Dynamically Loaded Classes as Shared Libraries:
an Approach to Improving Virtual Machine Scalability

Bernard Wong

University of Waterloo
200 University Avenue W.
Waterloo, Ontario N2L 3G1, Canada
kw3wong@engmail.uwaterloo.ca

Abstract

Sharing selected data structures among virtual
machines of a safe language can improve resource
utilization of each participating run-time system. The
challenge is to determine what to share and how to share
it in order to decrease start-up time and lower memory
footprint without compromising the robustness of the
system. Furthermore, the engineering effort required to
implement the system must not be prohibitive. This paper
demonstrates an approach that addresses these concerns
in the context of the Java™ virtual machine. Our system
transforms packages into shared libraries containing
classes in a format matching the internal representation
used within the virtual machine. We maximize the number
of elements in the read-only section to take advantage of
cross-process text segment sharing. Non-shareable data
are automatically replicated when written to due to the
operating system's streamlined support for copy-on-write.
Relying on the existing shared libraries manipulation
infrastructure significantly reduces the engineering effort.

1. Introduction

The Java™ programming language [1] has, in less than
a decade, become very popular for use in the development
of a variety of personal and enterprise-level applications.
Its features, ease of use, and “write once run anywhere”
methodology make the lives of programmers easier and
can considerably reduce program development time.
These characteristics are often overshadowed by the Java
platform's performance, as some users feel that its start-up
time is too slow, its memory footprint is too large, and
that in general the underlying resources are not used
optimally.

Different types of users are affected in varying degrees
by these problems. For the majority of personal computer
users, footprint is not necessarily a critical issue as most

Grzegorz Czajkowski

Laurent Daynés

Sun Microsystems Laboratories
2600 Casey Avenue
Mountain View, CA 94043, USA

{grzegorz.czajkowski, laurent.daynes}@sun.com

machines sold today have sufficient amount of memory to
hold a few instances of the Java virtual machine (JVM™)
[2]. However, on servers hosting many applications, it is
common to have many instances of the JVM running
simultaneously, often for lengthy periods of time.
Aggregate memory requirement can therefore be large,
and meeting it by adding more memory is not always an
option. In these settings, overall memory footprint must be
kept to a minimum. For personal computer users, the main
irritation is due to long start-up time, as they expect good
responsiveness from interactive applications, which in
contrast is of little importance in enterprise computing.

C/C++ programs typically do not suffer from excessive
memory footprint or lengthy start-up time. To a large
extent, this is due to the intensive use of shared libraries.
Applications share a set of shared libraries that only needs
to be loaded once into memory and is simultaneously
mapped into the address spaces of several running
processes. This, combined with demand paging, which
loads only the actually used parts of the libraries, can
significantly reduce the physical memory usage.
Furthermore, performance and start-up time are improved
as the required data is already loaded into memory and
does not need to be retrieved from disk.

The JVM itself is typically compiled as a shared
library. However, the actual programs that are
dynamically loaded from disk or network are stored in the
private memory space of each process. This can account
for a significant amount of the total memory usage.
Sharing certain data structures across virtual machines
may lower the memory footprint, as well as improve the
performance and decrease the start-up time of
applications if the format in which the data is shared
requires less effort to transform into the run-time format
than standard Java class files.

One approach to sharing is to execute multiple
applications in the same instance of the JVM, modified to
remove inter-application interference points [3], [4].
Virtually all data structures can be shared among



computations, and the resource utilization improves
dramatically when compared to running multiple
unmodified JVMs. However, if any application causes the
virtual machine to crash or malfunction, all of the other
programs executing in the faulty JVM will be affected. A
different approach to sharing is demonstrated by ShMVM
(for “Shared Memory Virtual Machine”) [5], where
certain meta-data is shared among virtual machines, each
of which executes in a separate operating system (OS)
process. The shared region can dynamically change,
which poses various stability and robustness problems. In
fact, a corruption of the shared region can lead to the
cascading failures of all virtual machines participating in
the sharing. The design of ShMVM required complex
engineering, in part due to the aggressive choices with
respect to what to share.

This work is motivated by the systems mentioned
above, and in particular by the lessons learned from
ShMVM. We show a design for cross-JVM meta-data
sharing which is simpler, relies on existing software and
OS mechanisms, and matches the performance
improvements of ShMVM. At the same time, there is no
loss of reliability of the underlying JVM.

The main idea is to encode Java class files as ELF
shared libraries, in a parsed, verified, and mostly resolved
format almost identical to the internal representation used
by the JVM. Each application executes in its own virtual
machine in a separate OS process, mapping such shared
libraries into its address space. Efficient use of resources
is accomplished by maximizing the read-only parts of the
libraries, which enables cross-process sharing of read-only
physical memory pages. Run-time system robustness is
preserved via relying on the copy-on-write mechanism to
lazily replicate process-private data. Finally, relative ease
of engineering is a result of using standard shared libraries
manipulation tools.

