
Triangular x-basis decompositions and

derandomization of linear algebra algorithms

over K[x]

Somit Gupta, Soumojit Sarkar, Arne Storjohann ∗

Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1

Johnny Valeriote

Centre for Computational Mathematics in Industry and Commerce, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

Abstract

Deterministic algorithms are given for some computational problems that take as input a non-
singular polynomial matrix A over K[x], K an abstract field, including solving a linear system
involving A and computing a row reduced form of A. The fastest known algorithms for linear
system solving based on the technique of high-order lifting by Storjohann (2003), and for row
reduction based on fast minimal approximant basis computation algorithm by Giorgi, Jeannerod
and Villard (2003), use randomization to find either a linear or small degree polynomial that is
relatively prime to detA. We derandomize these algorithms by first computing a factorization
of A = UH, with x not dividing detU and x − 1 not dividing detH. A partial linearization
technique, that is applicable also to other problems, is developed to transform a system involving
H, which may have some columns of large degrees, to an equivalent system that has degrees
reduced to that of the average column degree.

Key words: polynomial matrices, linear system solving, row reduction, derandomization

1. Introduction

Let K be a field and x be an indeterminant. This paper considers algorithms for linear
algebra problems over K[x], the ring of univariate polynomials over K. Let A ∈ K[x]n×n

∗ Corresponding author.

Email addresses: somit.gupta@gmail.com (Somit Gupta), soumojitsarkar@gmail.com (Soumojit
Sarkar), astorjoh@uwaterloo.ca (Arne Storjohann), johnnyvaleriote@gmail.com (Johnny Valeriote).

Preprint submitted to Elsevier 10 August 2011

be an input matrix. Problems involving A include computing the rank, a nullspace, the
determinant and Smith form, and solving a linear system. These problems have received
a lot of attention, with the main goal recently being to reduce the cost to about the
same (in terms of field operations from K) as that of multiplying together two input
matrices with the same dimension and degree of entries as A, that is, within the cost
bound of O (̃nωd) field operations from K, where d is a bound on the degrees of entries
in A and ω is the exponent of matrix multiplication. For surveys on this topic we refer to
(Storjohann, 2003; Giorgi et al., 2003; Jeannerod and Villard, 2005). All of the problems
mentioned above have Las Vegas randomized algorithms which support the target cost
O (̃nωd), but to the best of our knowledge fully deterministic algorithms with this cost
are not known. In this paper we give deterministic reductions to matrix multiplication
for two of the problems on a nonsingular A ∈ K[x]n×n: linear system solving and row
reduction. We now discuss each of these problems in more detail.

Linear system solving takes as input a nonsingular A ∈ K[x]n×n, together with a vector
b ∈ K[x]n×1, and asks as output the unique vector v := A−1b ∈ K(x)n×1. The high-order
lifting technique of Storjohann (2003) gives a reduction of linear system solving to matrix
multiplication. High-order lifting requires an X ∈ K[x] of small degree that is relatively
prime to detA (denoted by X ⊥ detA), and computes the X-adic series expansion
of A−1b to high enough precision to allow the solution vector to be recovered using
rational function reconstruction. Once a suitable X is known the rest of the algorithm is
deterministic. The ideal choice for X from a practical point of view is X = xd since this
allows working in the standard power basis. If x divides the determinant of A, current
methods appeal to randomization. If the size of K is large enough, the input system (A, b)
can be shifted with a change of variable x→ x−α for a random α ∈ K such that x does
not divide detA |x=x−α with high probability. If the size of K is too small, we can work
over an algebraic extension of K of degree bounded by O(log nd) to afford sufficiently
many choices for the random shift (incurring a multiplicative factor of (log nd)1+o(1) in
the cost), or choose X to be an irreducible of degree larger than one. In this paper we
show how to avoid the need for randomization by developing an algorithm that always
allows the choice X = xd.

Our approach is to first decompose A as the product of two matrices: A = UH. Let us
define degA := maxi,j degAij . If degA ≤ d, then the factor U produced by our algorithm
will satisfy degU ≤ d also, while the matrix H will be upper triangular with powers of
x on the diagonal, and offdiagonal entries of degree strictly less than the diagonal entry
in the same column. Here is an example of a 3× 3 matrix of degree 2 over Z/(7)[x].

A
x2 x+ 1 x+ 4

x x2 + 5x 6x+ 1

0 3x+ 5 x2 + 6x+ 6

=

U
x x+ 1 1

1 x2 + 5x 3x+ 5

0 3x+ 5 2



H
x 0 2x2 + 1

1 4x2 + 3x+ 4

x3

 (1)

The matrix H in (1) can be considered to be a local Hermite form of A at x = 0, similar to
the local Smith form presented by Wilkening and Yu (2011). Our algorithm for computing
U and H does not actually recover detU , but the decomposition detA = (detU) ·(detH)

2

does split the determinant of A into two parts: detH is a power of x, while x does not
divide detU . For the example in (1) we have

detA = (detU)× (detH) = (x2 + 4x+ 3)× x4.

We call A = UH an x-Hermite decomposition of A. More generally, if we keep the
same conditions on detU and detH but don’t insist that H be in Hermite form, we
call A = UH an x-basis decomposition. Once an x-basis decomposition is known, X-
adic lifting can be used to solve the system Av = b for v in two steps: first compute
u := U−1b followed by v := H−1u, using X a power of x for U , and X a power of
x − 1 for H. (Every field K, even an abstract field, contains the two linear irreducibles
x and x− 1.) We give two algorithms for computing an x-basis decomposition. The first
algorithm is based on the technique of linear xd-adic lifting (see Dixon, 1982; Moenck
and Carter, 1979) and computes the canonical x-Hermite decomposition as shown in (1).
The algorithm runs in time O(n3 M(d)) field operations, where M(d) bounds the cost of
polynomial multiplication of degree d. While linear xd-adic lifting costs O (̃n3d) to solve
a single linear system A−1b which has numerators and denominators bounded in degree
by O(nd), we use an amortized analysis to achieve an O(n3 M(d)) running time overall
by exploiting the fact that the sum of the column degrees of H will be equal to deg detA,
which is bounded by nd.

Our second algorithm for x-basis decomposition incorporates matrix multiplication.
As shown in (1), some column degrees in H may be larger than others, even as large
as nd where d is the degree of the input matrix A. In general, the individual column
degrees of H can not be predicted well a priori. We solve this by conditioning the input
matrix A by postmultiplying by a permutation P that ensures that each diagonal entry
in the H corresponding to the x-Hermite decomposition of AP will divide the next.
With this property in hand, we know that the first n/2 columns of H will be bounded
in degree by 2d, the next n/4 columns will be bounded in degree by 4d, and so on. Our
fast algorithm for x-basis decomposition iterates for i = 1, 2, . . . , O(log n). At iteration
i we work over both K[x] and its residue class ring K[x]/(x2id+1) to partially condition
the matrix to allow recovery of the next n/2i columns. The computations over K[x]
exploit a precision × dimension compromise. Roughly speaking, at each stage the column
dimension is halved but the precision doubled. The computations over K[x]/(x2id+1)
use an algorithm that recurses on the precision t := 2id + 1, reducing the problem of
precision t to two subproblems of precision about t/2. The asymptotically fast version of
the x-basis decomposition algorithm has cost O(nω(log n)2 M(d)) field operations from
K, and is applicable over any field K. The algorithm produces the x-basis decomposition
A = U(HP−1) of A, corresponding to the x-Hermite decomposition AP = UH of AP .

Producing an x-basis decomposition A = UH, either using the iterative or the fast
algorithm, is not actually sufficient to achieve derandomization of the algorithms for our
target problems, for example linear system solving via u := U−1b followed by v := H−1u.
The difficulty with using the x-basis decomposition computed by our algorithms is that
H may have entries of degree Ω(nd). Techniques such as high-order lifting and integrality
certification (Storjohann, 2003) to compute H−1u and detA are highly sensitive to the
degree of the largest entry in the input matrix. However, we can observe that the sum
E =

∑n
j=1 deg Col(H, j) of the degrees of the columns of H will be equal to deg detA.

Thus, the average column degree E/n of H is exactly (deg detA)/n, which is bounded
by the degree d of the input matrix A. To solve the problem of some columns of H

3

having large degree, we prove that corresponding to H there always exists a matrix D of
dimension strictly less than 2n that satisfies the following properties: degD ≤ dE/ne ≤ d
and H−1 is equal to the principal n×n submatrix of D−1. The system solution H−1u can
then be recovered as the first n components of the vector D−1ū, where ū is u augmented
with some zero entries. The example just given was for partial column linearization. More
generally, we give an approach for partially linearizing a matrix that has some large degree
rows and/or columns. The technique is applicable to a wide variety of problems, such
as rank, adjoint, determinant and Smith form computation. The transformation of a
given input matrix such as H to its partially linearized form D does not require any
computation in terms of field operations from K, and is effective over any field.

Now consider the row reduction problem. Row reduction produces a matrix R such
that the set of all K[x]-linear combinations of rows of R is equal to the set of all K[x]-linear
combinations of rows of A, but the rows of R have degrees as small as possible. Thus, row
reduction is essentially lattice reduction for polynomial matrices. The fastest algorithm
to compute a row reduced form (Giorgi et al., 2003) uses high-order lifting and fast
minimal approximant basis computation. The first step of the algorithm is to randomly
shift x → x − α to ensure that x ⊥ detA. Unlike the linear system solving problem, if
K is too small, the algorithm of Giorgi et al. (2003) does not seem directly amenable to
working modulo an irreducible X that is nonlinear. Working over an extension field is also
problematic because entries in the resulting reduced form R may be over the extension
and not the ground field. In this paper we show how to derandomize the algorithm for
row reduction by first computing an x-basis decomposition A = UH, then applying our
partial linearization technique to allow fast computation of a row reduced form R1 of H,
and finally using the approach of Giorgi et al. (2003) to compute a so called shifted row
reduced form R2 of the matrix AR−1

1 , which we can show will be over K[x] with degree
bounded by d and with x ⊥ detAR−1

1 , to arrive at a row reduced form R2R1 of A.
The rest of this paper is organized as follows. Section 2 defines our cost model and

discusses the computation of ring operations over the polynomial ring K[x], as well
as its residue class rings K[x]/(xt); some facts about triangular and diagonal forms
over K[x]/(xt) are also recalled. Section 3 gives our O(n3 M(d)) field operations algo-
rithm for computing the canonical x-Hermite decomposition. Sections 4 and 5 give the
O(nω(log n)2 M(d)) algorithm for x-basis decomposition. Section 6 explains the partial
linearization transformation; this section will be of independent interest. Section 7 applies
the results of the previous sections to give a deterministic reduction of rational linear
system solving to matrix multiplication. Section 8 gives the deterministic algorithm for
row reduction, and Section 9 concludes.

2. Cost model and preliminaries

Algorithms are analysed by bounding the number of required field operations from a
field K on an algebraic random access machine; the operations +, −, × and “divide by a
nonzero” involving two field elements have unit cost.

We use ω to denote the exponent of matrix multiplication: two n× n matrices over a
ring R can be multiplied with O(nω) ring operations from R. We use M for polynomial
multiplication: let M :Z≥0 → R>0 be such that polynomials in K[x] of degree bounded
by d can be multiplied using at most M(d) field operations from K. We refer to von zur
Gathen and Gerhard (2003) for more details and references about ω and M. We assume

4

that 2 < ω ≤ 3, and that M(ab) ≤ M(a)M(b) for a, b ∈ Z>1. Some of our complexity
estimates will explicitly make the assumption that M(d) ∈ O(dω−1). This assumption
on M states that if fast matrix multiplication techniques are used, then fast polynomial
multiplication should also be used.

Given two polynomials a, b ∈ K[x] with b nonzero, we denote by Rem(a, b) and
Quo(a, b) the unique polynomials such that a = Quo(a, b) b + Rem(a, b), subject to the
degree contraint deg Rem(a, b) < deg b. If a and b have degree bounded by d then both
the Rem and Quo operations have cost O(M(d)), and if b is a power of x both operations
are free in our cost model. If the first argument of Rem or Quo is a matrix or vector the
intention is to apply the function elementwise to the entries.

Given a matrix A ∈ K[x]n×n of degree d that is nonsingular modulo x, together with a
B ∈ K[x]n×m, high-order lifting (Storjohann, 2003) can be used to compute the truncated
x-adic expansion Rem(A−1B, xsd+1) up to a desired order s. The cost depends on m,
the column dimension of B, and s, the desired order. Storjohann (2003) describes an
algorithm that exploits the case when B has small degree: degB ≤ d. If m = 1 and
degB ≤ d, then the algorithm supporting (Storjohann, 2003, Proposition 15) computes
Rem(A−1B, xsd+1) in time O(nω(log s + s/n) M(d)). Note that if s ∈ O(n log n) then
this cost estimate simplifies to O(nω(log n) M(d)). The algorithm is easily modified to
accommodate the case when m > 1 without impacting the running time, provided that
the precision × dimension invariant s ×m ∈ O(n log n) is satisfied. In particular, there
are two phases of the algorithm that require computation. Phase 1 does not depend on m
and has running time O(nω(log s) M(d)), while the cost of phase 2 (a loop) is dominated
by the last iteration which requires the multiplication of an n × n matrix of degree d
with an n × sm matrix of degree d; if s ×m ∈ O(n log n) then this multiplication has
cost O(nω(log n) M(d)). The following result will be used in Subsection 5.3.

