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Definition

Computational problems in exact linear algebra include computing an exact solution

of a system of linear equations with exact scalars, which can be exact rational num-

bers, integers modulo a prime number, or algebraic extensions of those represented by
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their residues modulo a minimum polynomial. Classical linear algebra problems are

computing for a matrix its rank, determinant, characteristic and minimal polynomial,

and rational canonical form (= Frobenius normal form). For matrices with integer and

polynomial entries one computes the Hermite and Smith normal forms. If a rational

matrix is symmetric, one determines if the matrix is definite.

Algorithms For Dense Matrices

The building block of efficient algorithms for dense linear algebra is matrix multipli-

cation. Because the complexity of this problem remains an open question, the running

times of algorithms are stated in terms of a parameter ω such that two n× n matrices

over a ring can be multiplied together in O(nω) ring operations. The standard algo-

rithm has ω = 3, and the best known estimates by [Coppersmith and Winograd 1990]

allow ω ≈ 2.376. Most practical implementations use Strassen-Winograd’s algorithm

which has ω ≈ 2.807.

The complexity of many linear algebra problems over a field are linked to that of

matrix multiplication. The following shows Winograd’s 1970 reduction of multiplication

to inversion: 
In A

In B

In


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More strikingly, techniques by Baur and Strassen from 1982 and Strassen from 1973

give a reduction of matrix multiplication to determinant in the arithmetic circuit model.

Echelon Forms over a Field

The main tool for solving linear algebra problems over a field K, including determi-

nant and inverse for a square and nonsingular matrix, and nullspace bases for a matrix
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of arbitrary shape and rank, is transformation to echelon form. For an input matrix

A ∈ Kn×m, the classical formulation of this problem asks as output a nonsingular

U ∈ Kn×n together with H = UA in (row) echelon form — nonzero rows in H precede

zero rows and the first nonzero entry in each nonzero row (a pivot entry) is to the right

of the pivot entries in previous rows. The number of nonzero rows of H is the rank r

of A and the set of column indices containing the pivot entries is the rank profile of

A. There are many variations, including the Gauss–Jordan canonical form which has

pivot entries in H equal to 1 and entries above pivots zeroed, and the LSP decompo-

sition of Ibarra, Moran and Hui which expresses A as a product of matrices of special

shape. By employing a divide and conquer approach to recursively reduce to matrix

multiplication, transformation to echelon form costs O(nmrω−2) arithmetic operations

from K. [Dumas et al. 2008] present highly optimized algorithms and implementations

for computing echelon forms and related matrix decompositions, for a variety of finite

fields.

Transformation to echelon form uses O(nmrω−2) field operations to solve a lin-

ear system: given a target vector b either produce a solution v such that Av = b or

determine that the system is inconsistent. Mulders and Storjohann [ISSAC 2000] give

an algorithm for linear solving that uses O((n+m)r2) field operations, which is o(nm)

when r ∈ o(
√

min(n,m)). For computing the rank, the use of essentially quadratic

preconditioners (see below) to achieve generic rank profile gives a Monte Carlo ran-

domized algorithm that uses (nm+ rω)1+o(1) field operations, which is (nm)1+o(1) when

r ∈ O((nm)1/ω).

Frobenius Form over a Field

For an n × n matrix A over K, the block diagonal Frobenius form F = TAT−1 =

Diag(Cf1 , Cf2 , . . . , Cfl) is a canonical form for the set of matrices similar to A. Each
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diagonal block Cfi is the companion matrix of a monic fi ∈ K[x] and fi divides fi+1

for all 1 ≤ i ≤ l − 1. The minimal polynomial of A is fl and the characteristic poly-

nomial cA(x)
def
= det(xI −A) is equal to the product f1f2 · · · fl — of which the constant

coefficient is the determinant of A. The problem of computing the Frobenius form

and invariants have received a lot of attention. Making use of Keller-Gehrig’s 1985

algorithm for the characteristic polynomial, Giesbrecht in 1993 gave a randomized re-

duction to matrix multiplication, for sufficiently large fields, for computing F together

with a transformation matrix T such that F = TAT−1. In 2000 Eberly gave, for the

same problem, a Las Vegas algorithm with running time O(nω log n) that works for any

field, and Storjohann an O(nω(log n)(loglogn)) deterministic algorithm. Most recently,

[Pernet and Storjohann 2007] show that if cardinality(K) ≥ 2n2, the form itself can be

computed in a Las Vegas fashion using an expected number of O(nω) field operations,

matching the lower bound for this problem.