Challenges of this approach include storing meta-data
outside of the regular heap, modifying the garbage
collector to operate correctly on the modified heap layout,
avoiding internal fragmentation in the generated shared
libraries, and maximizing the amount of pre-initialization
and read-only data structures in the class-encoding shared
libraries. The prototype, SLVM (“Shared Library Virtual
Machine”), based on the Java HotSpot™ virtual machine
(or HVSM) [6], is a fully compliant JVM.

2. Overview of SLVM

This section gives an overview of using SLVM. The
virtual machine can be run in two modes, (i) to generate
shared libraries, or (ii) to execute applications, whenever
possible using the generated libraries.

The shared libraries are generated by the SLVMGen
program executed on SLVM with a -XSLVMOuput:class
flag. The program reads in a list of names of classes
and/or packages from a file and produces shared libraries

according to the transformations described in Section 4. In
particular, the shared libraries contain bytecodes and
constant pools in a format similar to virtual machine's
internal representation of these data structures, and
auxilliary data structures used to quickly construct other
portions of run-time class representation. Read-only and
read-write sections of the shared libraries contents are
separated, with the intent to maximize the amount of read-
only items (Fig. 1).

The generation process consists of two steps. First,
each class named either explicitly or implicitly through its
package name is transformed into an object file, whenever
necessary invoking native methods that interface with a
library of shared object manipulation routines. Then all
object files corresponding to classes of the same package
are linked into a shared library, named after the package
name (e.g., libjava.util.so). Lastly, class files are inserted
verbatim into the object file as read-only entries. This is
needed to compute certain transient load-time information
and to construct string symbols. The addition of class files
increases the libraries size by between 16-34%, all of
which is read-only data, and thus of low impact.

At this point the libraries are ready to be used when
SLVM executes applications. The information stored in
the generated shared libraries describes the transformed
classes completely, and is sufficient to build a runtime
representation of classes during program execution.

SLVM is a fully-compliant JVM and can execute
ordinary classes, whether stored as separate files or in jar
archives, but the performance and memory utilization
improvements are realized only when the classes are
encoded as shared libraries. These can co-exist: some
classes can be loaded as class files while the others can be
encoded in a shared library.

To use the pre-generated shared libraries, SLVM
should be executed with the -XSLVMObjectPath:{Path to
object files} flag. Whenever a class needs to be loaded,
the virtual machine tries first to locate a shared library
with the required class; if such a library does not exist,
regular class loading takes place. An optional
-XSLVMOnly flag can be specified to ensure that the
classes are taken from the shared libraries only. This
causes SLVM to exit if any required class can not be
found in the shared libraries.

Except for the optional -XSLVM flags described above,
SLVM can be executed in the same way as HSVM. At the
virtual machine and OS levels, the difference between
HSVM and SLVM becomes apparent, as the use of
SLVM's shared libraries moves certain meta-data outside
of the heap, and the libraries themselves can be shared
across multiple instances of SLVM (Fig. 2).

3. Design decisions

Several design decisions are described below, along
with alternatives we considered during SLVM's



construction. They include (i) the choice of an existing
shared libraries format over a potentially more flexible
customized sharing protocol, (ii) the extent of sharing,
(iii) the choice of shareable data structures, and (iv) the
granularity of the contents of shared libraries.

3.1. Why ELF shared libraries?

ELF (Executing and Linking Format) is the standard
format for storing executables and shared libraries on
many UNIX platforms. It has been proven to be reliable
and well-tuned. The creation of ELF formatted file is a
relatively simple process because of the libelf library,
which abstracts much of the underlying details of an ELF
formatted file away.

Standard system libraries are stored in this format as it
provides many crucial features that allow code to be
shared. Code stored in shared libraries can be made
relocatable by replacing absolute memory addresses with
offsets from a global offset table for all control transfer
instructions. This allows shared libraries to be mapped
anywhere in an address space. Such flexibility is
important to allow interoperability between shared
libraries in complex systems by avoiding addressing
conflicts. Data can also be stored in shared libraries,
although the use of the global offset table is not necessary
in order to relocate data. As the ELF format has a clear
separation of read-only and write-able regions, it allows
saving data-structures that are modified at runtime without
affecting the read-only structures. Aside from the ability
to share memory across processes, shared libraries can
also be dynamically and explicitly loaded and inspected
during the run-time of a program through the set of
dlopen, disym and diclose functions. These features
satisfy SLVM's requirements for a format and
functionality of cross-process data sharing. Finally, using
an existing, popular, well-tested and well-tuned
infrastructure has significant engineering and portability-
related advantages over custom designs.

3.2.  The extent of sharing

Loading of a class by a JVM is a complex and time
consuming process. The file holding the binary
representation of the class (the .class file) needs to be
parsed and various values need to be computed; these
values may actually be constant, yet the .class file format
does not necessarily have that information directly
available. Moreover, some of the data structures stored in
.class files, such as bytecodes and the constant pool,
undergo costly load-time modifications before reaching its
initial state and run-time system format. Class loading
performance affects both the start-up time of programs
and the responsiveness of interactive applications. The
latter is affected because class loading is performed lazily.