Theorem 1. Let A ∈ K[x]n×n (with Rem(A, x) nonsingular) and B ∈ K[x]n×m both
have degrees of entries bounded by d. If s satisfies s ×m ∈ O(n log n), then high-order
lifting can be used to compute Rem(A−1B, xsd+1) in O(nω(log n) M(d)) field operations
from K.

The extended gcd problem takes as input two polynomials a, b ∈ K[x], and asks as
output the polynomials g, s, t, u, v ∈ K[x] such that s t

u v

 a
b

 =

 g  , (2)

with g a greatest common divisor of a and b, and sv− tu a nonzero constant polynomial.
It will be useful to define an additional function B to bound the cost of the extended
gcd operation, as well as other gcd-related computations. We can take B(d) = M(d) log d
or B(d) = d2. Then the extended gcd problem with two polynomials in K[x] of degree
bounded by d can be solved in time O(B(d)).

Our algorithm in Section 5 for computing an x-basis decomposition over K[x] works
by passing back and forth between the principal ideal domain K[x] and its residue class
rings K[x]/(xd) for various values of d. In the remainder of this section we briefly dis-
cuss the computation of ring operations, and recall some facts about the unimodular
triangularization and diagonalization of matrices over K[x]/(xd).

5

Computing over R = K[x]/(xd)

We identify R with the set {a ∈ K[x] | deg a < d}. A homomorphism φd : K[x] → R
can be naturally defined as φd(a) = Rem(a, xd) for a ∈ K[x]. The set of units in R is
the set of elements with nonzero constant coefficient. Every nonzero element a ∈ R can
be written uniquely as a = ãxe where ã is a unit and 0 ≤ e < d is called the trailing
degree of a. The trailing degree of zero is −∞. For any two elements in R, not both zero,
the nonzero element with the smallest trailing degree divides the other, and all elements
with the same trailing degree are associates of each other. The proscribed complete set
of nonassociates of R is the set {0, x, x2, . . . , xd−1}.

Addition and subtraction of two elements has cost O(d), while multiplication has cost
O(M(d)). The extended gcd problem (see (2)) over R also has cost O(M(d)). If either of a
or b is zero then either (s, t, u, v) := (1, 0, 0, 1) or (s, t, u, v) := (0, 1, 1, 0) will work. Now
assume both a and b are nonzero. Up to swapping a and b, if required, we can assume
without loss of generality that a is a gcd of a and b: write a = ãxe and b = b̃xf with ã
and b̃ both units from R, and with e ≤ f . Set (s, t, u, v) := (1, 0,−b̃ã−1xf−e, 1). Newton
iteration (see von zur Gathen and Gerhard, 2003, Algorithm 9.3) can be used to compute
ã−1 in time O(M(d)).

Triangular forms over R = K[x]/(xd)

The unimodular matrices over R are precisely those with determinant a unit. Corre-
sponding to every matrix A ∈ Rn×m are unimodular matrices U ∈ Rn×n and V ∈ Rm×m

such that UAV is in Smith canonical form: S = UAV is zero except for the diago-
nal entries which are coming from the proscribed complete set of nonassociates of R,
namely S11, S22, . . . , Srr, 0, . . . , 0 = xe1 , xe2 , . . . , xer , 0, . . . , 0, with 0 ≤ e1 ≤ · · · ≤ er,
r ≤ min(n,m). The Smith form over R always exists and is unique (Kaplansky, 1949,
Theorem 9.3).

An n×mmatrix over K[x] or R = K[x]/(xd) is in row Hermite form if it is in row echelon
form with pivot entries nonzero elements of the proscribed complete set of nonassociates,
and offdiagonal entries in pivot columns of degree less than the pivot entry in the same
column. While the Hermite form is a canonical form over the principal ideal domain K[x],
it is not over R, a principal ideal ring with zero divisors. The following example is over
K[x]/(x3).

U1

x 1

x2 x
 =

x2 x

x2

 . (3)

A canonical form for left equivalence over R is given by the Howell form as described by
Howell (1986) (also see Storjohann and Mulders, 1998). A matrix H is in Howell form if it
is in Hermite form and satisfies the following additional condition: for any j, 0 ≤ j ≤ m,
if v ∈ R1×m has first j entries zero and is an R-linear combination of the rows of H, then
v is an R-linear combination of the subset of rows of H that have first j entries zero.
For example, the matrix on the right of (3) is in Howell form over K[x]/(x3) while the
matrix on the left is not. The Howell form is a canonical form for left equivalence that
has a maximal number of nonzero rows among any echelon form.

Although the Hermite form is not a canonical form in general over R, some matrices
enjoy the property of having a unique Hermite form.

6

Definition 2. A matrix H ∈ Rn×m is said to be in triangular Smith form if it is in
Hermite form, and the nonzero rows of H can be written as

xe1 h12 h13 · · · h1r · · · h1m

xe2 h23 · · · h2r · · · h2m

xe3
...

...
. . . hr−1,r · · · hr−1,m

xer · · · hrm


∈ Rr×m,

with
• xei divides hij , 1 ≤ i < j ≤ m, and
• 0 ≤ e1 ≤ e2 ≤ · · · ≤ er.

Notice that a matrix in triangular Smith form can be transformed to Smith form
by postmultiplying by a unit upper triangular matrix. We remark that the approach of
many Smith form algorithms (see Kaltofen et al., 1990; Giesbrecht, 1995; Villard, 1995)
is to randomly “precondition” an input matrix so that it is left equivalent to a triangular
Smith form, thus reducing the problem of computing the Smith form to that of computing
a Hermite form. In Section 4 we show how to deterministically compute a permutation
matrix P such that AP is left equivalent to a triangular Smith form.

On the one hand, because of the uniqueness of the Smith form, a triangular Smith form
has the minimum number of nonzero rows of any Hermite form of R. On the other hand,
any triangular Smith form is actually in Howell form, which has a maximum number of
nonzero rows of any Hermite form of A. Thus, unlike the example in (3), every other
Hermite form of a matrix H in triangular Smith form has the same number of nonzero
rows as H. Moreover, the two divisibility conditions of Definition 2 can be used to show
the following result.

Lemma 1. If A ∈ Rn×m is left equivalent to a triangular Smith form H, then every
Hermite form of A is equal to H.

For more details on echelon forms over rings, also principal ideal rings with zero
divisors, see (Storjohann, 2000, Section 1.4).

3. The x-Hermite decomposition

Definition 3. An x-Hermite basis of a full column rank A ∈ K[x]n×m is a matrix

H :=



xe1 v
[2]
1 v

[3]
1 · · · v

[m]
1

xe2 v
[3]
2 · · · v

[m]
2

xe3
...

. . . v[m]
m−1

xem


such that

7

• ei ∈ Z≥0 and the offdiagonal entries v[i]
1 , . . . v

[i]
i−1 in column i of H have degree strictly

less than ei, 1 ≤ i ≤ m, and
• the matrix U := AH−1 is over K[x] and Rem(U, x) ∈ Kn×m has full column rank over

K.

We call A = UH the x-Hermite decomposition of A. Let

v[i] :=
[
v

[i]
1 · · · v

[i]
i−1

]T
∈ K[x](i−1)×1

be the column vector of strictly offdiagonal entries in column i of H. Because H is upper
triangular, it can be expressed as the product of structured matrices as follows:

H =
m∏
i=1


Im−i v

[m−i+1]

xem−i+1

Ii−1



=

Hm
1 v

[m]
1

1 v
[m]
2

1 v
[m]
3

. . .
...

xem

 · · ·
H3

1 v
[3]
1

1 v[3]
2
xe3

. . .
1


H2

1 v[2]
1
xe2

1
. . .

1


H1

xe1
1

1
. . .

1

 (4)

This gives rise to the decomposition

H−1 =
m∏
i=1


Ii−1 −v[i]/xei

1/xei

Im−i

 = H−1
1 H−1

2 H−1
3 · · ·H−1

m

for H−1. The following theorem establishes existence and uniqueness of the x-Hermite
decomposition. The algorithm we present for computing the decomposition is based on
the proof.

Theorem 4. Every A ∈ K[x]n×j of full column rank j has a unique x-Hermite decom-
position.

Proof. We use induction on j. The base case j = 0 is trivial: A ∈ K[x]n×0 has x-Hermite
basis the 0× 0 matrix. For j ≥ 1, our goal is to show that a matrix

[
A w

]
∈ K[x]n×j of

rank j, where A ∈ K[x]n×(j−1) and w ∈ K[x]n×1, has a unique x-Hermite basis. Assume,
by induction, that A ∈ K[x]n×(j−1) has a unique x-Hermite decomposition A = UH.
Since Rem(U, x) ∈ Kn×(j−1) has full column rank, U has a submatrix of dimension j − 1
that is nonsingular modulo x. Assume, up to a row permutation and without loss of
generality, that the principal (j − 1)× (j − 1) submatrix of U is nonsingular modulo x.

8

Then we can decompose U and w as[
U w

]
=

U1 w1

U2 w2


with x ⊥ detU1. By induction we have U = AH−1 over K[x] with the columns of U
linearly independent modulo x. To complete the proof we need to show the existence of
unique ej ∈ Z≥0 and v[j] ∈ K[x](j−1)×1 of degree bounded by ej − 1 such that the n× j
matrix defined by

[
A w

]H v[j]

xej

−1

=
[
AH−1 w

] Ij−1 v
[j]

xej

−1

=

U1 (w1 − U1v
[j])/xej

U2 (w2 − U2v
[j])/xej

 (5)

satisfies the following two conditions: (a) the matrix is over K[x]; (b) the matrix taken
modulo x has full column rank. Equation (5) and condition (a) are satisfied if and only
if Uv[j] ≡ w mod xej . Since x ⊥ detU1, conditions (a) and deg v[j] < ej are satisfied if
and only if v[j] = Rem(U−1

1 w1, x
ej) and U2v

[j] ≡ w2 mod xej . Condition (b) is satisfied
in addition to (a) if and only if ej is chosen maximal such that U2Rem(U−1

1 w1, x
ej) ≡

w2 mod xej and U2Rem(U−1
1 w1, x

ej+1) 6≡ w2 mod xej+1. To see this last claim, consider
taking the matrix in (5) modulo x to obtain a scalar matrix Ū1 z̄1

Ū2 z̄2

 .
Then U2Rem(U−1

1 w1, x
ej+1) 6≡ w2 mod xej+1 if and only if the the transformed matrix Ū1 z̄1

Ū2 z̄2

 Ij−1 −Ū−1
1 z̄1

1

 =

 Ū1

Ū2 z̄2 − Ū2Ū
−1
1 z̄1


has full column rank, that is, z̄2 − Ū2Ū

−1
1 z̄1 is not the zero vector. Because w is linearly

independent on the columns of U , such a maximal ej does exist. 2

Algorithm XHermiteDecomposition is shown in Figure 1. We start with the trivial
decomposition A = UH where U = A and H = Im. Loop iteration j computes Hj

(see (4)) and updates the decomposition using the identity A = UH = (UH−1
j)(HjH).

Phases 1 and 2 use the linear x-adic lifting (Dixon, 1982; Moenck and Carter, 1979) (see
also Mulders and Storjohann, 2004, Section 5) to obtain ej and v[j] = Rem(U−1

1 w1, x
ej).

To achieve a good cost, phase 1 uses xd-adic lifting as far as possible. If ej = td + s
for 0 ≤ s < d, then phase 1 uses t steps of xd-adic lifting to find the maximal t such
that U2Rem(U−1

1 w1, x
td) ≡ w2 mod xtd. Phase 2 does a single xs-adic lifting step, and

at the same time determines a row permutation matrix Q to ensure that the principal
j × j submatrix of U will be nonsingular modulo x for the next loop iteration. The
permutations Q at each phase are recorded in a permutation P , initialized to be In,

9

XHermiteDecomposition(A,n,m, d)
Input: Full column rank A ∈ K[x]n×m with d = degA.
Output: U,H, the x-Hermite decomposition A = UH.

Initialize P := In, U := A, H := Im and B to be the 0× 0 matrix.
for j from 1 to m do

Decompose PU =

U1 w1 ∗

U2 w2 ∗

 where U1 is (j−1)×(j−1) and w1 ∈ K[x](j−1)×1.