Division-Free Algorithms

Consider an n × n input matrix A over an abstract commutative ring R, that is,

when no divisions are possible. Although the characteristic polynomial cA(x) ∈ R[x] is

well defined over R, the fastest known algorithms mentioned above to compute it use

divisions, and directly applying Strassen’s 1973 removal of divisions technique adds a

factor of n to their cost. [Kaltofen and Villard 2004] give a division free algorithm for

the characteristic polynomial with running time O(n2.697263). The same cost estimate

holds for division-free computation of the adjoint of A. An open problem is to obtain

a division-free algorithm to compute cA(x) using nω+o(1) operations.
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Fast Bit Complexity

For linear algebra problems over integer matrices, the sizes (numbers of digits) of

integers involved in the computation and the answer affect the running time of the

algorithms used. For example, the determinant of an A ∈ Zn×n can have size at most

(n log ‖A‖)1+o(1), where ‖A‖ denotes the largest entry in absolute value. Classical meth-

ods, such as working modulo a basis of primes and reconstructing using Chinese re-

maindering, require (nω+1 log ‖A‖)1+o(1)
bit operations to compute detA.

Many problems on integer matrices, such as diophantine system solving and de-

termining the structure of finitely presented abelian groups, are solved by transforming

an input matrix to Hermite and Smith canonical form. The Hermite form H = UA is in

echelon form and the Smith form S = V AW = Diag(s1, s2, . . . , sr, 0, . . . , 0) is diagonal

with si−1 dividing si 6= 0 for all 1 < i ≤ r. The transformation matrices U , V and W are

invertible over Z (that is, they have determinant ±1). In 1983, Domich showed how to

control intermediate expression swell during the computation by working modulo the

determinant, and matrix multiplication is introduced by Hafner and McCurley in 1989.

Since the transformation matrices to achieve the forms are not unique, care must be

taken to produce ones with good bounds on the size of entries. Storjohann’s dissertation

from 2000 gives a survey of work up to that date, and describes deterministic algorithms

that take as input an A ∈ Zn×m of rank r, and compute the the Hermite and Smith

form, together with transformation matrices, in time (nmrω−1 log ‖A‖)1+o(1)
. Note that

if n = m = r this cost estimate becomes (nω+1 log ‖A‖)1+o(1)
, with the exponent of n

in this bit complexity estimate 1 higher than that for the corresponding algebraic cost.

Much recent effort has focused on reducing or eliminating, for a variety of problems,

the commonly occurring +1 in the exponent of bit complexity estimates. One of the

initial efforts in this direction is Eberly, Giesbrecht and Villard’s Monte Carlo algorithm
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from 2000 for computing the determinant and Smith form of a nonsingular matrix in

(n2+ω/2(log ‖A‖)3/2)1+o(1)
bit operations.

Linear System Solving

Already in 1982, Dixon showed that the algebraic analogue of numerical iterative re-

finement, combined with rational number reconstruction, can be used to compute A−1b

for a nonsingular A ∈ Zn×n and b ∈ Zn×1 with a cost that is softly cubic in n instead

of quartic. Storjohann’s high-order lifting technique incorporates matrix multiplication

to compute A−1b in an expected number of (nω log ‖A‖)1+o(1) operations.

The general case of the linear solving problem, when A has arbitrary shape

and rank, is more subtle: a solution vector may not exist, and if solution vectors do

exist they may not be unique and have fractional entries. The classical approach of

transforming A to echelon form, or to Hermite/Smith form in case a diophantine solu-

tion is desired, solves the problem completely but currently has cost (nmrω−1d)
1+o(1)

bit operations. Giesbrecht in 1997 introduced the technique of combining random ra-

tional solutions to produce a diophantine solution, should one exist, and in the next

year Giesbrecht, Lobo and Saunders show how to compute certificates of inconsistency.

Based on these ideas, Mulders and Storjohann in 2004 give Las Vegas algorithms with

cost (nmrω−2 log ‖A‖)1+o(1)
for either proving inconsistency, or producing a solution

vector v that has a minimal size denominator among all solution vectors, in particular

a diophantine solution when one exists.

Integer Matrix Invariants and Certificates

Let A ∈ Zn×n. Extensions of the division-free algorithms of Kaltofen and Villard men-

tioned above compute the Frobenius form (and hence characteristic polynomial) and

Smith form in a randomized Monte Carlo fashion in n2.697263(log ‖A‖)1+o(1) bit op-
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erations. A main open problem is to compute the characteristic polynomial of A in

(nω log ‖A‖)1+o(1) bit operations.

[Storjohann 2005] combines fast nonsingular rational system solving with other

ideas to get an algorithm for computing detA in an expected number of (nω(log ‖A‖)1+o(1)

bit operations (Las Vegas). This is currently the fastest algorithm for the determinant.

For computing the rank r in case A is singular, the fastest known Monte Carlo al-

gorithm uses essentially quadratic preconditioning and projection modulo a random

prime and completes in (n2 log ‖A‖+ rω)
1+o(1)

bit operations. The fastest known Las

Vegas algorithm for rank has expected running time (n2rω−2 log ‖A‖)1+o(1)
.