Reference to
constant pool cache

Referenceto
constant pool cache

Reference to
mutable c.p. entries

Reference to
mutable c.p. entries

More ...

More ...

java.lang.String
R/0 constant pool
entries
ae

R/0 components
of methods

java.lang.Object

R/0O constant pool
entries

R/0 components
of methods

More... More...

Figure 1. Separation of read-only and write-able
data in libjava.lang.so, which encodes classes of
the java.lang package.

Hence, a dialog box that pops up for the first time will
incur the loading of one or more classes, which can cause
the program to feel slow to the user. Speeding up class
loading improves the user’s perception of the program’s
performance. Class loading time can be reduced if at least
some of the class-related data structures fetched from disk
are already pre-initialized in the format used by the JVM.
The approach taken in SLVM is to build an initial
persistent pre-formatted run-time representation of classes
whose pointer values are updated during class loading.
Many values that are normally calculated can now be
directly loaded, which reduces the amount of effort related
to class loading. It is important to note that the generated
shared data structures are independent of the program
execution state and of whether other (shared and non-
shared alike) data structures have been loaded or not, and
thus can be shared by any set of applications at any time.

3.3. Shareable data structures

Data structures shared by instances of SLVM include
bytecodes, constant pools, constant pool tags, field
descriptions, and constant pool cache maps. Bytecode
sharing is a clear-cut choice as it is analogous to sharing
compiled code normally found in shared libraries.
However, HSVM rewrites bytecodes during runtime for
optimization purposes, which introduces additional
complexity to the design (Sec. 4.1).

The constant pool of a class holds all the constants and
symbolic references of that class. The sharing of constant
pools can contribute to a significant reduction in memory
consumption, as it is typically the second largest data-
structure following bytecodes. Many of the constant pool
entries are symbolic references that are updated in place
during linking and may resolve to different objects for



different programs (Section 4.3). This is problematic for
sharing. A non-problematic component of the constant
pool is the tag array, which stores the type information for
each of the entries in the constant pool.

Constant pool caches are arrays of resolved constant
pool entries of a particular type (method, field, or class).
In HSVM they are write-able data structures, as the
copying garbage collector can relocate the objects they
point to. Constant pool caches are not shared in SLVM, as
it would not have any impact on memory footprint.
However, since the generation of constant pools is time
consuming, SLVM stores an auxiliary read-only constant
pool map that reduces the constant pool cache creation
time.

The field descriptions uniquely describe a field and
contain indices into the constant pool along with other
flags pertaining to the field. These values are constants at
runtime and therefore the field descriptions are potential
candidates for sharing. Currently, the field descriptions
are stored entirely in the write-able section of the shared
library. With certain modifications, read-only information
could be isolated, but the memory savings due to field-
related information is minimal.

Compiled code is not encoded in shared libraries in
SLVM. This is because it has been already shown that
sharing of dynamically compiled HSVM code across OS
processes is problematic and can actually be
counterproductive [5].

3.4. Granularity of shared libraries

The contents of shared libraries determine the amount
of internal fragmentation, flexibility in specifying which
classes to load from a shared library, and the overhead in
dynamically loading and unloading of the shared libraries.

Creating a separate shared library for each class may
appear to be a reasonable choice as it maximizes the user's
freedom in determining which classes should be loaded
from the shared libraries. However, each class must be
individually dynamically loaded, which can increase class
loading time significantly as the dlopen() function must
be called for each class's library. Another concern is the
internal fragmentation within such single-class libraries.
Each shared library, when loaded, must occupy at least
one page of memory for its read-only sections and at least
one page for the write-able sections (if present). Since
most classes are significantly smaller than the size of a
page of memory, the remaining unusable part of the page
becomes wasted. Therefore, the total memory savings
could be significantly reduced, if not negative, due to
internal fragmentation.

Package-based shared libraries can considerably
reduce the amount of dlopen() calls and the effects of
internal fragmentation. Moreover, whenever a class from
a package is loaded, the likelihood of loading another

libjava.lang.so

R/0

libjava.io.so

R/0

libjava.util.so

R/0

Figure 2. Instances of SLVM execute in separate
OS processes, and the class-encoded shared
libraries are dynamically mapped into their
address spaces.

class from the same package is high. The default mode of
using SLVM is thus to generate shared libraries which
include all the classes of a given package; this can be
customized by selecting only a subset of the classes to
include.

4. Details

In order to perform safe resource sharing across virtual
machines and to reduce class loading time, several issues
must be addressed. They are discussed in this section, and
in particular include (i) the virtual machine modifications
necessary for making bytecodes read-only, (ii) separating
shareable information, (iii) transformations of the constant
pool, (iv) garbage collection, and (v) class loading and
unloading.