Initialize v[j] to be the (j − 1)× 1 zero vector and u1, u2 := w1, w2.
(1) [Perform linear xd-adic lifting until an inconsistency is found.]

v := Rem(Bu1, x
d);

for ej from 0 by d while xd | (u2 − U2v) do
u1, u2 := (u1 − U1v)/xd, (u2 − U2v)/xd;
v[j] := v[j] + vxej ;
v := Rem(Bu1, x

d);
od

(2) [Perform partial lifting step and determine row swap.]
s := the trailing degree of u2 − U2v;
i := the index of an element of u2 − U2v with trailing degree s;
Q := the n× n permutation matrix that swaps row j with row j + i;
v := Rem(v, xs);
u1, u2 := (u1 − U1v)/xs, (u2 − U2v)/xs;
v[j], ej := v[j] + vxej , ej + s;
Comment v[j] and ej are now as in Hj in (4).

(3) [Update decomposition using identity A = UH = (UH−1
j)(HjH).]

Replace column j of H with
[

(v[j])T xej
]T

.

Replace column j of U with P−1
[
uT1 uT2

]T
.

P := QP ;
(4) [Update B to be the inverse modulo xd of the principal j × j submatrix of U .]

Let the principal j × j submatrix of PU be

 ∗ c
r a

 where a ∈ K[x].

p := Rem((a− rBc)−1, xd);

B :=

Rem(B +BcprB, xd) Rem(−Bcp, xd)

Rem(−prB, xd) p

 ∈ K[x]j×j ;

od
return H, U ;

Fig. 1. Algorithm XHermiteDecomposition

10

so that they can be applied at the start of the next iteration to ensure the principal
(j−1)× (j−1) submatrix of U is nonsingular modulo x. At the start of loop iteration j,
matrix B is the inverse modulo xd of U1 ∈ K[x](j−1)×(j−1). Phase 4 updates the inverse
using the standard formula.

The following lemma will be useful to bound the cost of the algorithm.

Lemma 2. Let A = UH be the x-Hermite decomposition of A ∈ K[x]n×m. If degA ≤
d,then degU ≤ d and deg detH ≤ md.

Proof. Because of the triangular shape and degree properties of H, the matrix H−1 is
a proper matrix fraction: for every entry in H−1, the numerator has degree less than or
equal to the degree of the denominator. By (Kailath, 1980, Lemma 6.3-10), properness
of H−1 together with the identity U = AH−1 implies deg Col(U, j) ≤ deg Col(A, j) for
all j.

Now assume, without loss of generality, that the principal m×m submatrix U1 of U
is nonsingular modulo x. The principal m×m submatrix A1 of A is given by A1 = U1H.
Since deg detA1 ≤ md we must have deg detU1 + deg detH ≤ md. 2

Correctness of Algorithm XHermiteDecomposition follows from Theorem 4 and the
previous discussion. Now consider the running time. Each of them updates of the modular
inverse B in phase 4 costs O(m2 M(d)) operations from K. Since

∑m
i=1 ei is bounded bymd

(Lemma 2), the total number of xd-adic lifting steps over all iterations will be bounded
by O(m). Noting that each lifting step costs O(nmM(d)) field operations from K, we
obtain the following result.

Theorem 5. Algorithm XHermiteDecomposition is correct. The cost of the algorithm
is O(nm2 M(d)) operations from K.

4. Triangular forms over R = K[x]/(xd)

Given a full column rank A ∈ K[x]n×m, Algorithm XHermiteDecomposition in the
previous section computed the x-Hermite basis of A in m iterations, column by col-
umn. Our algorithm in the next section incorporates matrix multiplication by using only
O(log n) iterations, each iteration computing a block of columns of the x-Hermite basis
of AP , where P , the product of the permutation matrices computed over all iterations,
is such that the x-Hermite basis of AP is in triangular x-Smith form. In this section we
develop the algorithm used to construct P .

Recall that φd is the homomorphism which maps from K[x] to R = K[x]/(xd), defined
as φd(a) = Rem(a, xd). The following lemma shows that part of the x-Hermite decom-
position of a full column rank input matrix A over K[x] can be recovered by computing
a Hermite form of φd(A) over K[x]/(xd), provided that φd(A) is left equivalent to a
triangular Smith form.

Lemma 3. Let A ∈ K[x]n×m have full column rank with x-Hermite decomposition
A = UH, and let H̄ ∈ Rn×m be the Hermite form of Ā := φd(A) ∈ Rn×m. If H̄ is in

11

triangular Smith form over R, then the following diagram commutes:

A
x-Hermite−−−−−−−→ H

φd

y φd

y
Ā

Hermite−−−−−→ H̄

In other words, H̄ = φd(H).

Proof. Since x ⊥ detU , φd(U) is unimodular over R. Moreover, since A = UH over
K[x] we have φd(A) = φd(U)φd(H) over R, and thus φd(H) is left equivalent to H̄. By
Lemma 1 it will be sufficient to show that φd(H) is in Hermite form over R in order to
conclude that φd(H) = H̄.

Clearly φd(H) is upper triangular since H is in Hermite form. Let k be the number of
nonzero rows of H̄. We will show that the φd(H) satisfies the following two conditions.
(a) The last n− k rows of φd(H) are zero.
(b) φd(H)jj 6= 0 for 1 ≤ j ≤ k.
It will follow from (a) and (b) that φd(H) is in Hermite form over R since the diagonal
entries of H, and thus also φd(H), are powers of x, and the normalization conditions
degHij < degHjj , 1 ≤ i < j ≤ k, for H over K[x], together with (b), imply the same
conditions hold for φd(H) over R: deg φd(H)ij < deg φd(H)jj < d for 1 ≤ i < j ≤ k.

First we show that (a) holds. Recall that H̄, being in triangular Smith form, is also
in Howell form over R and satisfies the following property: if v ∈ R1×m has first k entries
zero and is an R-linear combination of rows of H̄, then v is an R-linear combination of
the subset of rows of H̄ that have first k entries zero. But H̄ has no nonzero rows that
have first k entries zero, so the same must be true for φd(H), and because φd(H) is upper
triangular, the last n− k rows of φd(H) must be zero.

Next we show that (b) holds. To arrive at a contradiction, let j be minimal such that
φd(H)jj is zero, 1 ≤ j ≤ k. Then the submatrix comprised of the first j columns of φd(H)
has j − 1 nonzero rows and is left equivalent to the submatrix comprised of the first j
columns of H̄ which is in triangular Smith form with j nonzero rows, a contradiction.

This shows that φd(H) is in Hermite form over R and thus by Lemma 1 is equal to
H̄. 2

Of course, to make use of Lemma 3 to compute a part of the x-Hermite basis of
A, we need to ensure that the conditions of the lemma are satisfied. Because greatest
common divisors in the ring R = K[x]/(xd) involve only powers of x, corresponding to
any matrix A over K[x] is a permutation P (not necessarily unique) such that φd(AP) is
left equivalent to a triangular Smith form.

Definition 6. Let A ∈ K[x]n×m. An m × m permutation matrix P is called a Smith
permutation for φd(A) ∈ Rn×m if the matrix φd(AP) has a Hermite form over R that is
in triangular Smith form.

Algorithm ModSmithPermutation for computing a permutation matrix P as in Def-
inition 6 is shown in Figure 2. The algorithm recurses on the precision parameter d,
which refers to the exponent of x. When d = 1, the matrix A only has elements from
the field K and we compute an LSP decomposition of A using the algorithm of Ibarra
et al. (1982). For d > 1, the algorithm computes an appropriate permutation P1 over the

12

ModSmithPermutation(A,n,m, d)
Input: A ∈ K[x]n×m and d ∈ Z≥0.
Output: P, r such that
• P is a Smith permutation for φd(A) over K[x]/(xd), and
• r is the number of nonzero invariant factors of φd(A).

Condition: degA < d.

if d = 1 then
P := the permutation matrix from the LSP decomposition of A ∈ Kn×m;
r := the number of nonzero rows of S;
return P−1, r;

else
d1, d2 := bd/2c, dd/2e;
P1, r1 := ModSmithPermutation(Rem(A, xd1), n,m, d1);
T := an upper triangular matrix over K[x] with φd(T) ≡L φd(AP1) over K[x]/(xd);

Write T as

 ∗ ∗
C

 where C ∈ K[x](n−r1)×(m−r1).

P2, r2 := ModSmithPermutation(x−d1C, n− r1,m− r1, d2);
return P1 Diag(Ir1 , P2), r1 + r2;

fi

Fig. 2. Algorithm ModSmithPermutation

ring K[x]/(xbd/2c), applies P1 to the work matrix and partially triangularizes it based on
how many Smith invariants of A have degree less than bd/2c (which is given as r1 by the
first recursive call). The remaining part of the work matrix is dealt with by computing
another permutation matrix P2 working over the ring K[x]/(xdd/2e).

The following technical lemma will be used to bound the cost of the algorithm.

Lemma 4. Let d be power of 2. For some i, 0 ≤ i ≤ log2 d, let k1, . . . , k2i ∈ Z≥0 be such
that

∑2i

j=1 kj = r. Then M(d/2i)
∑2i

j=1 k
ω−2
j ≤ (22−ω)irω−2 M(d).

Proof. By (Storjohann, 2000, Lemma 1.9), we have aω−2 + bω−2 ≤ 23−ω(a + b)ω−2 for
any a, b ∈ Z≥0. Using M(t/2) ≤ (1/2)M(t) now gives that

M(d/2i)
2i∑
j=1

kω−2
j = M(d/2i)(kω−2

1 + · · ·+ kω−2
2i)

≤M(d/2i−1)(22−ω)((k1 + k2)ω−2 + · · ·+ (k2i−1 + k2i)ω−2)
...

≤M(d)(22−ω)i(k1 + · · ·+ k2i)ω−2.

2

Theorem 7. Algorithm ModSmithPermutation is correct. The cost of the algorithm is
O(nmrω−2 M(d)) operations from K.

13

Proof. The correctness of the algorithm clearly follows from its design. To simplify the
analysis, assume d is a power of 2. Then the execution tree of the algorithm will form
a complete binary tree with (log d) + 1 levels. Level zero consists of a root node corre-
sponding to a problem of precision d and output value r, the number of nonzero invariant
factors. The two children of the root correspond to problems of precision d/2 and output
values r1 and r2, where r = r1 + r2. In general, nodes at level i of the tree correspond to
problems with precision d/2i, and the number of invariant factors found by solving prob-
lems at two siblings will be equal to the number found by their parent. We will bound
the number of required operations from K by summing the total cost of all nonrecursive
work at the problem corresponding to each node of the execution tree. To simplify the
analysis we assume that the matrix dimension of each subproblem at a node of the tree
is equal to the upper bound n×m.

First consider a problem corresponding to a node at level log2 d (a leaf node of the
execution tree) that finds r̄ invariant factors. The LSP decomposition can be computed in
time O(nmr̄ω−2) using the rank sensitive variation of LSP decomposition (Ibarra et al.,
1982) developed by Jeannerod (2006).

Now consider the problem corresponding the nonbase case at level i < log2 d (an
internal node of the execution tree) that finds r̄ = r̄1 + r̄2 invariant factors. The cost will
be dominated by the computation of T . To compute T , first write the matrix AP1 using
a block decomposition as 

E1 ∗

E2 ∗
...

...

Edn/r̄1e ∗

 ∈ Rn×m, (6)

each Ei of dimension r̄1 × r̄1, except for possibly Edn/r̄1e which may have fewer rows.
Using the algorithm supporting (Hafner and McCurley, 1991, Theorem 3.1), compute a
unimodular matrix U ∈ R2r̄1×2r̄1 such that

U

E1

E2


is upper triangular. The cost of computing U is O(r̄ω1 M(d/2i)) operations from K. Use
U to eliminate block E2 by premultiplying the matrix in (6) by Diag(U, In−2r̄1). The
submatrix comprised of rows r̄1 + 1, . . . , 2r̄1 of the first r̄1 columns of the work matrix
has now been zeroed out. Using dn/r̄1e − 2 steps, the last n − 2r̄1 rows of the first
r̄1 columns of the work matrix can be zeroed in a similar fashion. Using an obvious
block decomposition, the total cost of producing T using the method just described
is O(nmr̄ω−2

1 M(d/2i)) operations from K. Since r̄1 ≤ r̄, the nonrecursive work at an
internal node of the execution tree that finds r̄ invariant factors is O(nmr̄ω−2 M(d/2i)).

