
CANOPUS: A SCALABLE AND MASSIVELY 
PARALLEL CONSENSUS PROTOCOL

Bernard Wong

CoNEXT 2017

Joint work with Sajjad Rizvi and Srinivasan Keshav



CONSENSUS PROBLEM

2

Agreement between a set of nodes in the presence of failures

 Asynchronous environment

Primarily used to provide fault tolerance

W(x)=3 W(y=1) W(z=1) ?

Node A: W(x=1)

Node B: W(x=2)

Replicated log

W(x=3) W(y=1) W(z=1) ?W(x=3) W(y=1) W(z=1) ?



A BUILDING BLOCK IN DISTRIBUTED SYSTEMS

3

SpannerAkka MesosHadoop HBase Kafka BookKeeper …

S
y
st

e
m

a
p

p
li
ca

ti
o
ns

ZooKeeper ConsulChef PuppetetcdChubby …

C
o
o
rd

in
a

ti
o
n
 s

e
rv

ic
e
s

ZAB Paxos Raft …

MenciusEPaxos SPaxos …

AllConcur NOPaxosNetPaxos …

C
o
n
se

ns
u
s 

a
n
d

a
to

m
ic

 b
ro

a
d
ca

st



A BUILDING BLOCK IN DISTRIBUTED SYSTEMS

4

SpannerAkka MesosHadoop HBase Kafka BookKeeper …

S
y
st

e
m

a
p

p
li
ca

ti
o
ns

ZooKeeper ConsulChef PuppetetcdChubby …

C
o
o
rd

in
a

ti
o
n
 s

e
rv

ic
e
s

ZAB Paxos Raft …

MenciusEPaxos SPaxos …

AllConcur NOPaxosNetPaxos …

C
o
n
se

ns
u
s 

a
n
d

a
to

m
ic

 b
ro

a
d
ca

st

Current consensus protocols are not scalable

However, most applications only require a small 

number of replicas for fault tolerance



PERMISSIONED BLOCKCHAINS

A distributed ledger shared by all the participants

Consensus at a large scale

 Large number of participants (e.g., financial institutions)

 Must validate a block before committing it to the ledger

Examples

 Hyperledger, Microsoft Coco, Kadena, Chain …

5



CANOPUS

Consensus among a large set of participants

 Targets thousands of nodes distributed across the globe

Decentralized protocol

 Nodes execute steps independently and in parallel

Designed for modern datacenters

 Takes advantage of high performance networks and hardware redundancies

6



SYSTEM ASSUMPTIONS

Non-uniform network latencies and link capacities

 Scalability is bandwidth limited

 Protocol must be network topology aware

Deployment consists of racks of servers connected by redundant links

 Full rack failures and network partitions are rare

7

WAN

…

… …

…

Global view Within a datacenter



CONSENSUS CYCLES

8

Execution divided into a sequence of consensus cycles

 In each cycle, Canopus determines the order of writes (state changes) received 
during the previous cycle

d

e

f g

h

i

Canopus servers

x = 1

y = 3 x = 5

z = 2



SUPER-LEAVES AND VNODES

9

Nodes in the same rack form a logical group called a super-leaf

Use an intra-super-leaf consensus protocol to replicate write requests 
between nodes in the same super-leaf

d

e

f g

h

i

Super-leaf Super-leaf



SUPER-LEAVES AND VNODES

10

Nodes in the same rack form a logical group called a super-leaf

Use an intra-super-leaf consensus protocol to replicate write requests 
between nodes in the same super-leaf

d

e

f g

h

i

Super-leaf Super-leaf

d

e

f g

h

i

Super-leaf Super-leaf

b cd, e, f h, g, i

Represent the state of each super-leaf as a height 1 virtual node (vnode)



ACHIEVING CONSENSUS

11

b

d

e

f

c

g

h

i

a

Consensus in

round 1

Consensus in

round 2

d, e, f h, g, i d, e, f h, g, i

Members of a height 1 vnode exchange 
state with members of nearby height 1 
vnodes to compute a height 2 vnode

 State exchange is greatly simplified since each 
vnode is fault tolerant

h rounds in a consensus cycle

A node completes a consensus cycle once it 
has computed the state of the root vnode