4.1. Making bytecodes read-only

HSVM rewrites bytecodes internally in order to
remove unnecessary checking of link resolution or class
initialization status once these operations are known to
have occurred, and to avoid re-computing values that
remain constant after they have been computed. An
example of such quickening is the run-time modification
to the getstatic bytecode (it obtains the value of a static
field of a given class). Its original form indexes the
constant pool to compute the class, name and type of the
field to fetch the wvalue from. The first successful
execution of the bytecode, which may trigger the loading
and initialization of the target class, stores a reference to
the target field in the constant pool cache for much faster
subsequent access. To take advantage of this, HSVM
internally introduces the fast_getstatic bytecode, which at
run-time is written over any occurrence of getstatic upon
its first execution. The fast_getstatic bytecode has a



similar format to that of getstatic, but instead of indexing
the constant pool it indexes the constant pool cache.
When executed, it directly obtains the reference from the
constant pool cache without any additional computation or
link and initialization status checks, as the entry is
guaranteed to reside in the constant pool cache.

The reason why HSVM rewrites these bytecodes at
runtime is due to the lazy initialization of internal run-time
objects describing classes and strings. Many of these
bytecodes refer to objects that have not fully been
initialized. HSVM will perform this initialization at
runtime after which it rewrites the bytecode to the
quickened version which no longer calls the initialization
method or tests the initialization status. Subsequent
executions at the same bytecode index therefore will not
perform any of these unnecessary operations.

In SLVM, if the -XSLVMOuput:class was specified,
the generation of class-encoding object files is performed
immediately after reaching the point in the virtual
machine where the run-time representation of a class has
been fully created. However, as the bytecodes have not
yet been executed at this point, they are not quickened in
HSVM. In SLVM they are pre-quickened — that is, they
are replaced with fast bytecodes, so that when they are
loaded in to memory as a shared library, they can be
directly executed without any modifications. The
bytecodes are thus read-only in SLVM's class-encoding
shared libraries. Otherwise, bytecodes would have to be in
write-able sections, which would lower the potential for
memory footprint reduction.

In SLVM both the rewriter and interpreter are modified
to handle pre-quickening. The rewriter performs pre-
quickening during shared libraries generation. An
example of a quickened bytecode which is interpreted
differently in SLVM is fast_getstatic. Its interpretation in
HSVM is to simply fetch the value of a field in the
constant pool cache, as the cache entry is guaranteed to
exist. In SLVM, because fast getstatic is rewritten at
initialization instead of at runtime, it has to first check
whether the entry in the constant pool actually exist. If
not, the interpretation falls back on the slow path and
computes the entry. Subsequent executions of the
bytecode are thus fast, but each of them incurs the cost of
the check.

In addition to the getstatic bytecode, the putstatic,
getfield, putfield, invokevirtual, invokespecial,
invokestatic, invokeinterface and Idc bytecodes must also
be pre-quickened. The interpreter must be modified in
order to correctly use each of these pre-quickened
bytecodes. Typically, only two additional machine
instructions, load and branch, must be added in the
interpretation of each of these quickened bytecodes.

In order to make the bytecode area completely read-
only, two other bytecodes which the HSVM interpreter
introduces at runtime are disabled. These are fast_new
and fast_access. The fast_ new bytecode, like the

previously mentioned bytecodes, replaces new when the
required class initialization is performed. This quickened
bytecode is currently disabled in SLVM as it supports
both new and fast_new in the interpreter, unlike the other
bytecodes with quickened versions. Therefore, instead of
modifying the interpreter to support a modified fast_new,
SLVM is simply modified to not introduce fast_new at
runtime.

The fast_access bytecode is rewritten in place of
aload_0 when it is followed by a get field bytecode,
essentially capturing the idiom of obtaining a reference to
this object. This bytecode rewriting does not require
performing any initialization, but does require knowledge
of the type information of the field. The overhead of these
changes is very minor as the interpreter's performance has
only a small impact on overall execution time.

The HSVM's rewriter also creates the constant pool
cache. The cache is built from a data structure generated
to map each offset in the constant pool cache to an offset
in the constant pool. Creating this map requires iterating
through every entry in the constant pool, which slows
down class loading. In SLVM, the map is saved into an
array and exported into the object file to avoid generating
it for classes loaded from a shared library.

4.2. Separating Sharable Information

The original HSVM's memory layout had to be
modified for data shareable in SLVM. The bytecodes and
constant pools are the largest sharable data sections for
each class and are each stored in HSVM as a block of
contiguous memory without a defined high level structure.
Each of them directly follows an instance of a C++
abstraction class. The class contains accessor functions to
retrieve data appended to its instances.

Having such instances located directly before the data
section allows the class' accessor methods to reference
regions of the data section simply via an offset to its this
pointer. This removes the need for an additional pointer to
the data and allows the interpreter to easily traverse
between the abstraction class and the data section via
offsets.