At this point we have shown that there exists an absolute constant c such that the
nonrecursive work at a particular node at level i of the execution tree is bounded by

cnmr̄ω−2 M(d/2i), (7)

14

where r̄ is the number of invariant factors found. Since the sum of the invariant factors
found over all nodes at a particular level is r, we can use Lemma 4 to bound the cost of
all nodes at level i by

T (i) = (22−ω)icnmrω−2 M(d). (8)
The result now follows by summing the bound (8) over all i:
log2 d∑
i=0

T (i) = cnmrω−2 M(d)
logd∑
i=0

(22−ω)i ≤ cnmrω−2 M(d)
∞∑
i=0

(22−ω)i ∈ O(nmrω−2 M(d)),

using the assumption that ω > 2. 2

5. Triangular x-Smith decompositions

In this section, we present an algorithm to compute a triangular x-Smith decompo-
sition of a full column rank A ∈ K[x]n×m in O(nmω−1(log n)2 M(d)) operations from K.
The special structure of the x-Smith form helps us achieve this cost bound as compared
to the O(nm2 M(d)) cost bound achieved for x-Hermite decomposition in Section 3.

We start with a few definitions and preliminaries.

Definition 8. A triangular x-Smith decomposition of a full column rank matrix A ∈
K[x]n×m is AP = UH, where P is an m×m permutation matrix, U ∈ K[x]n×m is such
that Rem(U, x) has full column rank over K, and H can be written as

H =



xe1 v
[2]
1 v

[3]
1 · · · v

[m]
1

xe2 v
[3]
2 · · · v

[m]
2

xe3
...

. . . v[m]
m−1

xem


∈ K[x]m×m,

with
• ei ∈ Z≥0 and the offdiagonal entries v[i]

1 , . . . , v
[i]
i−1 in column i of H have degree strictly

less than ei, 1 ≤ i ≤ m, and
• e1 ≤ e2 · · · ≤ em and xei divides v[j]

i , 1 ≤ i < j ≤ m.
A matrix H satisfying these properties is said to be in triangular x-Smith form.

A triangular x-Smith decomposition always exists and is unique only up to the choice of
P . By Lemma 3, the diagonal entries xe1 , . . . , xem of H are the same for any triangular
x-Smith decomposition of A and are equal to the diagonal entries of the Smith form
of A over K[x]/(xmd+1), where d = degA. We call these diagonal entries the x-Smith
invariants of A. Note that Lemma 2 gives the degree bounds degU ≤ d and deg detH ≤
md.

The remaining subsections are organized as follows. In Subsection 5.1 we present an
outline of our approach for computing an x-Smith decomposition. The complete algo-
rithm with all computational steps is given and analyzed in Subsection 5.2. In Subsec-
tion 5.3 a simple refinement of the algorithm is presented which improves the running
time by a factor of log log n. For simplicity, Subsections 5.1–5.3 assume the input matrix

15

is square and nonsingular. The extension to rectangular inputs of full column rank is
straightforward and is given in Subsection 5.4.

5.1. Outline of the algorithm

Our algorithm exploits a degree × dimension compromise. In each iteration we will
find a block of columns of a triangular x-Smith form: the dimension of the block decreases
by half after each iteration but the working precision doubles.

Let A ∈ K[x]n×n be nonsingular. Without loss of generality, by augmenting A as
diag(I, A) for an identity matrix of dimension at most n, we may assume that n =∑t
i=0 2i = 2t+1 − 1 for some t ∈ Z≥0. The next lemma shows how the columns of an

x-Smith form can then be partitioned into t+1 contiguous blocks from left to right, each
having half the previous one: 2t, 2t−1, . . . , 1. This partitioning is illustrated in Figure 3.

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

@

E[0]

V [1]

E[1]

V [2]

E[2]

· · ·

∗

∗

Fig. 3. Partitioning of a triangular x-Smith form

Lemma 5. Assume n =
∑t
i=0 2i = 2t+1 − 1 for some t ∈ Z≥0, and define ki = 2t+1 −

2t−i+1 and ri = ki+1 − ki = 2t−i for i = 0, . . . , t. Let H ∈ K[x]n×n be a triangular

16

x-Smith form of a nonsingular A ∈ K[x]n×n. Then H can be decomposed as

H =
t∏
i=0


Iki V

[i]

E[i]

In−ki+1

 , (9)

where

 V [i]

E[i]

 =



v
[ki+1]
1 · · · v[ki+1]

1

...
...

xeki+1
...

. . .

xeki+1


∈ K[x]ki+1×2t−i .

Furthermore, if degA = d then degE[i],deg V [i] ≤ 2i+1d for all 0 ≤ i ≤ t.

Proof. The decomposition of H in (9) is clearly correct, and we know from Definition 8
that deg V [i] ≤ degE[i]. It thus remains to establish the claimed bound for degE[i].

Since detH is a divisor of detA we have
∑n
i=1 ei ≤ deg detA ≤ nd. Assume, to arrive

at a contradiction, that degE[i] ≥ 2i+1d + 1. Then, because each diagonal entry in H
divides the next, the last diagonal entry xeki+1 in E[i] must have eki+1 ≥ 2i+1d+ 1. But
then

∑n
j=1 ej ≥

∑n
j=ki+1

ej ≥
∑n
j=ki+1

(2i+1d+ 1) > nd, a contradiction. 2

Figure 4 presents our approach to compute a triangular x-Smith decomposition based
on the decomposition and degree bounds in Lemma 5. Parts A and B in the loop clearly
demarcate the operations done over K[x]/(x2i+1d+1) and over K[x], respectively.

The approach can be understood by considering the first two iterations. Consider
the first iteration i = 0. Part A computes a Smith permutation Q0 of A over the ring
K[x]/(x2d+1), together with the Hermite form of A over K[x]/(x2d+1). Note that the
computation of Q0 requires considering all columns of A; indeed, by definition, the first
Smith invariant of A over R is the gcd of all entries of A. By Lemmas 3 and 5, the precision
2d+ 1 will be sufficient to capture at least the first k1 = 2t x-Smith invariants of A over
K[x]. Thus, in part B we work over K[x] and discard all but the first k1 columns of the
Hermite form computed in part A, replacing the last n − k1 columns with the same
columns of In in order to obtain H0. To complete iteration i = 0 we set P (1) = Q0,
H(1) = H0, and U (1) = AP (1)H−1

0 to obtain the decomposition

AP (1) = U (1)

H(1)E[0]

I

 .
Now consider the second iteration i = 1. Instead of working with A, we can work with

U (1) to recover the next block of x-Smith invariant factors. The precision is increased
to 4d + 1, which by the degree bound in Lemma 5 will be sufficient to capture the first
k2 = 2t + 2t−1 x-Smith invariants of U (1). Because the precision has approximately
doubled, we need to reduce the dimension of the problem for the Smith permutation and

17

Initialize P (0) := In, U (0) := A, and H(0) := In.
for i from 0 to t do

A [Working over R = K[x]/(x2i+1d+1)]
Let ki := 2t+1 − 2t−i+1 and ri := 2t−i.
Compute Qi := Diag(Iki , ∗), a Smith Permutation of U (i).
Compute the Hermite form 

Iki V
[i] ∗

E[i] ∗

∗


of U (i)Qi.

B [Working over K[x]]

Let Hi =


Iki V

[i]

E[i]

Iri

 ∈ K[x]n×n.

Set (P (i+1),H(i+1), U (i+1)) := (P (i)Qi,HiH
(i), U (i)QiH

−1
i).

At this point the following invariants hold:
· AP (i+1) = U (i+1)H(i+1).
· The first ki+1 = ki + 2t−i columns of Rem(U (i+1), x) have full rank over K.
· The principal ki+1 submatrix of H(i+1) is the x-Hermite basis of the first ki+1

columns of AP (i+1).
· The first ki+1 principal diagonal entries of H(i+1) are the first ki+1 x-Smith

invariants of A.
od

Fig. 4. Computing a triangular x-Smith decomposition

Hermite form computation over R. To achieve this reduction in dimension, we can exploit

the fact that the first k1 columns of Rem(U (1), x) are known to have full column rank

over K; in particular, the first k1 entries in the Hermite form of U (1) over R are known

a priori to be trivial. This is illustrated more concretely in phases 1 and 2 of Algorithm

TriangularXSmithDecomposition detailed in the next subsection.

Now consider part B for iteration i = 1. We are starting with the decomposition

AP (1) = U (1)H(1) ∈ K[x]n×n (10)

and want to obtain the decomposition AP (2) = U (2)H(2) ∈ K[x]n×n.

Multiplying both sides of (10) by Q1 on the right, and inserting Q1H
−1
1 H1Q

−1
1 = I

gives

18

A

P (2)︷ ︸︸ ︷
P (1)Q1 =U (1)Q1H

−1
1 H1

Q−1
1 Ik1

∗


H(1)E[0]

In−k1


Q1 Ik1

∗



=

U (2)︷ ︸︸ ︷
U (1)Q1H

−1
1

H(2)︷ ︸︸ ︷
H1H

(1) . (11)

Identity (11) follows from the previous equation using Q−1
1 H(1)Q1 = H(1), which holds

due to the block diagonal structures of H(1) and Q1. The remaining iterations are similar.
Induction on i can now be used to show that the assertions in part B hold after every
iteration. This gives the following result.

Lemma 6. The scheme given in Figure 4 correctly computes a triangular x-Smith de-
composition of a nonsingular A ∈ K[x]n×n with degA = d.

5.2. The complete algorithm

Building up on our approach in Figure 4, we now present our algorithm to compute
a triangular x-Smith decomposition. Algorithm TriangularXSmithDecomposition in
Figure 5 adds computational details to the approach of Figure 4. While phase 1 and
phase 2 are used in maintaining the dimension × precision compromise, phase 3 is the
concrete realization of part A of Figure 4 and phase 4 the concrete realization of part B
of Figure 4.

Note that in all the iterations the following dimension × precision invariant holds:

s× (n− k) = 2i+1 × (2t−i+2 − 1) = O(n).

Our cost analysis will assume that M(t) = O(tω−1). Our main use of this assumption is
the following bound:

M(sd) ≤ M(s)M(d) ∈ O((n/(n− k))ω−1 M(d)). (12)

Phase 1 uses the LSP decomposition algorithm of Ibarra et al. (1982) to find a row
permutation R such that the principal k × k submatrix of Rem(RU, x) is nonsingular
over K. This costs O(nω) operations from K.

Phase 2 first applies a unimodular transformation over R = K[x]/(xsd+1): I W ′1
W ′2

 :=

 U−1
1

−U2U
−1
1 I

U1 W1

U2 W2

 .
By (Storjohann, 2003, Proposition 15), W ′1 = Rem(U−1

1 W1, x
sd+1) can be computed

using high-order lifting in O(nω(log n) M(d)) operations from K. Now consider the com-
putation W ′2 = Rem(W2 − U2W

′
1, x

sd+1). The dimension of U2 is (n− k)× k and W ′1 is
k × (n − k), and using an obvious block decomposition, U2W

′
1 can be computed using

O(n(n− k)ω−1) operations from K[x]/(xsd+1). Using (12) shows U2W
′
1 can be computed

in O(nω M(d)) operations from K. Thus, phase 2 costs O((log n)nω M(d)) operations from
K.

Phase 3 computes a triangular Smith form of the matrix U ′ over R. First we find a
permutation matrix Q such that U ′Q is Smith conditioned over R. As the principal k×k

19

submatrix of U ′ is the identity, we need to find a permutation matrix for only W ′2. This is
accomplished using Algorithm ModSmithPermutation described in the previous section.

First we triangularize using the algorithm supporting (Hafner and McCurley, 1991,
Theorem 3.1), and then recover the Hermite form by reducing offdiagonal entries using
the index k reduction transform from (Storjohann, 2000, Section 3.2). All of these steps
cost O(n(n − k)ω−1) operations from R. Again using (12), we obtain the cost bound
O(nω M(d)) for phase 3.

Phase 4 updates the matrices P,U,H and the dimension k and the index i. Note
that degU ≤ d since the entries of H−1

i are proper fractions over K(x). Since detHi ⊥
(x−1) we can calculate the updated U as described in the algorithm by working modulo
(x− 1)d+1. Since we can invert an element over K[x]/((x− 1)d+1) in cost M(d), the cost
of phase 4 is O(nrω−1 M(d)) = O(nω M(d)).

The correctness component of the following result follows from Lemma 6, and the cost
bound from the above discussion.

Theorem 9. Algorithm TriangularXSmithDecomposition is correct. The cost of the
algorithm is O(nω(log n)2 M(d)) operations from K. This cost estimate assumes that ω >
2 and M(t) ∈ O(tω−1).

Note that the (logn)2 factor comes from high-order lifting in phase 2 being used at
each of the log n iterations.

