both Raft’s leader elec-
tion protocol and the failure handling approach in Fast Paxos [28].
Specifically, the failure-handling protocol for a participant leader
consists of the following steps:

1. Leader Election. To elect a new leader, Carousel extends Raft’s
leader election protocol by making each participant piggyback its
pending-transaction list on its votemessage. The new leaderwill use

the lists to determine which transactions could have been prepared
via the fast path. Specifically, a coordinator considers a transaction
to be prepared on a partition if the fast path of CPC succeeds. The
new leader will buffer requests from clients and coordinators until
it completes the failure-handling protocol.

2. Completing replications. Before determining which transactions
have been prepared via the fast path, the new leader first completes
replicating any uncommitted log entries in its consensus log to its
followers, which follows Raft’s log replication procedure. Raft’s
leader election protocol guarantees that the new leader has the
latest log entries. By replicating these log entries, the new leader
ensures that its consensus group has reliably stored the prepare
results of slow-path prepared transactions, which are transactions
that have been already partially replicated by the failed leader to
its consensus group using the slow path.

3. Examining pending-transaction lists. If a pending transaction
has been prepared via the fast path, which we call a fast-path pre-
pared transaction, the new leader must arrive at the same prepare
decision. The new leader does not know for certain whether the
fast path has succeeded for a transaction. Therefore, in order to
determine if a transaction could have been prepared via the fast
path, the new leader examines the pending-transaction lists taken
from the vote messages that it received from a majority of partici-
pants, where each participant in the majority has voted for it during
leader election. A fast-path prepared transaction must have been
prepared on a supermajority (⌈ 32 𝑓 ⌉ +1) of the participants including
the failed leader. With up to 𝑓 participant failures, the transaction
must be in at least a majority of 𝑓 + 1 pending-transaction lists.
As a result, the new leader only selects 𝑓 + 1 pending-transaction
lists for further examination. A transaction could potentially be a
fast-path prepared transaction if it is prepared with the same data
versions and in the same term (see Section 4.2) in at least a majority
of the 𝑓 + 1 lists.

4. Detecting conflicts. If a transaction satisfies the condition in step
3, it still may not have been actually prepared via the fast path.
One reason is that the failed leader may have decided not to pre-
pare the transaction. Instead, it decided to prepare other conflicting
transactions. Also, the pending-transaction lists include the data
versions that the transaction depends on. If the versions are stale,
the transaction must not have been prepared via the fast path be-
cause the leader always has the latest data versions. Therefore, the
new leader should not only consider each transaction individually
but also examine all pending transactions to exclude the transac-
tions that conflict with the slow-path prepared transactions or are
prepared based on stale data versions. For every potential fast-path
prepared transaction in step 3, if the transaction does not conflict
with the slow-path prepared transactions determined in step 2, and
it is prepared based on the latest data versions, then the new leader
considers the transaction to be a fast-path prepared transaction.

5. Replicating fast-path prepared transactions. For all of the fast-
path prepared transactions in step 4, the new leader replicates
their prepare results to its consensus group. Once the replication is
finished, the failure-handling protocol completes. The new leader
can now process requests from clients and coordinators, including
those that were buffered previously.



Carousel also replicates the state of coordinators to their respec-
tive consensus groups using Raft. However, the coordinator reveals
its commit decision to the client before it replicates its decision.
This is because the coordinator’s commit decision is based entirely
on the client’s commit request and write data, which it has already
replicated to its consensus group members, and the participant lead-
ers’ prepare phase responses, which have been replicated to their
respective consensus groups. In the event of a coordinator failure,
the failed coordinator’s consensus group will elect a new coordina-
tor. The new coordinator will reacquire the prepare responses from
the participant leaders. The prepare responses together with the
saved write data allow the new coordinator to arrive at the same
commit decision as the previous coordinator.

4.4 Optimizations
This section describes two additional optimizations for Carousel to
reduce its transaction completion time. One optimization allows
clients to read data from local replicas, and the other optimization
targets reducing the completion time for read-only transactions.