Information kept in the instances of the C++
abstraction class includes garbage collector variables,
interpreter entry points and various other entries that are
prone to change at runtime. It is therefore not feasible to
store the abstraction classes in the read-only section of the
shared library. Another reason for keeping the instances in
private memory is that each contains a pointer to a C++
virtual method table (or vtable), typically located in the
process's data segment. The abstraction class and its
corresponding data sections must therefore be physically
separated in memory in SLVM. Furthermore, each
abstraction class must be modified to access its data
section via a reference instead of via an offset.



Pointer
Int OXOA Float

Double

A section of a constant pool stored in HSVM's private memory.

Pointer
0x2C .

Int Float Double

Pointer Pointer
Ox0A 0x2C

Pointer Pointer

In SLVM, pointers within the constant pool are replaced with offsets to a separate pointer table, allowing
the constant pool to be stored in the read-only region of the shared library.

Write-able region

Figure 3. Constant pool organization in HSVM (top) and SLVM (bottom).

The interpreter must also be modified as it does not use
the abstraction class' accessor methods to access the data
section but instead directly accesses it via hard-coded
offsets. All offset addition operations within the
interpreter must be changed to pointer load operations. No
changes are required for the dynamic compiler as it uses
the abstraction class' accessor methods and the code it
produces does not use any of the shared data structures.

4.3. Transformations of the constant pool

Constant pools are ideal candidate for sharing across
JVM since they can be quite large. Sharing is however
possible only if the original constant pool can be
transformed in an data structure immutable at runtime.
Class and string entries of the constant pool are
problematic since they hold pointers to objects private to
one JVM: the value of these pointers will be different
each time the constant pool is loaded into memory as the
location of the string or class will not remain the same on
separate executions of the program. The pointer values
can also change since the compacting garbage collector
copies heap objects around. Therefore, it is not possible
to simply fix the pointers to a specific value when storing
the constant pool in the shared libraries.

Two solutions were evaluated: (i) replacing pointers
stored in the constant pool with offsets to an array that is
stored in private memory, and (ii) reordering of the
constant pool. The latter requires changes to the bytecode
instructions that access the constant pool in order to take
the new index into account. This may change the length of
the bytecode instruction itself, and in turn may require
changing some control transfer bytecodes. The amount of
modification this approach imposes to the JVM is

unwarranted from the small gain in return. Because of
this, the much less intrusive solution of replacing pointers
with offsets was chosen, as it only requires modifying the
behavior of the interpreter when it uses an entry in the
constant pool. In SLVM, the interpretation of bytecodes
that access the constant pool first fetches an offset from
the constant pool and then uses it to index a private-
memory array of non-constant references. This adds one
load machine instruction. Figure 3 illustrates how the
pointers are replaced with offsets in the constant pool.

The constant pool is also built differently during the
class loading and shared library generation process:
offsets are stored at places where pointers used to reside.
This modification is not difficult, as the constant pool
contains a tag array that describes the fundamental type
of each entry stored in the constant pool. Storing any
entries which the tag describes as a string or a class into
the private array and replacing the entries with array
offsets is sufficient to perform the conversion.

The main advantage of this solution is its simplicity.
Relatively few parts of the virtual machine need to be
changed in order to implement it. However, every time a
pointer needs to be retrieved from the constant pool, an
additional indirection must take place. Furthermore, this
solution requires a read-only entry in the constant pool to
store an offset in addition to the entry in the private array
to store the actual pointer. However, this overhead is only
in read-only memory, and is thus amortized over all
instances of any application that uses the given class.



4.00%

0.00% J

-4.00% ——

-8.00%

-12.00%

-16.00%

-20.00%

[T Cold Run

Il Warm Run

-24.00% ‘

JustReturn javac jack jess

db compress mtrt mpeg

Figure 4. Performance of SLVM relative to HSVM (negative is better).

4.4. Objects outside of the heap

SLVM  inherits HSVM's automatic memory
management system. The heap layout is generational and
the information related to classes is always stored in the
permanent generation. Data stored there is collected very
infrequently, but needs to be scanned during collections to
discover live objects. The collector is copying, and it
cannot be assumed that any given pointer will retain its
value after a collection. In order to load a class which has
been exported to a shared library, a dlopen must be called
to open the shared library followed by a disym to read a
specific symbol into memory. The memory address at
which the shared information is loaded is not under our
control and is not part of the heap.

The memory layout is thus changed in SLVM, as
shared data structures are located outside of the heap. The
instanceKlass, which in HSVM describes run-time class-
related information, is left in the heap. Directly or
indirectly it references data structures residing in shared
libraries; in turn, these data structures reference other
heap objects. The garbage collector was modified to
properly operate on the new heap organization.