5.3. Achieving a slightly better cost

We now present a small change in Algorithm TriangularXSmithDecomposition to
achieve a cost of O(nω(log n)2/(log log n) M(d)). The main idea is to increase our dimen-
sion × precision invariant a little to

s× (n− k) = O(n(log n)1/(ω−1)) (13)

and decrease the bound on the total number of iterations to O(log n/ log log n) while still
carrying out every iteration in cost O((log n)nω M(d)). We remark that to achieve the
acceleration we had initially set the dimension × precision invariant to O(n

√
log n). We

would like to thank one of the referees for suggesting the more natural bound in (13).
To motivate the improved convergence, consider an input matrix A ∈ K[x]n×n with

degA = d and x-Smith invariants 1, . . . , 1, xnd. We can find all but one column of a
triangular x-Smith form of A in the first iteration working over the ring K[x]/(x2d+1).
After finding n− 1 columns of a triangular x-Smith form, we can increase the precision
to nd and work over the ring K[x]/(xnd+1). Thus, instead of using log n iterations as in
Algorithm TriangularXSmithDecomposition in Figure 5, we choose the precision s and
the dimension r in the algorithm dynamically. The Algorithm ModSmithPermutation,
used in phase 3 of the algorithm, outputs r, the number of non zero rows in a triangular
Smith form of W ′2 over R = K[x]/(xsd+1). Thus at the end of phase 3, we shall decompose
the triangular Smith form as 

Ik V ∗

E ∗

0


where E is r × r. All we need to maintain is the dimension × precision invariant (13).

20

TriangularXSmithDecomposition(A,n, d)
Input: Nonsingular A ∈ K[x]n×n with d = degA and n = 2t+1 − 1.
Output: P,U,H such that AP = UH is a triangular x-Smith decomposition of A.

Initialize k := 0, i := 0, P := In, U := A, and H := In.
while k < n do

(1) [Find row permutation.]
R := the permutation from the LSP decomposition of Rem(U, x)T ;

Decompose RU =

U1 W1

U2 W2

 where U1 is k × k with Rem(U1, x) nonsingular.

(2) [Perform high-order lifting and compute Schur complement.]
(a) s := 2i+1;

W ′1 := Rem(U−1
1 W1, x

sd+1); comment: use high-order lifting
W ′2 := Rem(W2 − U2W

′
1, x

sd+1);

U ′ :=

 Ik W ′1
W ′2

;

(3) [Compute Smith permutation and triangular Smith form over K[x]/(xsd+1).]
Q, r := ModSmithPermutation(W

′

2, n− k, n− k, sd+ 1);
(b) r := 2t−i;

T ′ := an upper triangular matrix with φd(T ′) ≡L φd(W ′2Q) over K[x]/(xsd+1);
T := a matrix such that φd(T) is the Hermite form of φd(T ′) over K[x]/(xsd+1);

Decompose T as


Ik V ∗

E ∗

∗

 where E is r × r.

(4) [Update P , U and H.]

P,H := P Diag(Ik, Q),


Ik V

E

In−k−r

H;

U := Rem

UQ

Ik V

E

In−k−r


−1

, (x− 1)d+1

;

(c) i := i+ 1;
k := k + r;

od
return P , U , H;

Fig. 5. Algorithm TriangularXSmithDecomposition

21

Corollary 1. A triangular x-Smith decomposition of a nonsingular A ∈ K[x]n×n with
degA = d can be computed using O(nω(log n)2/ log log n M(d)) operations from K, if the
following modifications are carried out in Algorithm TriangularXSmithDecomposition:
• Change line (a) to: s := d2n(log n)1/(ω−1)/(n− k)e;
• Delete line (b) and line (c).
This cost estimate assumes that ω > 2 and M(t) ∈ O(tω−1).

Proof. We shall first prove that every iteration of the modified algorithm can still be
done in time O(nω(log n) M(d)).

In phase 2, the right hand side W1 of the system to be solved has small degree. As noted
in Theorem 1, despite the slightly increased precision, high-order lifting (Storjohann,
2003, Section 8) can be adapted to compute W ′1 in cost O(nω(log n) M(d)). The cost
of the multiplication of a (n − k) × k matrix with a k × (n − k) matrix to get W ′2 is
O(n(n− k)ω−1M(sd+ 1)) = O(n(n− k)ω−1sω−1 M(d)). Using the dimension × precision
invariant shows that the that the cost of this step is O(n(n − k)ω−1(log n) M(d)) =
O(nω(log n) M(d)). Thus phase 2 still has overall cost O(nω(log n) M(d)).

Previously, the cost of phase 3 was O(nω M(d)). Using the assumption that M(t) ∈
O(tω−1), a (logn)1/(ω−1) factor increase in the precision s shall increase the cost of this
phase to O(nω(log n) M(d)). Phase 1 and phase 4 are oblivious to the precision s and
hence can be computed in cost O(nω M(d)).

Using the new dimension × precision invariant and the dynamic change in the pre-
cision s and dimension r, let us now show that the total number of iterations needed
to find a triangular x-Smith decomposition is bounded by O(log n/ log log n). Let si be
the value of s in the i-th iteration and let ki be the corresponding value of k. Then
s0 = d2(log n)1/(ω−1)e and k0 = 0. After i iterations we have found ki+1 columns of a
triangular x-Smith form. We know that all the entries in the remaining x-Hermite form
are divisible by xsid. Using the determinant bound nd for the sum of the degrees of the
remaining x-Smith invariants, we get

si(n− ki+1) ≤ n. (14)

From the dimension × precision formula

(n− ki+1)≥ 2n(log n)1/(ω−1)/si+1. (15)

Combining (14) and (15) we get

si+1/si ≥ 2(log n)1/(ω−1). (16)

Using the initial condition that s0 ≥ 2(log n)1/(ω−1) with inequality (16) gives

si ≥ 2i+1(log n)(i+1)/(ω−1).

Thus, the least i such that si ≥ n is the ceiling of

(ω − 1) log n
(ω − 1) log 2 + log log n

− 1.

2

The extra logarithmic factors in the cost bound of Corollary 1 can be partitioned
as (log n/ log log n) × (log n). The logn/ log log n factor is the bound for the number of
iterations of the improved algorithm, while the log n factor is coming from the quadratic
convergence of high-order lifting: this log n factor seems difficult to improve on.

22

5.4. Extension to rectangular inputs

Algorithm TriangularXSmithDecomposition is easily modified to handle rectangular
inputs A ∈ K[x]n×m with full column rank. Indeed, Subroutine ModSmithPermutation
was presented for rectangular inputs, and the only change in the cost analysis is that the
term nω is replaced with nmω−1, and the logarithmic factors will be in terms of m, thus
yielding an overall running time of O(nmω−1(log n)2/(log log n) M(d)).

6. Partial linearization

Given a nonsingular A ∈ K[x]n×n, Algorithm TriangularXSmithDecomposition from
the previous section computes a decomposition A = UHP−1 where P is a permutation
matrix and H is in triangular x-Smith form. Given a column vector b ∈ K[x]n×1, our
algorithm in the next section computes A−1b as P (H−1(U−1b))), exploiting the fact
that we know x ⊥ detU and x − 1 ⊥ detH. A problem is that entries in H may have
degree as high as n degA. In this section we describe a general approach for rewriting
H as a new matrix H̄ that has dimension bounded by 2n − 1 and degree bounded
by degA. To motivate our approach, consider the linearization of a monic polynomial
f = xd + fd−1x

d−1 + fd−2x
d−2 + · · ·+ f0 based on its companion matrix:

[
xd + fd−1x

d−1 + fd−2x
d−2 + · · ·+ f0

]
←→


fd−1 + x fd−2 · · · f0

−1 x

.

−1 x

 . (17)

The determinant of the 1× 1 degree d matrix on the left of (17) will be equal to that of
the d× d degree 1 matrix on the right. Also, the inverse of the matrix on the left of (17)
will appear as an entry in the inverse of the matrix on the right (the last entry in the
first column). The linearization we describe in this section is similar but monicity is not
required and the linearization can be partial. For example, a 1× 1 degree ed matrix can
be partially linearized to an equivalent e× e matrix of degree d.

We begin by defining some notation. Let e ∈ Z≥0 and d ∈ Z≥1 be given. For a column
vector v ∈ K[x]n×1, let Ce,d(v) denote the unique n× e matrix that satisfies

Quo(v, xd) = Ce,d(v)


1

xd

...

x(e−1)d

 ,

with all but possibly the last column (if e > 0) of degree less than d. If e = 0 then Ce,d(v)
is the n× 0 matrix, while for e ≥ 1

v = Rem(v, xd) + Col(Ce,d(v), 1)xd + · · ·+ Col(Ce,d(v), e)xed

is the xd-adic series expansion of v, except that the coefficient Col(Ce,d(v), e) of xed may
have degree larger than or equal to d.

23

Example 1. C3,1(
[

2 + 3x+ x2 + 5x3 + 2x4
]
) =

[
3 1 5 + 2x

]
.

Now define structured matrices Ed and Bd as follows:

Ed := −xd Col(I, 1) =



−xd


and Bd :=



1

−xd 1

−xd
. . .
. . . 1

−xd 1


.

Note that B−1
d will be the unit lower triangular Toeplitz matrix with xid on the ith

subdiagonal. The dimensions of Ed and Bd will be induced by the context.

Lemma 7. Let v ∈ K[x], e ∈ Z≥0 and d ∈ Z≥1. Let c = v if e = 0, and c = Rem(v, xd)
if e > 0. The matrix  c Ce,d(v)

Ed Bd

 ∈ K[x](e+1)×(e+1) (18)

is right equivalent to 
v Quo(v, xd) · · · Quo(v, xed)

1
. . .

1

 . (19)

Proof. The matrix in (19) can be obtained from the matrix in (18) by postmultiplying
by the following unimodular transformation: 1

−B−1
d Ed B

−1
d

 .
2

Note that if e = 0, then Bd is 0× 1, Ed is 0× 1, and both matrices (18) and (19) are
simply v itself.

Part 1 of the theorem below follows from Lemma 7, and part 2 follows easily from
part 1. Part 3 follows directly from the definition of Ce,d(v).

Theorem 10. Let A =
[
v1 · · · vm

]
∈ K[x]n×m, ē = (e1, . . . , em) ∈ Zm≥0 and d ∈ Z≥1.

24

Let ci = vi if ei = 0, and ci = Rem(vi, xd) if ei > 0, 1 ≤ i ≤ m. The matrix

Dē,d(A) :=



c1 · · · cn Ce1,d(v1) · · · Cem,d(vn)

Ed Bd
.

Ed Bd


∈ K[x]n̄×m̄,

with n̄ = n+ e1 + · · ·+ em and m̄ = m+ e1 + · · ·+ em, satisfies the following properties:
(1) Dē,d(A) is right equivalent to

A Quo(v1, x
d) · · · Quo(v1, x

e1d) · · · Quo(vm, xd) · · · Quo(vm, xemd)

1
. . .

1
. . .

1
. . .

1



. (20)

(2) If n = m then detA = detDē,d(A), and the principal n×n submatrix of the adjoint
of Dē,d(A) is equal to the adjoint of A.

(3) If deg vi ≤ (ei + 1)d for 1 ≤ i ≤ m, then degDē,d(A) ≤ d.

We remark that if all components of ē are identical, the matrix in (20) corresponds to
the matrix used for the “reduction to lower order” technique described in (Storjohann,
2006, Section 2). In the context of the minimal approximate basis computation discussed
there, the fact that (20) has degree as high as A does not affect the cost of the algorithm
since the entries can simply be truncated modulo the working precision x2d−1. The key
point of Theorem 10 is that (20) is right equivalent to Dē,d(A) which has degree bounded
by d (provided that condition 3 of the theorem holds).

The following corollary of Theorem 10 illustrates the usefulness of the partial lineariza-
tion to the case of linear algebra problems.

Corollary 2. Suppose degA > 0 and let the average column degree of A be d :=
d(
∑m
i=1 deg vi)/me. If each ei ∈ Z≥0 is chosen minimal such that the condition deg vi ≤

(ei + 1)d from part 3 of Theorem 10 holds, then D := Dē,d(A) enjoys the following
properties:
• degD ≤ d.
• D has fewer than m extra columns and m extra rows compared to A.
• rank(D) = rank(A) + e1 + · · ·+ em.
• D has the same Smith form as A up to some additional trivial invariant factors.
Furthermore, if n = m then the following hold:

25

• detA = detD.
• The adjoint of A is equal to the principal n× n submatrix of the adjoint of D.

Proof. The only claim that does not follow directly from Theorem 10 is that about the
dimension of D. We have ei = 0 if deg vi = 0 and ei < (deg vi)/d otherwise, the latter
case occurring for at least one column because of the assumption that degA > 0. It
follows that e1 + · · ·+ em <

∑m
i=1(deg v1)/d ≤ m so that m̄ < 2m and n̄ < n+m. 2

Example 2. For brevity, let us indicate a polynomial of degree t with [t], and consider
a 5 × 5 input matrix with the following degree structure, where zero polynomials are
indicated with a blank:

A =



[0] [5] [18]

[0] [5] [18]

[0] [5] [18]

[6] [18]

[19]


.