4.4.1 Reading from Local Replicas. In practice, a participant
leader may not be the closest replica to the client. A participant
follower may be in the client’s datacenter while the participant
leader is in a different datacenter. Allowing a client to read data
from a participant follower that is in the same datacenter will reduce
the read latency by avoiding a wide-area network roundtrip to the
participant leader.

To support reading data from a local replica, Carousel’s client-
side library will send a read request to the participant follower
that is located in the client’s datacenter while sending read and
prepare requests to the remote participant leader. After receiving a
read request, the participant follower returns its read data to the
client. The client uses the first return value that it receives from
the participant follower or the participant leader.

The data read from a participant follower may be stale. To guar-
antee serializability, the coordinator determines if the read data is
stale. Specifically, the client’s commit request to the coordinator
will include the read versions received from the participant fol-
lower, and participant leaders carry their read versions on their
prepare responses to the coordinator. The coordinator uses the read
versions to determine whether the client has read stale data. If the
client has read stale data, the coordinator will abort the transaction.
Using the same approach, Carousel can also support reading from
any replica, such as reading from the closest replica when there is
no local replica.

By using Carousel’s Prepare Consensus (CPC) protocol and read-
ing data from local replicas, Carousel can complete a transaction in
one wide-area network roundtrip if all of the participant partitions
have replicas in the client’s datacenter.

4.4.2 Read-only Transactions. In practice, read-only transac-
tions are common. Carousel follows Spanner in using timestamps to
complete read-only transactions in one network roundtrip. Instead
of relying on Spanner’s TrueTime API, Carousel keeps multiple
versions of each data record, where the version number is based on
a monotonically increasing timestamp. For a read-write transaction,

US East Euro Asia Australia
US West 73 166 102 161
US East - 88 172 205
Euro - - 235 290
Asia - - - 115

Table 1: Roundtrip network latencies between different dat-
acenters (ms).

each participant returns a timestamp that is larger than the times-
tamps of the data records accessed by the transaction as part of its
prepare result to the coordinator. The coordinator uses the largest
received timestamp as the commit timestamp of the transaction.

In contrast, for a read-only transaction, the client assigns the
transaction timestamp and sends read requests directly to partici-
pant leaders. Upon receiving a read-only transaction, a participant
leader will read the version of the requested data with the largest
timestamp that is smaller than the transaction’s timestamp. If the
transaction has conflicts with concurrent read-write transactions,
or its timestamp is larger than the timestamp that the leader will
assign for a future read-write transaction, the leader will abort the
transaction. The client completes the transaction when it receives
all the required data. The transaction is aborted if the client receives
an abort from a participant leader.

5 IMPLEMENTATION
We have implemented a prototype of Carousel’s basic transaction
protocol and Carousel’s Prepare Consensus (CPC) protocol using
the Go language. Our implementation also includes the optimiza-
tions for reading data from local replicas and read-only transactions.
The implementation consists of about 3,500 lines of code for the pro-
tocols. Our prototype builds on an in-memory key-value store and
uses gRPC [17] to implement the RPC functions for data servers. Al-
though we extend an open-source implementation [12] of Raft [40]
to manage replicas for each partition, we do not implement fault
tolerance in our prototype.

Our evaluation (see Section 6) studies two versions of Carousel:
Carousel Basic, which uses Carousel’s basic transaction protocol,
and Carousel Fast, which uses CPC and supports reading data from
local replicas. Both Carousel Basic and Carousel Fast include the
optimization for read-only transactions.

6 EVALUATION
In this section, we evaluate Carousel Basic and Carousel Fast by
comparing their performance with TAPIR [50], which represents
the current state-of-the-art in low-latency distributed transaction
processing systems. Our experiments are primarily performed using
our prototype implementation running on Amazon EC2. We also
perform experiments on a local cluster to evaluate the throughput
and network utilization of the three systems.

6.1 Experimental Setup
We deploy our prototype on Amazon EC2 instances across 5 dat-
acenters in different geographical regions: US West (Oregon), US
East (N. Virginia), Europe (Frankfurt), Australia (Sydney), and Asia



Transaction Type # gets # puts workload%
Add User 1 3 5%

Follow/Unfollow 2 2 15%
Post Tweet 3 5 30%

Load Timeline rand(1, 10) 0 50%
Table 2: Transaction profile for Retwis from TAPIR [50].