4.5. Class loading and unloading

In the Java programming language, multiple class
loaders may load the same class. In such a case, if the
class exists in a shared library, the library may be loaded
in multiple times. A general way to make the loader load
multiple instances of a library into the same process is to
keep renaming the library before the load, since multiple
invocations of dlopen(libA.so) will return the same
handle to the only instance of libA.so loaded during the
first invocation of the function. The disadvantage of this
approach is that read-only segments of shared libraries are
not backed by the same physical storage, as the loader
does not relate the renamed libraries. The Solaris™

Operating Environment provides the dimopen function in
its run-time linker auditing interface [7], which allows for
loading multiple instances of the same library such that
their text (read-only) segments are backed by the same
physical memory pages.

5. Performance Impact

This section discusses SLVM's performance, start-up
time, and memory footprint. The experimental setup
consisted of a Sun Enterprise™ 3500 server with four
UltraSPARC™ I processors and 4GB of main memory
running the Solaris Operating Environment version 2.8.
All results are reported as relative comparisons of SLVM
against the Java HotSpot virtual machine, version 1.3.1,
with the Java Development Kit (JDK™) version 1.3.1
(SLVM is a modification of this code base). Complete
core and application packages of classes loaded by the
benchmarks were encoded as SLVM shared libraries

The benchmarks are from the SpecJVM98 suite [8]
plus a very simple JustReturn program, which consists of
only a single main method that immediately returns. For
performance and start-up time measurement two kinds of
measurements were performed: cold and warm. Cold
execution measures the relative performance of SLVM vs.
HSVM when both are executed for the first time. For
SLVM, the cold execution includes the time required for
the initial loading of the shared libraries. For HSVM, the
cold execution includes the time needed for all core and
program's class files as well as the shared libraries
comprising the virtual machine to be loaded to memory
from disk. The operating system's file cache was empty
before cold runs. Warm execution is any subsequent
execution of the same application, where the libraries are
already loaded into the main memory. In our opinion
“warm” results are more indicative of a common user
experience.



3000

2750

2500

2250
2000

[ Delta Total Mem
[l Delta Private Mem |——

1750

1500 |

1250

1000 —

750 —
500 ——

250 —

: Ol U

E B
-500

-750 : :

JustReturn javac jack jess

db compress mtrt mpeg

Figure 5. Memory footprint of SLVM, relative to HSVM, in kilobytes.

5.1. Execution time

Figure 4 contains the execution time of the
benchmarks. For cold runs, none of the benchmarks
executes slower, and most of them actually run faster with
SLVM than with HSVM. Performance improvements
range between 0.5% (mpeg) to 21% (mtrt). HSVM
improves by a larger factor than SLVM from cold to
warm executions. This explains why for warm runs SLVM
does not outperform HSVM so well as for cold runs, and
in fact underperforms for jack and javac by about 2.5%.
JustReturn is an exception. Its SLVM's warm execution
improves by 10% over HSVM, contrasted with 6.7% for
cold runs, which indicates that the bootstrap sequence of
HSVM, and consequently the virtual-machine's start-up
time (Sec. 5.2) benefit more from our technique for warm
executions.

The numbers are explained by the several factors. First,
since less effort related to class loading is required, the
applications will execute faster. A less obvious
performance improving factor is revealed by timing the
garbage collection. Because class meta-data does not
reside in the garbage-collected heap, the amount of data
structures managed by the automatic memory manager
and consequently associated effort is smaller in SLVM.
On the other hand, the collections are more complex.

The impact of garbage collection on the application
performance time varies. With HSVM for four
benchmarks it is bigger than 2% of the total execution
time: jack (6.4%), javac (14.4%), jess (2.4%), and mtrt
(6.3%). For javac, db, and mtrt, SLVM's modified
collector increases this impact up to 1%. For other
applications the overhead of the collector is smaller, by as
much as 2.5% (jess).

5.2. Start-up time

The impact of the presented virtual machine
architecture on the start-up time is determined by
measuring the execution time of JustReturn, as most of it
is spent performing start-up-related actions, including
loading of bootstrap classes. The total measured process
execution time is reported here as start-up time - this
includes a relatively negligible virtual machine exit-
related activities.

Cold start-up time improves by about 6.7%, while
warm start-up time is better by about 10%. The difference
is explained by the fact that cold executions spend more
time fetching files from disk, so the relative performance
differs less as it contains a larger similar overhead. As the
original start-up time cost is in the hundreds of
milliseconds, these improvements may have an observable
effect for desktop users.

5.3.  Memory footprint

Figure 5 shows the aggregate change in memory
footprint. The amount of virtual memory required by
SLVM increases (first bar in each two-bar group), but the
amount needed for private memory decreases for most
benchmarks (second bar), as some data previously stored
in the (non-shared) permanent generation is now stored in
read-only segments of shared libraries. The decrease
ranges from between 300KB (mtrt) to almost 750KB
(mpeg).