The construction of Corollary 2 specifies d = 5 and ē = (0, 0, 0, 1, 3), giving

Dē,d(A) =



[0] [4] [4] [0] [4] [4] [3]

[0] [4] [4] [0] [4] [4] [3]

[0] [4] [4] [0] [4] [4] [3]

[4] [4] [1] [4] [4] [3]

[4] [4] [4] [4]

−x5 1

−x5 1

−x5 1

−x5 1



.

Example 3. The approach of Theorem 2 can also be used to partially linearize the
rows of the input matrix. Let A ∈ K[x]m×n have degA > 0, and consider the matrix
D := Dē,d(AT)T . The degrees of entries in D will then be bounded by the average of the
row degrees of A, and D will satisfy all the properties stated in Theorem 10.

The sum E of the column degrees (or row degrees) gives an a priori bound for
deg detA. The partial linearization used in Theorem 2 is particularly effective if deg detA
is close to E, or even equal to E as in the column reduced matrix in Example 2. However,
the technique is not useful if A has, simultaneously, some columns and rows of consis-
tently large degree. We now develop an approach to handle such inputs based on a better
bound for deg detA.

26

By definition, detA =
∑
σ∈Sn sign(σ)

∏n
i=1Ai,σi where Sn is the set of all permuta-

tions of (1, 2, . . . , n). This gives the following a priori bound for deg detA. The bound is

tight generically.

Fact 11. deg detA ≤ GenericDetBnd(A) := maxσ∈Sn
∑n
i=1 degAi,σi .

Up to a row and column permutation, we may assume that di := degAi,i bounds

the degree of all entries in the submatrix Ai...n,i...n, 1 ≤ i ≤ n. Such a row and col-

umn permutation can be found by sorting the set of triples {(i, j, degAi,j)}1≤i,j≤n into

nonincreasing order according to their third component. Let E = d1 + · · · + dn. Then

E ≤ GenericDetBnd(A) by definition. Set d := dE/ne and choose ē = (e1, . . . , en) with

ei ∈ Z≥0 minimal such that di ≤ (ei+1)d. Now consider the matrix Dē,d(A). By construc-

tion, row i of Dē,d(A) will have degree bounded by di for 1 ≤ i ≤ n, and all other rows

will have degree bounded by d. Let ē′ denote ē augmented with
∑n
i ei zeroes. Considering

the matrix Dē′,d(Dē,d(A)T)T gives the following corollary.

Corollary 3. Let nonsingular A ∈ K[x]n×n with degA > 0 be given. Using the choices

for d, ē and ē′ as specified above, the matrix D := Dē′,d(Dē,d(A)T)T will enjoy the

following properties:

• degD ≤ dGenericDetBnd(A)/ne.

• Dimension(D) < 3 Dimension(A).

• detD = detA.

• The Smith form of D is equal to Diag(I,SmithForm(A)).

• The principal n× n submatrix of D−1 is equal to A−1.
• If b ∈ K[x]1×n then bA−1 is equal to the principal 1×n subvector of

[
b 0 · · · 0

]
D−1.

Example 4. Consider an input matrix with the following degree structure:

A =



[19] [1] [5] [3] [19]

[4] [6] [3] [6] [0]

[0] [0] [0] [0] [0]

[17] [6] [0] [0] [0]

[19] [0] [0] [0] [0]


The recipe supporting Corollary 3 specifies d = 5 and ē = (3, 1, 0, 0, 0). The column

27

linearization produces

Dē,d(A) =



[4] [1] [5] [3] [19] [4] [4] [4]

[4] [4] [3] [6] [0] [1]

[0] [0] [0] [0] [0]

[4] [4] [0] [0] [0] [4] [4] [2] [1]

[4] [0] [0] [0] [0] [4] [4] [4]

−x5 1

−x5 1

−x5 1

−x5 1



.

Since
∑n
i=1 ei = 4 we have ē′ = (3, 1, 0, 0, 0, 0, 0, 0, 0), and the row linearization of the

above matrix produces

Dē′,d(Dē,d(A)T)T =



[4] [1] [4] [3] [4] [4] [4] [4] −x5

[4] [4] [3] [4] [0] [1] −x5

[0] [0] [0] [0] [0]

[4] [4] [0] [0] [0] [4] [4] [2] [1]

[4] [0] [0] [0] [0] [4] [4] [4]

− x5 1

−x5 1

−x5 1

−x5 1

[0] [4] 1 −x5

[4] 1 −x5

[4] 1

[1] 1



.

7. Deterministic rational system solving

Let A ∈ K[x]n×n be nonsingular with d = degA. In this section we apply the tools
developed in the previous sections to obtain a deterministic algorithm for rational system
solving: given b ∈ K[x]n×1 compute A−1b.

We will use Algorithm RationalSol[X] from Storjohann (2003). Given an X ∈ K[x]
that is relatively prime to detA and satisfies degX ≥ d, the call RationalSol[X](A, b)
will produce (gv, g) ∈ (K[x]n×1,K[x]) with Av = b and g monic of minimal degree

28

such that gv is over K[x]. By (Storjohann, 2003, Corollary 16), if degX ∈ O(d) and
deg b ∈ O(nd), the cost of algorithm RationalSol will be bounded by O(nω(log n) M(d)+
nB(nd)) operations from K. If a suitable X is not known a priori it can be constructed
randomly. Instead of using randomization, Algorithm RationalSystemSolve shown in
Figure 6 proceeds in three phases. First, an x-basis decomposition A = UH is computed.
Second, the system u := U−1b is solved using algorithm RationalSol[X] with X = xd.
Third, H is partially linearized to a new matrix H ′ that has degree bounded by d and
dimension less than 2n, and the solution H−1u is computed using RationalSol[X] with
X = (x− 1)d, and with input matrix H ′ instead of H.

RationalSystemSolve(A, b, n, d)
Input: Nonsingular A ∈ K[x]n×n with d = degA, b ∈ K[x]n×m.
Output: (gA−1b, g) ∈ (K[x]n×1,K[x]) with g of minimal degree.

(1) [Compute an x-basis decomposition A = UH.]
P,U,H := TriangularXSmithDecomposition(A,n, d);
H := HP−1;

(2) [Solve system U−1b.]
Let X = xd.
ū, g1 := RationalSol[X](U, b);
comment: Uū = g1b

(3) [Solve system H−1ū.]
Let
• ē = (e1, e2, . . . , en), where ei = max(0, ddeg(Col(H, i))/d− 1e),
• H ′ = Dē,d(H) ∈ K[x](n+e)×(n+e) where e = e1 + · · ·+ en, and
• ū′ = u augmented with e trailing zeroes.
X := (x− 1)d;
v̄′, g2 := RationalSol[X](H ′, ū′);
Let v̄ ∈ K[x]n×1 be comprised of the first n entries of v̄′.
return (v̄, g1g2);

Fig. 6. Algorithm RationalSystemSolve

Theorem 12. Algorithm RationalSystemSolve is correct. If deg b ∈ O(nd), the cost
of the algorithm is O(nω(log n)2 M(d) + nB(nd)) operations from K. This cost estimate
assumes that ω > 2 and M(t) ∈ O(tω−1).

Proof. Correctness of the algorithm follows from the previous discussion and Corollary 2.
By Theorem 9, the call to Algorithm TriangularXSmithDecomposition completes in
the allotted time, and since degU ≤ d, the first call to RationalSol completes in the
allotted time using the assumption that deg b ∈ O(nd) (Storjohann, 2003, Corollary 16).
By Cramer’s rule, deg b ∈ O(nd) implies that deg u′ ∈ O(nd) also, so the cost of the
second call also completes in the allotted time. 2

Algorithm RationalSystemSolve separates the factorization of A in phase 1 from
the linear solving in phases 2 and 3. An algorithm which adjusts a given linear system
Av = b by factoring out powers of x from the column space of the system while solving
is described by Mulders and Storjohann (2000). If A ∈ K[x]n×m has rank r (which need

29

not be known), and b ∈ K[x]m×1 has degree bounded by rd, then the oracle based solver
of Mulders and Storjohann (2000) will find a solution v, or determine that the system is
inconsistent, in time O((n+m)r2 B(d)).

8. Deterministic row reduction

Let A ∈ K[x]n×n be nonsingular. In this section we give a deterministic algorithm to
compute a row reduced form of A. We defer until Subsection 8.1 to recall the definition
of a row reduced form. For now, we note that a row reduced form of A is a matrix
R ∈ K[x]n×n that is left equivalent to A and has row degrees as small as possible. Thus,
row reduction is essentially lattice reduction for polynomial matrices.

Example 5. Let us indicate a polynomial of degree t with [t]. The following shows the
degree structure in a matrix A ∈ K[x]4×4, a row reduced form R of A, and the unimodular
matrix U such that UA = R:

U
[29] [29] [30] [30]

[30] [30] [31] [31]

[31] [31] [32] [32]

[33] [33] [34] [34]



A
[12] [13] [13] [11]

[12] [13] [13] [11]

[12] [14] [12] [10]

[12] [14] [12] [10]

=

R
[0] [0] [1] [0]

[2] [1] [0] [1]

[1] [2] [0] [2]

[1] [1] [0] [4]

 .

Algorithms for computing a row reduced form of A are given by (Mulders and Stor-
johann, 2003; Giorgi et al., 2003). The algorithm by Mulders and Storjohann (2003) is
deterministic but has cost O(n3d2). Modifying the approach of Mulders and Storjohann,
which is inherently iterative, to incorporate fast matrix and polynomial multiplication
does not seem possible. The difficulty is that, although degR ≤ degA, the unimodular
transformation matrix U ∈ K[x]n×n such that UA = R may have degU ∈ Ω(n degA)
(see Example 5).

The algorithm by Giorgi et al. (2003) takes a different approach and achieves an
expected running time of O(nω(log n) B(d)). The first step is to compute a segment
of the inverse A−1 modulo a high power of x. This can be accomplished using high-
order lifting, but this requires A to be nonsingular modulo x. For the general case, the
indeterminate x is first shifted as x→ x−α for a randomly chosen α ∈ K to ensure that x
does not divide detA with high probability. The second phase of the algorithm applies a
fast minimal approximant basis algorithm to compute R from the high-order segment of
A−1. In this section we show how to derandomize the approach of Giorgi et al. (2003) by
first computing an x-basis decomposition A = UH, then using the technique of Section 6
to partially linearize H allowing for fast computation of a row reduced form R1 of H via
minimal approximant basis computation, and finally computing a row reduced form R2

of AR−1
1 using the approach of Giorgi et al. (2003) to arrive at a row reduced form R2R1

of A.
In Subsection 8.1 we define some notation and recall some basic facts about reduced

and minimal approximant bases. Subsection 8.2 gives the deterministic algorithm for row
reduction.

30

8.1. Preliminaries: Reduced basis and minimal approximant basis

Following (Beckermann and Labahn, 1994, Definition 3.1), the defect dct(w,~n) of a
row vector

w =
[
w1 · · · wm

]
∈ K[x]1×m

with respect to a given multi-index ~n = (n1, . . . , nm) ∈ Zm is defined by

dct(w) = dct(w,~n) := min
i
{ni + 1− degwi}, (21)

where the zero polynomial has degree−∞. The notion of defect measures the gap between
the degrees of elements of w and the multi-index ~n. In particular, the constraints[

≤n1

degw1 · · ·
≤nm

degwm

]
∈ K[x]1×m (22)

are satisfied if and only if dct(w) is positive.
Similar to the definition given by Beckermann et al. (2006), we define the leading

coefficient vector lc(w,~n) ∈ K1×m of a nonzero w ∈ K[x]1×m with respect to ~n to be the
constant coefficient of

xdct(w)−1 wDiag(x−n1 , . . . , x−nm) =
[
xdct(w)−1−n1w1 · · · xdct(w)−1−nmwm

]
, (23)

where we consider the entries as Laurent series. The definition of defect implies that
the vector in (23) has degree 0. (We remark that we could equivalently define dct(w) =
dct(w,~n) to be the unique integer such that the vector in (23) has degree 0.) The leading
coefficient of the zero vector is defined to be the zero vector. This definition of leading

coefficient extends naturally to matrices. Let B =
[
bT1 · · · bTr

]T
∈ K[x]r×m be a nonzero

matrix where each row vector bi is a row vector of dimension m. Then the leading
coefficient lc(B,~n) ∈ Kr×m of B with respect to ~n is the constant coefficient of the
degree 0 matrix

Diag(xdct(b1)−1, . . . , xdct(br)−1)BDiag(x−n1 , . . . , x−nm).

Example 6. Since

 x2

x1


B x3 + 2x+ 1 2x

2x4 x5 + 3x2

  x−5

x−6

 =

L 1

2 1

 +

 2x−2 + x−3 2x−3

3x−3

 ,
and the defects of the rows of B with respect to (5, 6) are (3, 2), we have lc(B, (5, 6)) = L.