(Tokyo). Table 1 shows the roundtrip network latencies between the
different datacenters. Our Amazon EC2 deployment uses c4.2xlarge
instances, each of which has 8 virtual CPU cores and 15 GB of
memory. We configure the systems under evaluation to use 5 parti-
tions with a replication factor of 3, resulting in deployments with a
total of 15 servers. In our configuration, each datacenter contains
at most one replica per partition. This ensures that a datacenter
failure would cause partitions to lose at most one replica. Servers
are uniformly distributed across the 5 datacenters so that each dat-
acenter contains 3 partitions of data. One server in each datacenter
is a partition leader to one of the partitions. To drive our workload,
we deploy 4 machines per datacenter (the same datacenters as the
servers) running 5 clients per machine.

In order to evaluate the performance of TAPIR, we use the open-
source implementation [47] provided by TAPIR’s authors. We had
to modify the implementation to allow TAPIR to issue multiple inde-
pendent read requests concurrently from the same transaction. We
have verified that our changes do not affect TAPIR’s performance.

6.2 Workloads
We evaluate our system using two different workloads. The first
workload is Retwis [30], which consists of transactions for a Twitter-
like system. These transactions perform operations such as adding
users, following users, getting timelines, and posting tweets, with
each transaction touching an average of 4.5 keys. The second work-
load is YCSB+T [15], which extends the YCSB key-value store bench-
mark [10] to support transactions. In our evaluation, each YCSB+T
transaction consists of 4 read-modify-write operations that access
different keys. Both Retwis and YCSB+T were used by TAPIR [50]
to evaluate their system. We configure the workloads based on
TAPIR’s published configurations. For Retwis, this includes using
the distribution of transaction types from TAPIR; the distribution
of transaction types is reproduced in Table 2.

For both workloads, we populate Carousel Basic, Carousel Fast,
and TAPIR with 10 million keys. Each client can only have one
outstanding transaction at a time. The popularity distribution of
the keys follow a Zipfian distribution with a coefficient of 0.75. We
run each experiment for 90 seconds and exclude the results from
the first and last 30 seconds of the experiment. We repeat each
experiment 10 times and show the 95% confidence intervals of the
data points using error bars.

6.3 Retwis Amazon EC2 Experiments
We now evaluate the performance of the different systems using the
Retwis workload. Figure 4 shows the CDF of latencies for Carousel
Basic, Carousel Fast, and TAPIR with each system receiving 200
transactions per second (tps). We use a relatively light transaction
load to focus on the performance of the system when network

0 100 200 300 400 500 600 700
Latency (ms)

0.00

0.25

0.50

0.75

1.00
0.95

TAPIR

Carousel Basic

Carousel Fast

Figure 4: Latency CDF for the Retwis workload.

latency, rather than resource contention, is the primary latency
source. We will later evaluate the performance of these systems
under a heavy load in our throughput experiments in Section 6.4.
The CDF shows that both Carousel Fast and Carousel Basic have
lower latencies than TAPIR over the entire distribution. TAPIR has
a median latency of 334 ms compared to 232 ms for Carousel Fast
and 290 ms for Carousel Basic. The performance gap widens at
higher percentiles.

There are several reasons why Carousel Fast and Carousel Basic
have lower latencies than TAPIR:

• Both versions of Carousel require a maximum of only two
wide-area network roundtrips to complete a transaction in
the absence of failures, while TAPIR can require as many as
three wide-area network roundtrips.

• 50% of the Retwis workload consists of read-only transac-
tions. Our read-only transaction optimization allows both
versions of Carousel to complete a read-only transaction in
just one wide-area network roundtrip.

• TAPIR waits for a fast path timeout before it begins its slow
path to commit a transaction. This can result in long tail
latencies.

• TAPIR does not allow a client to issue a transaction that
potentially conflicts with its own previous transaction until
the previous transaction has been fully committed on TAPIR
servers. This increases the transaction completion time for a
small number of transactions.