To illustrate how the reduced demand for private
virtual memory can lower the overall memory footprint,
let us take a closer look at the compress benchmark.
When compared to HSVM, SLVM needs an additional
800KB of virtual memory more. But the private (non-
shared) memory consumption actually decreases by
375KB. Thus, with three concurrent instances of
compress the overall system requirement for physical
memory is decreased by (375*3-800)KB = 325KB.
Although it is hard to expect anyone to actually keep



running compress over and over again, this calculation
demonstrates the potential of SLVM, as there is always
sharing of at least the JDK classes between any two
applications.

SLVM may actually increase the overall memory
footprint, as the javac and JustReturn benchmarks
indicate. In both cases the root of the problem is that
relatively few classes from each package used by the
application are actually loaded by the program. Since
SLVM's default behavior is to encode the whole package
as a shared library, much more memory (and,
consequently, more private memory) is needed.

Our experiments with running the applications in 'tight'
mode, where only the classes determined in advance to be
loaded by the application were actually stored in the
shared libraries, had virtually no impact on performance
but improved the memory utilization. For instance,
executing JustReturn causes loading of 17 class-encoding
shared libraries, with the total class count of 662.
However, only 184 of these classes are needed. When
only the necessary classes are transformed into shared
libraries, private memory requirements of JustReturn drop
from +600KB to -50KB. However, we discourage this
mode of operation unless the user has no doubts about
which classes are needed by the application. Since SLVM
accommodates mixed-mode loading (certain classes from
disk, others from the file system/network) excluding
certain classes from shared libraries is not problematic,
but may negatively impact the resource utilization.

6. Discussion and related work

The lessons learned from the ShMVM project [5] had
the biggest influence on our design. ShMVM enables
sharing of bytecodes and compiled code among
applications executing in separate virtual machines via a
custom shared memory protocol. There are several major
problems with that approach, though: (i) the loss of
robustness due to the dynamic behavior of the shared
region, (ii) only a minor performance gain yielded by the
sharing of compiled code, (iii) difficulties in designing
and implementing a robust and very-well performing
scheme for storing and looking up shared data, and (iv)
the fact that the shared region had to be mapped in each
participating ShMVM virtual machine at the same virtual
address. These problems led us to conclude that designs
such as ShMVM are not practical.

The design of SLVM avoids all of the problems
mentioned above: write-able data are automatically
copied-on-write, a widely-used shared data format is taken
advantage of, only the bytecodes are shared among
instances of SLVM, and the addressing is flexible —
shared data can be loaded anywhere in the address space
of the virtual machine. In contrast to ShMVM, SLVM
does not introduce any robustness degradation to the
virtual machine. Finally, SLVM was much easier to

engineer: it required the modification of half as many files
as ShMVM did.

The performance of SLVM can be meaningfully
compared to the version of SAMVM which shared class-
related information across processes (i.e., did not share
the dynamically compiled code). ShMVM's warm start-up
time is about 85% of HSVM's (vs. 90% achieved with
SLVM) but application performance is between 1-2%
(relative to HSVM) better in SLVM, except for the jack
benchmark, which executes about 1% slower in SLVM.
The average reduction in need for private memory is very
similar in both systems.

Several other projects have aimed at conserving
resource of the JVM. The majority of these efforts focus
on collocating applications in the same JVM, for example
[31, [9], [10], [11]. The only other account of work similar
to this one (apart from ShMVM) we were able to find is
[12], which describes IBM's implementation of the JVM
for OS/390. This system, aimed at server applications, is
interesting in several respects. Multiple JVMs can share
system data (e.g., classes, method tables, constant pools,
etc.) stored in a shared memory region, called the shared
heap. The shared heap is designed to store system data but
can also store application data that can be reused across
multiple instances of the JVM. The shared heap is never
garbage collected, and cannot be expanded. The JVMs
use the shared heap to load, link, and verify classes. A
JVM need not perform any of these actions for any class
that has been loaded by another JVM; this includes the
bootstrap and system classes. Compiled code is not
shared. [12] briefly discusses these issues at a high level,
without expounding on challenges and alternatives; it also
does not discuss the performance of the system. That
system presents another interesting feature: each JVM is
executed in a large outer loop, which accepts requests to
execute programs. After a program has been executed and
it is determined that it has not left any residual resources
behind (e.g., threads, open files, etc.), the JVM can be
immediately re-used to execute another request. Thus,
multiple JVMs can concurrently share resources through
the shared heap, but additionally, each of them reduces
start-up latency via sequential execution of applications.
A follow-up system is described in [13]. Performance data
presented there are promising from the perspective of
reduced start-up time, but monitoring and managing the
transition to the “clean slate” virtual machine can be a
challenging task.

The Quicksilver quasi-static compiler [14] aims at
removing most of the costs of compiling bytecodes. Pre-
compiled code images of methods are generated off-line.
During loading they need to be stitched', that is,
incorporated into the virtual machine using relocation
information generated during the compilation. Stitching
removes the need for an extra level of indirection since
relevant offsets in stitched code are replaced with the
actual addresses of data structures in the virtual machine.



Incorporating a newly loaded shared library into SLVM
requires less effort than Quicksilver's stitching, partly due
to relying on some offset computations being done
automatically by the dynamic libraries loader.