Freivald’s famous 1979 quadratic time certificate for matrix product assays the

equation BC −D = 0 in a Monte Carlo fashion by projecting with a random vector.

[Kaltofen et al. 2011] use the Las Vegas algorithms mentioned above to obtain ran-

domized algorithms that certify the rank, determinant, and positive semidefitniteness

of A in a Monte Carlo fashion in (n2d)
1+o(1)

bit operations.

Lattice Basis Reduction

The seminal 1982 paper of Arjen Lenstra, Hendrik Lenstra Jr and László Lovász intro-

duced the famous LLL lattice basis reduction algorithm: given an A ∈ Zn×m, the LLL

algorithm finds a basis for the Z-lattice generated by the rows of A that consists of

nearly orthogonal (and thus relatively short) vectors. Originally applied to problems in

computer algebra and algebraic number theory, many more applications have been dis-

covered in areas such as cryptography and communications theory. The current state of

the art for LLL-type reduction is an algorithm with cost that is softly linear in log ‖A‖

[Novocin et al. 2011].

Claus-Peter Schnorr has shown there exists a continuum of algorithms between

those solving the shortest vector problem (shown to be NP-hard by Atjai) and finding
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an approximation of the shortest vector as produced by LLL. A survey of recent results

is given by [Hanrot et al. 2011].

Matrices with Polynomial Entries

Let degA denote the maximal degree of entries in an A ∈ K[x]n×m. Because of the

natural analogy between K[x] and Z, many of the algorithms supporting complexity

results stated above for integer matrices have analogues over K[x] that support the same

complexity bound, but now counting field operations from K and with degA replacing

log ‖A‖: these include in particular nonsingular system solving and determinant in

expected time (nω degA)1+o(1) field operations.

A nearly optimal Las Vegas randomized algorithm to compute A−1 is given by

[Storjohann 2011]. As an application, given any scalar matrix B ∈ Kn×n, the sequence

I, B,B2, . . . , Bn ∈ Kn×n of matrix powers can be computed using an expected number

of (n3)
1+o(1)

field operations from K by computing (xIn−B)−1. Currently, the analogous

result for integer matrix inversion has only been established for well-conditioned input.

A concept with many applications for polynomial matrices that has no natural

analogue for integer matrices is minimal approximant bases. Given a matrix power

series G ∈ K[[x]]n×m with m ≤ n, and an approximation order d, these are nonsingular

n× n polynomial matrices M (with minimal row degrees) such that MG ≡ 0 mod xd.

Beckermann and Labahn’s algorithm from 1994 is adapted to exploit matrix multipli-

cation in [Giorgi et al. 2003], reducing the cost of computing M to (nω degA)1+o(1) field

operations from K. As an application, they give a Las Vegas algorithm algorithm with

same cost bound for computing, for a nonsingular A ∈ K[x]n×n, a row reduced form:

a matrix R and unimodular matrix U such that A = UR, with degrees of rows of R

minimal among all matrix equivalent to A under unimodular pre-multiplication.
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Parallel Algorithms

There are several theoretical and practical models of parallel computation over an ab-

stract field. One is the arithmetic synchronous circuit model, where the parallel time

is the depth of the acyclic computation digraph with the arithmetic operations per-

formed at the bounded fan-in, bounded fan-out vertices. Equality tests can be allowed

in a decision tree model. It was shown by Csanky in 1976 that many linear algebra

problems, such as the determinant of an n× n integer matrix, can be computed on an

arithmetic circuit of depth O((log n)2). In [Kaltofen and Pan 1992], the total size of

the circuit was reduced to nω+o(1) via Wiedemann’s method (see below), thus obtaining

a processor efficient solution. Those circuits are valid over any field and have random

elements as inputs so that with high probability division by zero is avoided in all ver-

tices that perform divisions. The construction fails for the characteristic polynomial.

A reference is the book [Bini and Pan 1995].

Linear algebra problems can be used to define low level complexity classes.

Algorithms For Sparse Matrices

Exact linear algebra computations with sparse matrices, i.e., matrices that have many

entries equal 0, originated from the matrix problems that arise in integer factoring al-

gorithms based on Pollards quadratic sieve: there the entries are integers modulo 2, and

initially sparsity preserving echelon form methods, which today are known as “super-

LU,” were deployed. Douglas Wiedemann’s 1986 IEEE Transactions on Information

Theory paper on Krylov space-based iterative algorithms in exact arithmetic has had

a far-reaching impact, as it provides a complexity model which we describe next.
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Sparse and Black Box Algorithms

Black box matrices are represented by a procedure that performs a matrix-times-vector

product. One seeks algorithms that call the procedure O(n) times (for a, say, n ×

n matrix) and with an additional n2+o(1) scalar operations in the field of entries to

complete their tasks. In addition, one restricts to O(n) additional intermediate storage

locations for auxiliary scalars, excluding the storage that the black box uses. Thus, one

gets an essentially-quadratic time, linear space solution for matrices whose black box

procedures run in n1+o(1) arithmetic operations and whose scalar arithmetic suffers no

expression swell, such as matrices with n1+o(1) non-zero entries over a finite field.