Carousel Fast has a lower latency than Carousel Basic due to its
fast path, which allows it to complete its Prepare phase in one wide-
area network roundtrip. This fast path benefits any transactions
where the combined latency of the Read and Commit phases is lower
than the latency of the Prepare phase using the slow path. This
can occur when the wide-area network latencies from the client to
the participant leaders are higher than the latencies between the
coordinator and its consensus group followers. Furthermore, for
transactions where local replicas are available for all of the keys
in the transaction read set, the Read phase only has to perform
local read operations. Therefore, Carousel Fast can complete each
of these transactions in just one wide-area network roundtrip.

6.4 Retwis Local Cluster Experiments
In addition to running experiments on Amazon EC2, we conduct
experiments on our local cluster to compare the throughput and
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Figure 5: Committed throughput versus target throughput.
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Figure 6: Abort rate versus target throughput.

network utilization of the different systems. We simulate 5 geo-
graphically distributed datacenters by using TC [18] to introduce
network latencies between groups of machines. Our local clus-
ter consists of 15 machines (3 per simulated datacenter) used for
Carousel or TAPIR servers, and up to 40 machines (8 per simulated
datacenter) used for clients to issue transactions. Each machine has
64 GB of memory, a 200 GB Intel S3700 SSD, and two Intel Xeon
E5-2620 processors with a total of 12 cores running at 2.1 GHz.
The machines are connected to a 1 Gbps Ethernet network. We use
our local cluster for these experiments because experiments that
require high throughput between a large number of geographically
distributed servers are prohibitively expensive to run on Amazon
EC2.

We use the same Retwis workload as in our Amazon EC2 ex-
periments. We also configure Carousel Basic, Carousel Fast, and
TAPIR to use the same system parameters as those used in our
Amazon EC2 deployment. However, instead of using TC to intro-
duce network latencies between datacenters based on Amazon EC2
latencies, we introduce a 5 ms latency between simulated datacen-
ters. This choice of network latency allows us to reach the systems’
peak throughput using the 40 available client machines.

6.4.1 Throughput. We examine the throughput of the systems
under evaluation by increasing the target transaction rate (i.e., tar-
get throughput) of the clients, while measuring the number of
committed transactions per second, which we call its committed
throughput. Figure 5 shows that Carousel Basic, Carousel Fast, and
TAPIR are all able to satisfy a target throughput of approximately
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Figure 7: Bandwidth used at a target throughput of 5000 tps.

5000 tps. Past that point, TAPIR is unable to meet the target through-
put. It experiences excessive queuing of pending transactions at
the TAPIR servers, resulting in a precipitous drop in its committed
throughput.

Carousel Basic’s committed throughput only begins to drop
below the target throughput at approximately 8000 tps. Its com-
mitted throughput continues to increase as we increase the target
throughput to 10000 tps. Carousel Basic can achieve a higher com-
mitted throughput than TAPIR due to lower transaction latencies,
which results in reduced data contention at the server for the same
throughput. Carousel Fast’s committed throughput falls below the
target throughput earlier than Carousel Basic, leveling off at ap-
proximately 8000 tps. This is because Carousel Fast needing to send
more messages per transaction than Carousel Basic. Because the
target throughput of 10000 tps required using all of our available
machines, we were not able to test higher loads.

Figure 6 shows that TAPIR experiences a sharp increase in its
abort rate when the target throughput is above 5000 tps, which is
at the same rate when it sees a drop in its committed throughput.
Figure 6 also shows that Carousel Fast’s abort rate is higher than
Carousel Basic’s. At a target throughput of 8000 tps, Carousel Fast’s
and Carousel Basic’s abort rate are 9% and 7%, respectively. This is
due to Carousel Fast reading local replicas, which may read stale
data and cause transactions to abort.

6.4.2 Network Utilization. For us to understand the network
bandwidth requirement of the different systems, we measure their
bandwidth usage at a target throughput of 5000 tps, which is ap-
proximately TAPIR’s peak throughput. Figure 7 shows the average
bandwidth usage of the three systems broken down into the send
and receive rates of the clients and servers. For the two Carousel
systems, we further distinguish the servers between leaders and fol-
lowers. The results show that TAPIR clients require more network
bandwidth than Carousel Basic and Fast clients. However, Carousel
Basic and Fast servers, especially the leaders, require more network
bandwidth than TAPIR servers. This is because Carousel Basic and
Fast replicate both 2PC state and data to their consensus groups.
As expected, Carousel Fast servers require more bandwidth than
Carousel Basic servers since Carousel Fast performs both fast path
and slow path concurrently.