CONSENSUS PROTOCOL WITHIN A SUPER-LEAF

12

a b

c

A1 B1

C1

C2• Exploit low latency within a rack

• Reliable broadcast

• RAFT



CONSENSUS PROTOCOL WITHIN A SUPER-LEAF

13

a b

c

A1634 746 B1

C1

C2

538

1. Nodes prepare a 

proposal message that 

contains a random 

number and a list of 

pending write requests



CONSENSUS PROTOCOL WITHIN A SUPER-LEAF

14

a b

c

2. Nodes use reliable 

broadcast to exchange

proposals within a 

super-leaf

746 B1

A1634

C1

C2

538

746 B1

A1634

C1

C2

538

746 B1

A1634

C1

C2

538



CONSENSUS PROTOCOL WITHIN A SUPER-LEAF

15

a b

c

3. Every node orders

proposals

746 B1

A1634

C1

C2

538

746 B1

A1634

C1

C2

538

746 B1

A1634

C1

C2

538



CONSENSUS PROTOCOL WITHIN A SUPER-LEAF

16

These three steps make up a 

consensus round.

At the end, all three nodes have the 

same state of their common parent.

a b

c

746 B1

A1634

C1

C2

538

746 B1

A1634

C1

C2

538

746 B1

A1634

C1

C2

538



CONSENSUS PROTOCOL BETWEEN SUPER-LEAVES

17

b

d

e

f

a

c

g

h

i

Representative Emulator



CONSENSUS PROTOCOL BETWEEN SUPER-LEAVES

18

b

d

e

f

a

c

g

h

i

Representative Emulator

{proposal request}

1. Representatives send 

proposal requests to 

fetch the states of 

vnodes



CONSENSUS PROTOCOL BETWEEN SUPER-LEAVES

19

b

d

e

f

a

c

g

h

i

Representative Emulator

2. Emulators reply 

with proposals

{proposal response}



CONSENSUS PROTOCOL BETWEEN SUPER-LEAVES

20

b

d

e

f

a

c

g

h

i

Representative Emulator

3. Reliable broadcast 

within a super-leaf



CONSENSUS PROTOCOL BETWEEN SUPER-LEAVES

21

b

d

e

f

a

c

g

h

i

Representative Emulator

Consensus cycle ends 

for a node when it has 

completed the last 

round



READ REQUESTS

Read requests can be serviced locally by any Canopus node

 Does not need to disseminate to other participating nodes

Provides linearizability by

 Buffering read requests until the global ordering of writes has been determined

 Locally ordering its pending reads and writes to preserve the request order of its clients

Significantly reduces bandwidth requirements for read requests

Achieves total ordering of both read and write requests

22



ADDITIONAL OPTIMIZATIONS

Pipelining consensus cycles

 Critical to achieving high throughput over high latency links

Write leases

 For read-mostly workloads with low latency requirements

 Reads can complete without waiting until the end of a consensus cycle

23



EVALUATION: MULTI DATACENTER CASE

3, 5, and 7 datacenters

 Each datacenter corresponds to a super-leaf

3 nodes per datacenter (up to 21 nodes in total)

 EC2 c3.4xlarge instances

100 clients in five machines per datacenter

 Each client is connected to a random node in the 
same datacenter

24

Latencies across datacenters (in ms)

Regions: Ireland (IR), California (CA), 

Virginia (VA), Tokyo (TK), Oregon (OR), 

Sydney (SY), Frankfurt (FF)



CANOPUS VS. EPAXOS (20% WRITES)

25



EVALUATION: SINGLE DATACENTER CASE

3 super-leaves of sizes of 3, 5, 7, 9 servers (i.e., up to 27 total servers)

 Each server has 32GB RAM, 200 GB SSD, 12 cores running at 2.1 GHz

Each server has a 10G to its ToR switch

 Aggregation switch has dual 10G links to each ToR switch

180 clients, uniformly distributed on 15 machines

 5 machines in each rack

26



ZKCANOPUS VS. ZOOKEEPER

27



LIMITATIONS

We trade off fault tolerance for performance and understandability

 Cannot tolerate full rack failure or network partitions

We trade off latency for throughput

 At low throughputs, latencies can be higher than other consensus protocols

Stragglers can hold up the system (temporarily)

 Super-leaf peers detect and remove them

28



ON-GOING WORK

Handling super-leaf failures

 For applications with high availability requirements

 Detect and remove failed super-leaves to continue

Byzantine fault tolerance

 Canopus currently supports crash-stop failures

 Aiming to maintain our current throughput

29



CONCLUSIONS

Emerging applications involve consensus at large scales

Key barrier is a scalable consensus protocol

Addressed by Canopus

Decentralized

Network topology aware

Optimized for modern datacenters

30