Reduced basis
The following definition and lemma give the essential properties of a reduced basis.

For more details we refer to (Beckermann and Labahn, 1997; Beckermann et al., 2006).
Recall that L(B) denotes the set of all K[x]-linear combinations of rows of B.

Definition 13. A matrix B =
[
bT1 · · · bTr

]T
∈ K[x]r×m of rank r is a reduced basis of

type ~n if each w ∈ L(B) admits a unique decomposition w =
∑n
i=1 cibi with ci ∈ K[x],

deg ci ≤ dct(bi)− dct(w), 1 ≤ i ≤ n.

31

We remark that the notion of reducedness is invariant under a constant shift of the
multi-index ~n: B is a reduced basis of type ~n = (n1, . . . , nm) if and only if B is a reduced
basis of type (n1 + c, . . . , nm + c) for any c ∈ Z.

Lemma 8. A matrix B ∈ K[x]r×m is a reduced basis of type ~n if and only if the following
equivalent conditions are satisfied:

(1) lc(B,~n) has full row rank r.
(2) If the rows b1, . . . , br of B are permuted so that their defects are nonincreasing, then

(dct(b1), . . . ,dct(br)) is lexicographically maximal among all bases whose rows are
similarly permuted.

Thus, up to row permutation, any two reduced bases of type ~n for the same lattice
will have the same tuple of defects. The matrix in Example 6 is evidently reduced with
respect to (5, 6) because it satisfies property 1 of Lemma 8. The following fact, which
follows from (Kailath, 1980, Lemma 6.3-11), will be useful to obtain degree bounds.

Fact 14. Let B ∈ K[x]n×n be nonsingular. If either B or BT is a reduced basis of type
0n then B−1 is a proper matrix fraction, that is, deg((detB)B−1) ≤ deg detB.

The next lemma states an elementary but essential property of reduced bases that
appears in various guises (see Beckermann and Labahn, 1994, 1997; Giorgi et al., 2003;
Beckermann et al., 2006). Let 1 denote the tuple (1, . . . , 1) of appropriate length.

Lemma 9. Suppose R1 ∈ K[x]n×n is a reduced basis of type ~n, and let δ = (δ1, . . . , δn)
be the defects of the rows of R1 with respect to ~n. If R2 ∈ K[x]n×n is a reduced basis of
type δ − 1n, then dct(Row(R2, i), δ − 1n) = dct(Row(R2R1, i), ~n), 1 ≤ i ≤ n, and R2R1

is a reduced basis of type ~n.

Proof. By definition, lc(R1, ~n) is given by the constant coefficient of the degree 0 matrix

Diag(xδ1−1, . . . , xδn−1)R1 Diag(x−n1 , . . . , x−nm). (24)

Similarly, if µ = (µ1, . . . , µn) are the defects of the rows of R2 with respect to δ − 1n,
then lc(R2, δ − 1n) is given by the constant coefficient of the degree 0 matrix

Diag(xµ1−1, . . . , xµn−1)R2 Diag(x−δ1+1, . . . , x−δn+1). (25)

Premultiplying (24) by (25), and noting by part 1 of Lemma 8 that lc(R1, ~n) and lc(R2, δ−
1n) are nonsingular, we may conclude that the matrix

Diag(xµ1−1, . . . , xµn−1)R2R1 Diag(x−n1 , . . . , x−nm)

has degree 0 with constant coefficient matrix nonsingular. By definition, µ are the defects
of the rows of R2R1 with respect to ~n, and by part 1 of Lemma 8, R2R1 is a reduced
basis of type ~n. 2

By positive part of a reduced basis we mean the submatrix comprised of the rows
with positive defect. All w ∈ L(A) that satisfy the degree constraint ~n are generated by
the positive part of a reduced basis for A: if dct(bi) ≤ 0 and dct(w) > 0, then the ci of
Definition 13 has deg ci ≤ dct(bi)− dct(w) < 0 and thus ci is the zero polynomial.

32

Minimal approximant basis
Let G ∈ K[x]n×m, d ∈ Z≥0, and ~n ∈ Zn.

Definition 15. An order d minimal approximant of type ~n for G is a reduced basis M
of type ~n for the lattice {w ∈ K[x]1×n | wG ≡ 0 mod xd}.

Note that a minimal approximantM as in Definition 15 will necessarily have dimension
n× n, be nonsingular, and satisfy MG ≡ 0 mod xd.

The following theorem, a restatement of (Giorgi et al., 2003, Theorem 2.4), is the main
computational tool we require for our deterministic row reduction algorithm.

Theorem 16. There exists an algorithm MinBasis that takes as input a tuple (G, d, ~n) ∈
(K[x]n×m,Z≥0,Z

n) and returns as output (M, δ) ∈ (K[x]n×n,Zn), an order d minimal
approximant M of type ~n for G together with a tuple δ = (δ1, . . . , δn) of the defects of
rows of M . If m ≤ n, the cost of the algorithm is O(nω B(d)) operations in K.

For brevity, we will say that (M, δ) in Theorem 16 solves the minimal approxi-
mant problem with input (G, d, ~n). By PosMinBasis(G, d, ~n) we mean the output of
MinBasis(G, d, ~n) restricted to the rows with positive defect. In general, the output of
PosMinBasis may be the 0 × n matrix. However, in our application of PosMinBasis in
algorithm RowReduce described in the next subsection, the output will have n rows by
construction.

8.2. The algorithm for row reduction

Our deterministic algorithm for computing a row reduced form of a nonsingular input
matrix A ∈ K[x]n×n with degA = d is shown in Figure 7. Phase 1 computes a triangular
x-Smith decomposition AP = UH. By multiplying both sides of the equation by P−1,
and setting H ← HP−1, we obtain a decomposition A = UH that satisfies the following
properties: x ⊥ detU , degU ≤ d, detH is a power of x. Furthermore, due to the special
degree shape of a triangular x-Smith form, the matrix H will be column reduced: HT is
a (row) reduced basis of type 0n (see Definition 13).

Phase 2 computes a row reduced form of H. Although H may have some columns as
large as nd, a row reduced form of H, as well as the transformation matrix to achieve
the form, will have degree bounded by d.

Lemma 10. Let R1 ∈ K[x]n×n be a row reduced form of H with respect to (d, . . . , d), and
let UH ∈ K[x]n×n be the unimodular matrix such that UHH = R1. Then the following
degree bounds hold:

(1) deg Row(UH , i) ≤ deg Row(R1, i), 1 ≤ i ≤ n, and
(2) degUH ≤ degR1 ≤ d.

Proof. Because H is column reduced, H−1 is a proper matrix fraction (Fact 14). Consid-
ering the identity UH = R1H

−1 shows the first bound. Now let V := UU−1
H ∈ K[x]n×n.

Then A = UH = (UU−1
H)(UHH) = V R1. Because R1 is row reduced, part 2 of Defini-

tion 13 gives the bound degR1 ≤ degA = d. 2

33

RowReduce(A,n, d)
Input: Nonsingular A ∈ K[x]n×n with d = degA.
Output: R, a row reduced form of A.

(1) [Compute an x-basis decomposition A = UH.]
P,U,H := TriangularXSmithDecomposition(A,n, d);
H := HP−1;

(2) [Compute a row reduced form R1 of H.]
Let
• ei ∈ Z≥0 be minimal such that deg Col(H, i) ≤ (ei + 1)d, 1 ≤ i ≤ n,
• ē = (e1, e2, . . . , en) and e = e1 + e2 + · · ·+ en,
• D = Dē,d(H) ∈ K[x](n+e)×(n+e),

• G =

 D

−In 0n×e

 ∈ K[x](2n+e)×(n+e), and

• ~n = (

n︷ ︸︸ ︷
d+ 1, d+ 1, . . . , d+ 1,

e︷ ︸︸ ︷
d, d, . . . , d,

n︷ ︸︸ ︷
d, d, . . . , d).[

UH S R1

]
:= PosMinBasis(G, 2d+ 2, ~n);

(3) [Compute a row reduced form R2 of AR−1
1 .]

V := Rem(AR−1
1 , (x− 1)d+1);

E := Rem(Quo(V −1, x(n−1)d+1, x2d+1);
Let

• G =

 E

−In


• δ = (δ1, δ2, . . . , δn, d, . . . , d) with δi = dct(Row(R1, i), ~n), 1 ≤ i ≤ n.[
R2 ∗

]
:= PosMinBasis(G, 2d+ 1, δ − 1n);

return R2R1;

Fig. 7. Algorithm RowReduce

We refer to (Beckermann et al., 1999, Section 5) and (Beckermann et al., 2006, Sec-
tion 4) for details on how matrices UH and R1 as in Lemma 10 can be recovered by
computing a row reduced basis of carefully chosen type ~n for the left kernel of the matrix H

−In

 .
The choice of ~n is dictated by a priori degree bounds for the rows of UH and R1, and the
reduced kernel basis itself can be recovered as the positive part of a minimal approximant
basis of high enough order. Applying this approach directly is too expensive because
degH may be large, requiring a minimal approximant basis computation of too high
order. Instead, phase 2 of Algorithm RowReduce applies the partial linearization technique
of Theorem 10 to obtain a minimal approximant problem of order only 2d+ 2.

The statement of the next lemma contains a matrix Q which we first need to define.
By Theorem 10, matrix D in phase 2 is right equivalent to the matrix shown in (20) with
A = H. Applying the same unimodular column transform to the matrix G from phase 2

34

produces the following matrix 
H Q

I

−I

 (26)

that is right equivalent to G. The matrix Q thus corresponds to the submatrix of the
matrix in (20) comprised of the first n rows and last e columns.

Lemma 11. Let G and ~n be as in phase 2 of Algorithm RowReduce, and let Q ∈ K[x]n×e

be as described above. For any vector
[
uH s r1

]
∈ K[x]1×(n+e+n) of positive defect with

respect to ~n, we have [
uH s r1

]
∈ L(MinBasis(G, 2d+ 2, ~n))

if and only if s = −uHQ and
[
uH r1

]
∈ L(

[
I H

]
) with dct(r1, (d, . . . , d)) > 0.

Proof. Only If: Let
[
uH s r1

]
∈ L(MinBasis(G, 2d+ 2, ~n)) have positive defect. Then

necessarily dct(r1, (d, . . . , d)) > 0. By definition,[
uH s r1

]
G ≡ 0 mod x2d+2,

but since degG ≤ d and deg
[
uH s r1

]
≤ d+ 1, we can conclude that[

uH s r1

]
G = 0. (27)

As noted above, the matrix (26) is right equivalent to G. We conclude that

[
uH s r1

]
H Q

I

−I

 = 0. (28)

Clearly, (28) implies that s = −uHQ, r1 = uHH, and thus
[
uH r1

]
∈ L(

[
I H

]
). The

claim about dct(r1) follows from the definition of ~n. The result follows.
If: Let s = −uHQ and

[
uH r1

]
∈ L(

[
I H

]
) with dct(r1, (d, . . . , d)) > 0. Then (28)

evidently holds, which shows that the right equivalent system (27) holds also. An ar-
gument similar to that used in the proof of Lemma 10 will show that deg uH ≤ deg r1

and hence dct(uH , (d + 1, . . . , d + 1)) > 0. It remains to show that dct(s, (d, . . . , d)) is
positive. Note that each column of Q is equal to Quo(Col(H, j), xdt) for some 1 ≤ j ≤ n
and t ≥ 1. Thus, each component of s is given by

uH

= Quo(Col(H, j), xdt)︷ ︸︸ ︷
(Col(H, j)− Rem(Col(H, j), xdt))/xdt

for some j and t. Note that uH Col(H, j) is a component of r1, and hence has degree at
most deg r1, while Rem(Col(H, j), xdt) has degree at most td− 1. Since, as shown above,

35

deg uH ≤ deg r1, this gives

deg uH(Col(H, j)− Rem(Col(H, j), xdt))/xtd ≤ (deg r1 + td− 1)− td < deg r1.

The result follows. 2

Corollary 4 follows directly from the degree relationship established for uH and s in
the second part of the proof of Lemma 11, and also from the fact that dct(r1, (d, . . . , d)) =
d+ 1− deg r1 (and similarly for uH and s).

Corollary 4. If
[
uH s r1

]
∈ L(MinBasis(G, 2d + d, ~n)) with positive defect, then

dct(r1, (d, . . . , d)) is strictly less than both dct(uH , (d + 1, . . . , d + 1)) and dct(s, (d +
1, . . . , d+ 1)).

Theorem 17. Phase 2 of Algorithm RowReduce correctly computes UH and R1 such that
UHH = R1 with R1 a reduced basis of H of type (d, . . . , d).