0 200 400 600 800 1000
Latency (ms)

0.00

0.25

0.50

0.75

1.00
0.95

TAPIR

Carousel Basic

Carousel Fast

Figure 8: Latency CDF for the YCSB+T workload.

Although both Carousel Basic and Fast require more bandwidth
than TAPIR, at less than 70 Mbps, the network is not a resource bot-
tleneck even when they are running at TAPIR’s peak throughput,
which is more than half of their own peak throughput. Not pre-
sented are additional results showing that network bandwidth us-
age increases linearly with the target throughput for both Carousel
Basic and Carousel Fast.

6.5 YCSB+T Experiments
In the next set of experiments, we use the YCSB+T workload to
evaluate the performance of the different systems. Similar to our
previous experiments using the Retwis workload, we study the
systems under a target throughput of 200 tps to focus on the per-
formance of the system when wide-area network latencies are the
dominant latency source. Figure 8 shows the CDF of the latencies
for Carousel Basic, Carousel Fast, and TAPIR. Much like in the
Retwis experiments, Carousel Fast has lower latencies than the
other two systems across the entire distribution. This is due to its
fast path that allows it to complete its Prepare phase in a single
wide-area network roundtrip.

Carousel Basic’s median latency when servicing the YCSB+T
workload is 400 ms compared to just 290 ms in the Retwis workload.
This shift in latency is mainly due to the difference in transaction
types between the two workloads. YCSB+T consists of only read-
modify-write transactions, whereas 50% of Retwis’ transactions are
read-only. Without read-only transactions, Carousel Basic does not
benefit from its read-only transaction optimization, and always re-
quires two wide-area network roundtrips to complete a transaction
in the absence of failures.

TAPIR has a lower median latency than Carousel Basic because
its fast path allows it to reduce its transaction completion time
if local replicas are available for keys in its transaction set. This
was not evident in the Retwis workload because Carousel Basic’s
read optimization was able to more than make up the difference. In
the case where local replicas are available for all of a transaction’s
read set, TAPIR can complete the transaction in just one wide-area
network roundtrip. However, when there is data contention and
fast path execution is not possible, TAPIR must fall back to its slow
path, resulting in transaction execution that requires three wide-
area network roundtrips to complete. This explains TAPIR’s longer
tail latencies compared to those for Carousel Basic.

As can be seen from our experiments with both the Retwis and
YCSB+T workloads, our Carousel Fast prototype offers significant
latency reductions when compared with TAPIR. For the Retwis
workload, TAPIR has a 44% higher median latency than Carousel
Fast, where the latencies are 334 and 232 ms, respectively. For the
YCSB+T workload, TAPIR has a 30% higher median latency than
Carousel Fast (337 and 259 ms respectively).

7 CONCLUSION
Many large-scale distributed applications service global users that
produce and consume data. Geographically distributed database
systems, like Spanner and CockroachDB, requiremultiple wide-area
network roundtrips to execute and commit a distributed transaction.
In this paper, we introduce Carousel, a system that executes 2PC
and consensus in parallel with reads and writes for 2FI transactions.
Carousel’s basic transaction protocol can execute and commit a
transaction in at most two wide-area network roundtrips in the
absence of failures.

Furthermore, Carousel introduces a prepare consensus protocol
that can complete the prepare phase in one wide-area network
roundtrip by parallelizing the 2PC and consensus. This enables
Carousel to complete a transaction in one wide-area network round-
trip in the common case if the transaction only accesses data with
replicas in the client’s datacenter. Our experimental evaluation us-
ing Amazon EC2 demonstrates that in a geographically distributed
environment spanning 5 regions, Carousel can achieve significantly
lower latencies than TAPIR, a state-of-the-art transaction protocol.
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