7. Conclusions

This paper discusses the design, selected
implementation details, and performance of SLVM, an
architecture that allows multiple instances of the Java
virtual machine to share executable code. The
implementation is based on an existing high-performance
virtual machine, and draws from the lessons learned from
our previous investigation in this area. Classes are
encoded as ELF shared libraries and then loaded into the
virtual machines using the standard OS mechanisms. This
leads to complete separation of mutable data of virtual
machines due to the copy-on-write property of shared
libraries, and in consequence isolates faults of virtual
machines to only the process where the fault has actually
happened. Thus, the sharing does not lower the robustness
of the virtual machine. Using a proven sharing format,
ELF, with its extensive support tools, significantly
lowered the engineering effort.

The main goal of this work is to improve several
resource utilization metrics of the JVM. Lowering
memory footprint was possible through maximizing the
amount of read-only data structures in the shared libraries
(e.g., via pre-quickening) and to storing multiple classes
in the same shared library to avoid internal fragmentation.
Application start-up time was decreased since several
steps normally present in class loading are -either
eliminated (e.g., parsing) or considerably shortened (e.g.,
building a constant pool) in SLVM, and due to the
aggressive pre-initializing of shared data to their initial
values. Application performance was improved partially
due to the same reasons that decrease the start-up time and
in part due to the improved garbage collection behavior.

We believe that the design presented in this paper, with
its combination of simplicity, robustness, use of off-the-
shelf tools, and non-trivial performance, memory
footprint, and startup-time improvements, is a viable
approach to improving the JVM's performance and
scalability when operating system process boundaries
around computations are deemed necessary.

Acknowledgments. The authors are grateful to Rod
Evans and Pete Soper for their help and comments.
Bernard Wong participated in this project during his
internship at the Sun Microsystems Laboratories in
January-April 2002.

Trademarks. Sun, Sun Microsystems, Inc., Java,
JVM, Enterprise JavaBeans, HotSpot, and Solaris are
trademarks or registered trademarks of Sun Microsystems,

Inc., in the United States and other countries. SPARC and
UltraSPARC are a trademarks or registered trademarks of
SPARC International, Inc. in the United States and other
countries. UNIX is a registered trademark in the United
States and other countries, exclusively licensed through
X/Open Company, Ltd.

8. REFERENCES

[1] Gosling, J., Joy, B., Steele, G. and Bracha, G The Java
Language Specification. 2™ Edition. Addison-Wesley,
2000.

[2] Lindholm, T., and Yellin, F.. The Java Virtual Machine
Specification. 2™ Ed. Addison-Wesley, 1999.

[3] Back, G., Hsieh, W., and Lepreau, J. Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Java. 4"
OSDI, San Diego, CA, 2000.

[4] Czajkowski, G., and Daynes, L. Multitasking without
Compromise: A Vitual Machine Evolution. ACM
OOPSLA'01, Tampa, FL.

[5] Czajkowski, G., Daynes, L., and Nystrom, N. Code
Sharing among Virtual Machines. ECOOP'02, Malaga,
Spain.

[6] Sun Microsystems, Inc. Java HotSpot™ Technology.
http://java.sun.com/products/hotspot.

[71 Sun Microsystems, Inc. Linker and Libraries. Available
from http://docs.sun.com.

[8] Standard Performance Evaluation Corporation. SPEC Java
Virtual Machine Benchmark Suite. August 1998.
http://www.spec.org/osg/jvm98.

[9] Balfanz, D., and Gong, L. Experience with Secure Multi-
Processing in Java. Technical Report 560-97, Department
of Computer Science, Princeton University, September,
1997.

[10] Bryce, C. and Vitek, J. The JavaSeal Mobile Agent Kernel.
3 International Symposium on Mobile Agents, Palm
Springs, CA, October 1999.

[11] Hawblitzel, C., Chang, C-C., Czajkowski, G., Hu, D. and
von Eicken, T. Implementing Multiple Protection Domains
in Java. USENIX Annual Conference, New Orleans, LA,
June 1998.

[12] Dillenberger, W., Bordwekar, R., Clark, C., Durand, D.,
Emmes, D., Gohda, O., Howard, S., Oliver, M., Samuel, F.,
and St. John, R. Building a Java virtual machine for server
applications: The JVM on 0S/390. IBM Systems Journal,
Vol. 39, No 1, 2000.

[13] Borman, S., Paice, S., Webster, M., Trotter, M., McGuire,
R., Stevens, A., Hutchinson, B., Berry, R. A Serially
Reusable Java Virtual Machine Implementation for High
Volume, Highly Reliable, Transaction Processing.
Technical Report TR29.4306, IBM Corporation.

[14] Serrano, M., Bordawekar, R., Midkiff, S., Gupta, M.
Quicksilver: A Quasi-Static Compiler for Java. ACM
OOPSLA'00, Minneapolis, MN, October 2002.