Proof. The “only if” direction of Lemma 11 implies that every row in MinBasis(G, 2d+
2, ~n) lives in L(

[
I −Q H

]
. This shows that MinBasis(G, 2d + 2, ~n) can have at most

n rows. From the “if” direction of Lemma 11, together with Lemma 10, it follows
that MinBasis(G, 2d + 2, ~n) has exactly n rows. By Corollary 4, the defect of any row[
uH s r1

]
of
[
UH S R1

]
will be determined by dct(r1, (d, . . . , d)). This shows that

lc(R1, (d, . . . , d)) is nonsingular, and thus R1 is a reduced basis according to Lemma 8.
Moreover, since this is a minimal approximant basis, up to permuting the rows the de-
fects of rows of R1 will be lexicographically maximal. We conclude that R1 must be a
reduced basis for H. 2

Phase 3 follows almost exactly the approach of (Giorgi et al., 2003, Section 3.3) with
the following modifications. First, we avoid randomly shifting x → x − α for a random
α ∈ K because we know by construction that x will not divide detV . Second, instead of
computing the minimal approximant basis with respect to (d, . . . , d), we use the multi-
index δ indicated by Lemma 9. At the start of phase 3 we have A = V R1 where R1 is row
reduced with respect to (d, . . . , d). Because R1 is left equivalent to H, whose determinant
is a power of x by definition of a triangular x-Smith from, R1 can be inverted modulo
any power of x− 1. Since R2 is a reduced basis for V , the matrix R2V

−1 is unimodular.
Thus, (R2V

−1)V R1 = R2R1 is left equivalent to A, and Lemma 9 ensures that R2R1

will be a reduced basis.

Theorem 18. Algorithm RowReduce is correct and has cost O(nω(log n)2 M(d)+nω B(d))
field operations from K. This cost estimate assumes that ω > 2 and M(t) ∈ O(tω−1).

Proof. Correctness of the algorithm follows from the previous discussion. By Theorem 9,
phase 1 runs in the allotted time. By Theorem 2, the matrix G in phase 2 will have
row dimension strictly less than 3n, showing phase 2 runs in the allotted time using
the algorithm supporting Theorem 16. In phase 3, the matrix V can be computed as
Rem(ARem(R−1

1 , (x− 1)d+1), (x− 1)d+1), where Rem(R−1
1 , (x− 1)d+1) is found in time

O(nω M(d)) by first computing Rem(R1, x − 1)−1 ∈ Kn×n and then using Newton it-
eration. The high-order component E of V −1 in phase 3 can be computed using the
algorithm for integrality certification described in (Storjohann, 2003, Section 11). 2

36

We end this section with a worked example of Algorithm RowReduce.

Example 7. Consider the following 3× 3 matrix of degree 4 over Z[x]/(7):

A =


x4 + 5x3 + 5x2 + 2x+ 3 2x4 + 2x3 + 3x2 + 5 2x3 + x+ 1

x4 + 4x3 + 4x2 + 5x+ 2 2x4 + 3x3 + 4x2 + 6 2x3 + 3x2 + 2

x4 + x3 + 2x2 + 4x+ 2 6x4 + 6x3 + 2x2 + 3x+ 3 2x4 + 5x3 + x2 + 2x+ 4

 .
The defects of the rows of A with respect to the multi-index (4, 4, 4) are (1, 1, 1). The
x-Hermite decomposition A = UH of A has

U =


x4 + 5x3 + 5x2 + 2x+ 3 2x4 + 2x3 + 3x2 + 5 2x3 + x+ 1

x4 + 4x3 + 4x2 + 5x+ 2 2x4 + 3x3 + 4x2 + 6 2x3 + 3x2 + 2

x4 + x3 + 2x2 + 4x+ 2 6x4 + 6x3 + 2x2 + 3x+ 3 2x4 + 5x3 + x2 + 2x+ 4


and

H =


1 0 4x9 + 6x8 + 6x7 + x6 + 4x5 + 5x4 + x3 + 2x2 + 3x+ 3

1 5x4 + 4x3 + 2x2 + 4

x10

 .
For this example the x-Hermite form H has a generic degree structure and is also in
triangular x-Smith form. In phase 2 we linearize H with respect to the target degree 4,
resulting in the matrix

G =



1 0 x3 + 2x2 + 3x+ 3 6x3 + x2 + 4x+ 5 4x+ 6

0 1 4x3 + 2x2 + 4 5 0

0 0 0 0 x2

−x4 1

−x4 1

1

1

1



.

The minimal approximant basis computation yields a reduced basis with the following
degree structure:

PosMinBasis(G, 2 · 4 + 2, (4 + 1, 4 + 1, 4 + 1, 4, 4, 4, 4, 4))

=
[
UH S R1

]

=


[3] [3] [2] [2] [2] [3] [3] [3]

[2] [2] [1] [1] [1] [2] [2] [3]

[2] [4] [1] [3] [1] [2] [4] [4]

 .

37

As per Lemma 10, the degrees of rows in UH are at most the degree of the corresponding
rows in R1, while degrees of rows in S are strictly less. The reduced basis R1 of H is

R1 =


2x3 + 4x2 + 5x 5x3 + 3x2 + 3x+ 1 2x3 + 6x2 + 6x+ 4

6x2 + 5x+ 1 x2 + 2x+ 2 6x3 + x2 + 5x+ 4

4x2 + 3x 4x4 + 6x2 + 4x 6x4 + 5x3 + 3x2 + 4x

 .
The tuple of defects of the rows of R1 with respect to the multi-index (4, 4, 4) is ~n =
(2, 2, 1). Phase 3 begins by computing the matrix V such that A = V R1:

V =


4x+ 6 2x+ 3 6

4x+ 2 2x+ 2 6

4x+ 6 6x+ 2 0

 .
The computed reduced basis of V of type (2, 2, 1)− 1 is

R2 =


1 2 0

0 5x+ 4 0

0 0 1

 ,
with

lc(R2, (2, 2, 1)) =


1 2

5

1

 .
The final reduced basis for A is given by

R2R1 =


2x3 + 2x2 + x+ 2 5x3 + 5x2 + 5 x2 + 2x+ 5

2x3 + 4x+ 4 5x3 + 4x+ 1 2x4 + x3 + x2 + 5x+ 2

4x2 + 3x 4x4 + 6x2 + 4x 6x4 + 5x3 + 3x2 + 4x

 .
The defects of the rows of R1 with respect to (4, 4, 4) are (2, 1, 1).

9. Conclusions

This paper gives derandomizations of the known Las Vegas reductions to polynomial
matrix multiplication for two problems: solving a rational linear system and obtaining
a row reduced form of a matrix. Let A ∈ K[x]n×n be a nonsingular polynomial matrix
with degrees of entries bounded by d, K an abstract field. We have established that the
following two problems can be solved using (nωd)×O (̃(log n+ log d)2) field operations
from K.
• Nonsingular Rational System Solving: Given a b ∈ K[x]n×1 with deg b ∈ O(nd),

compute the rational vector A−1b ∈ K(x).
• Row Reduction: Compute a matrix R ∈ K[x]n×n that is row reduced and left equiv-

alent to A.

38

A canonical form for row reduction is provided by the Popov form (see Kailath, 1980).
An algorithm supporting the running time stated above for transforming R to Popov
form P , as well as computing the unimodular matrix U such that A = UP , has recently
been given by Sarkar and Storjohann (2011).

The partial linearization technique of Section 6 is applicable to the case of integer
matrices and should be useful for integer matrix computations. Some of the other ideas
in this paper also carry over to the case of integer matrices. For example, any nonsingular
A ∈ Zn×n can be decomposed as A = UH where 2 does not divide detU and H is in
Hermite form with powers of 2 on the diagonal. The main difficulty to compute such a
decomposition deterministically in about the same time as required to multiply together
two integer matrices with similar size entries as A is the presence of carries in integer
arithmetic. The extension of high-order lifting to integer matrices (Storjohann, 2005)
uses a shifted number system which requires the choice of a random shift.

References

Beckermann, B., Labahn, G., 1994. A uniform approach for the fast computation of
matrix–type Padé approximants. SIAM Journal on Matrix Analysis and Applications
15 (3), 804–823.

Beckermann, B., Labahn, G., 1997. Recursiveness in matrix rational interpolation prob-
lems. Journal of Computational and Applied Math 77, 5–34.

Beckermann, B., Labahn, G., Villard, G., 1999. Shifted normal forms of polynomial ma-
trices. In: Dooley, S. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC’99. ACM Press, New York, pp. 189—196.

Beckermann, B., Labahn, G., Villard, G., 2006. Normal forms for general polynomial
matrices. Journal of Symbolic Computation 41 (6), 708–737.

Dixon, J. D., 1982. Exact solution of linear equations using p-adic expansions. Numer.
Math. 40, 137–141.

von zur Gathen, J., Gerhard, J., 2003. Modern Computer Algebra, 2nd Edition. Cam-
bridge University Press.

Giesbrecht, M., 1995. Fast computation of the Smith normal form of an integer ma-
trix. In: Levelt, A. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC’95. ACM Press, New York, pp. 110–118.

Giorgi, P., Jeannerod, C.-P., Villard, G., 2003. On the complexity of polynomial matrix
computations. In: Sendra, R. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’03. ACM Press, New York, pp. 135–142.

Hafner, J. L., McCurley, K. S., Dec. 1991. Asymptotically fast triangularization of ma-
trices over rings. SIAM Journal of Computing 20 (6), 1068–1083.

Howell, J. A., 1986. Spans in the module (Zm)s. Linear and Multilinear Algebra 19,
67—77.

Ibarra, O., Moran, S., Hui, R., 1982. A generalization of the fast LUP matrix decompo-
sition algorithm and applications. Journal of Algorithms 3, 45–56.

Jeannerod, C.-P., September 2006. LSP Matrix Decomposition Revisited. Tech. Rep.
Research Report 2006-28, École normale supérieure de Lyon, LIP.

Jeannerod, C.-P., Villard, G., 2005. Asymptotically fast polynomial matrix algorithms
for multivariable systems. Int. J. Control 72 (11), 1359–1367.

Kailath, T., 1980. Linear Systems. Prentice Hall, Englewood Cliffs, N.J.

39

Kaltofen, E., Krishnamoorthy, M. S., Saunders, B. D., 1990. Parallel algorithms for ma-
trix normal forms. Linear Algebra and its Applications 136, 189–208.

Kaplansky, I., 1949. Elementary divisors and modules. Trans. of the Amer. Math. Soc.
66, 464–491.

Moenck, R. T., Carter, J. H., 1979. Approximate algorithms to derive exact solutions to
systems of linear equations. In: Proc. EUROSAM ’79, volume 72 of Lecture Notes in
Compute Science. Springer-Verlag, Berlin-Heidelberg-New York, pp. 65–72.

Mulders, T., Storjohann, A., 2000. Rational solutions of singular linear systems. In:
Traverso, C. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation: IS-
SAC’00. ACM Press, New York, pp. 242–249.

Mulders, T., Storjohann, A., 2003. On lattice reduction for polynomial matrices. Journal
of Symbolic Computation 35 (4), 377–401.

Mulders, T., Storjohann, A., 2004. Certified dense linear system solving. Journal of Sym-
bolic Computation 37 (4), 485–510.

Sarkar, S., Storjohann, A., 2011. Normalization of row reduced matrices. In: Leykin, A.
(Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’11. ACM
Press, New York, pp. 297–303.

Storjohann, A., 2000. Algorithms for matrix canonical forms. Ph.D. thesis, Swiss Federal
Institute of Technology, ETH–Zurich.

Storjohann, A., 2002. High–order lifting. Extended Abstract. In: Mora, T. (Ed.), Proc.
Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’02. ACM Press, New
York, pp. 246–254.

Storjohann, A., 2003. High–order lifting and integrality certification. Journal of Symbolic
Computation 36 (3–4), 613–648, extended abstract in Storjohann (2002).

Storjohann, A., 2005. The shifted number system for fast linear algebra on integer matri-
ces. Journal of Complexity 21 (4), 609–650, festschrift for the 70th Birthday of Arnold
Schönhage.

Storjohann, A., 2006. Notes on computing minimal approximant bases. In: Decker, W.,
Dewar, M., Kaltofen, E., Watt, S. (Eds.), Challenges in Symbolic Computation Soft-
ware. No. 06271 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
URL http://drops.dagstuhl.de/opus/volltexte/2006/776

Storjohann, A., Mulders, T., 1998. Fast algorithms for linear algebra modulo N . In:
Bilardi, G., Italiano, G. F., Pietracaprina, A., Pucci, G. (Eds.), Algorithms — ESA
’98. LNCS 1461. Springer Verlag, pp. 139–150.

Villard, G., 1995. Generalized subresultants for computing the Smith normal form of
polynomial matrices. Journal of Symbolic Computation 20 (3), 269—286.

Wilkening, J., Yu, J., 2011. A local construction of the Smith normal form of a polynomial
matrix. Journal of Symbolic Computation 46 (1), 1–22.

40