Wiedemann’s approach has at least two drawbacks. One is that the use of “bi-

directional Lanczos-like” iteration that over a finite field can lead to self-orthogonal

vectors (“unlucky projections”). A second is that in normal situations the exact di-

mension of the Krylov subspace can be as large as Ω(n), thus requiring many black

box calls. In contrast, numerical methods use the fact that the approximate dimension

of the Krylov subspace is small and a good approximation to the solution is found

early. The problem of unlucky projections is dealt with by preconditioning the black

box matrix, and today we have a wealth of fast preconditioners. The dimension of the

Krylov subspace is reduced by projecting simultaneously with blocks of β vectors. The

latter can reduce the number of required black box calls to (1 + ε)n, or O(n/β) if

parallelism is utilized.

The algorithms for black box matrices known today can compute a solution to

a linear system, a random nullspace vector, the minimal polynomial, determinant and

rank of a black box matrix within the stated complexity measures. All algorithms are

probabilistic, and rank is Monte Carlo. Blocking can also improve the success probabil-

ities. Rank certification in the black box model constitutes a major open problem. The
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best algorithm known for the characteristic polynomial, by Gilles Villard, has higher

asymptotic complexity.

Black box algorithms apply to matrices over the rational numbers, either by

Chinese remaindering the solution and subsequently using rational vector recovery,

or by other modular techniques. For example, the Smith normal form of a black box

integer matrix is computed by Giesbrecht in 2001 from the characteristic polynomial

after preconditioning. The length of intermediate integers in sparse rational solvers has

been reduced by Eberly et al. [ISSAC 2007] by blocking, like was done for the dense

algorithms by Kaltofen and Villard discussed above.

The literature on black box exact linear algebra computation is quite large. A

collection of preconditioners with reference to most literature before 2002 is [Chen et al.

2002]. The most recent analysis of blocking over finite fields [Eberly 2010].

Finally, we mention the open source LinBox library [http://www.linalg.org]

which provides C++ efficient implementations for many black box algorithms that

can accommodate the scalar arithmetic in a plug-and-play generic way.

Structured Matrix Algorithms

Black box algorithms apply generically to structured matrices, such as Toeplitz and

Vandermonde matrices. However, the resulting complexity is quadratic in their dimen-

sions, and essentially-linear complexity can in some cases be achieved.

Toeplitz and Hankel Matrices

In 1981 Brent, Gustavson, Yun utilized the connection between Toeplitz/Hankel solving

and the extended Euclidean algorithm for deterministically computing solutions to non-

singular Toeplitz systems in O(n(log n)2 loglogn) arithmetic operations. Their solution

borrows ideas from Israel Gohberg’s displacement rank representations, but allows for
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singularity in the arising submatrices. The jumps in the Padé table, which correspond to

sequences of zero discrepancies in the Berlekamp/Massey algorithm, amount to drops in

the polynomial remainder degrees that are overcome by embedded polynomial divisions

in the half GCD algorithm. Essentially-linear complexity is achieved by polynomial

arithmetic that utilizes the fast Fourier transform.

Matrices of Small Displacement Rank

The notion of displacement rank generalizes the notion of Toeplitz matrix. A ma-

trix of displacement rank α has a succinct representation, as a sum of LU products,

where both L and U are Toeplitz. The notion is closed under inverses, meaning that

the inverse has displacement rank ≤ α + 2. Gohberg’s and Koltracht’s O(αn2) solvers

could be improved in 1980 independently by Bitmead and Anderson and by Morf to

arithmetic complexity α2n1+o(1) by Strassen-like divide and conquer techniques. The

algorithms does not allow for singular submatrices. In 1994, Kaltofen introduced ran-

domized preconditioning with constant displacement rank to guarantee non-singularity

with high probability, on which all subsequent exact algorithms over abstract fields rely.

An arithmetic complexity of αω−1n1+o(1) is achieved in [Bostan et al. 2007].

The theory of displacement rank applies to other types of matrices, such as

Cauchy and Vandermonde matrices. For block Toeplitz and Hankel matrices, the Eu-

clidean algorithm on matrix polynomials can be used. A scalarization to blocks of

polynomials is Beckermann’s and Labahn’s notion of σ-bases, which can be computed

deterministically asymptotically fast and by which structured linear problems can be

solved.
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