Automated Fine Tuning of Probabilistic
Self-Stabilizing Algorithms

Saba Aflaki
School of Computer Science
University of Waterloo, Canada

Joost-Pieter Katoen
Software Modeling and Verification Group
RWTH Aachen University, Germany
Email: katoen@cs.rwth-aachen.de

Abstract—Although randomized algorithms have widely been
used in distributed computing as a means to tackle impossibility
results, it is currently unclear what type of randomization
leads to the best performance in such algorithms. This paper
proposes three automated techniques to find the probability
distribution that achieves minimum average recovery time for
an input randomized distributed self-stabilizing protocol without
changing the behavior of the algorithm. Our first technique is
based on solving symbolic linear algebraic equations in order
to identify fastest state reachability in parametric discrete-time
Markov chains. The second approach applies parameter synthesis
techniques from probabilistic model checking to compute the
rational function describing the average recovery time and then
uses dedicated solvers to find the optimal parameter valuation.
The third approach computes over- and under-approximations of
the result for a given parameter region and iteratively refines the
regions with minimal recovery time up to the desired precision.
The latter approach finds sub-optimal solutions with negligible
errors, but it is significantly more scalable in orders of magnitude
as compared to the other approaches.

I. INTRODUCTION

Randomization techniques are frequently used in distributed
algorithms mainly as a means of breaking symmetry when
this is impossible in a deterministic setting. In particular,
processes take an action based on a probabilistic function and
communicate it to the rest of the network. The correctness of
such algorithms stems from the zero probability of reaching a
state infinitely often where the goal of the algorithm is not met.
Even if processes can solve the problem without randomization
(e.g., by employing unique IDs), it may lead to breaking
symmetry “faster”. Examples of probabilistic distributed al-
gorithms include seminal algorithms for leader election [1],
finding maximal independent set [2], crash consensus [3], and
self-stabilization [4]. Most research efforts on probabilistic
distributed algorithms focus on tackling impossibility results
and not so much on how fast such algorithms converge to
a solution. However, fast convergence times are crucial for
the performance of the algorithms, as it decreases the number

Matthias Volk
Software Modeling and Verification Group Department of Computing and Software
RWTH Aachen University, Germany

Email: saba.aflaki@uwaterloo.ca Email: matthias.volk@cs.rwth-aachen.de

Borzoo Bonakdarpour

McMaster University, Canada
Email: borzoo@mcmaster.ca

Arne Storjohann
School of Computer Science
University of Waterloo, Canada

Email: astorjoh@uwaterloo.ca

of computation steps and therefore the needed computing
resources.

A crucial contributing factor in the performance of prob-
abilistic algorithms is the choice of the employed prob-
ability distribution. For instance, an empirical study [5]
shows a counter-intuitive result that in Herman’s probabilistic-
stabilizing token ring algorithm [4], for certain sizes of net-
work, using a biased coin leads to faster average recovery time
than using a fair coin. We argue that for most probabilistic
distributed algorithms, it is currently unclear what choice
of a probability distribution results in faster termination of
the algorithm, or higher probability of obtaining a correct
solution. Lack of this knowledge is primarily due to the
incredible subtlety of purely analytical methods to characterize
the performance of probabilistic distributed algorithms. The
result in [5] motivates even a deeper and more challenging
research problem that we call fine tuning:

Given a probabilistic distributed algorithm, is it
possible to develop an automated technique that
can generate a probability distribution function that
results in deriving the best performance for the
algorithm without changing its behavior?

This paper addresses the aforementioned problem in the con-
text of probabilistic self-stabilizing systems. Self-stabilization
is a versatile type of fault-tolerance, where the system is
guaranteed to reach a good state after occurrence of a tran-
sient fault. Following the results in [6], [7], our choice of
performance metric is average recovery time. In particular,
we propose a fully automated technique that takes as input
a probabilistic self-stabilizing algorithm, where processes ex-
ecute their actions with some probability, and generates as
output the probability function based on which, the input
algorithm exhibits the minimum average recovery time. To
better describe our approach, consider Algorithm 1 for solving
distributed self-stabilizing vertex coloring [8]. Each process
7 calculates the maximum color available not taken by its

Algorithm 1 Probabilistic-stabilizing Vertex Coloring (process)

1: Variable: ¢, : int € [0, B|
2: Guarded command:

Cr 7é ma'x({ov"' aB}\Uﬂ—’eN(ﬂ—) c‘n") — D Cp = max({0,~-- 7B}\U7r’eN(ﬂ—) C‘n")+(1_p) tCr

= Cr;

neighbors (denoted by N(w)). If its own color ¢, is not
equal to this value, it will change its color to this value with
probability p. Otherwise, with probability 1 — p the color does
not change. Our technique:

o First transforms such an algorithm into a parametric
Markov chain (PMC). Fig. 1 shows the PMC of Al-
gorithm 1 for two processes, where grey states are
legitimate, since the colors of the two processes differ,
and white states are non-legitimate'. Such a PMC can be
represented by a symbolic transition probability matrix
(TPM), where each element shows the probability of one-
step reachability of each state from other states:

00 11 01 10
00[1-p 0 g %
01| O 0 1 0
10| O 0 0 1

o Next, to compute the best probability function (e.g., p in
Fig. 1), we apply one of the following three approaches:

1) Using the theory of absorbing Markov chains [10],
the first approach reduces the reachability analysis
of legitimate states to computing the inverse of
a sub-matrix of a canonical representation of the
TPM obtained in the previous step. This inverse
is then used to generate a rational function. The
values of p in the interval [0,1] that minimize the
expected recovery time must be a subset of the set
of real roots of the numerator of the derivative of
the computed rational function.

2) The second approach uses model-checking tech-
niques for obtaining the rational function. Here, the
language-theoretic approach of state elimination is
applied on the PMC to compute the rational function
representing the expected recovery time. Computing
the roots of this function as before leads to the
optimal probability values.

3) Finally, the third approach computes over- and
under-approximations of the average recovery time
for all parameter values inside a given parameter
region R C [0, 1]. By iteratively refining the regions
which lead to small convergence times the optimal
probability values can be approximated up to the
desired precision.

We emphasize that our techniques do not change the seman-
tics (i.e., the structure of the transition system) of the input

'We note that generating the Markov chain of a probabilistic algorithm can
be accomplished using standard state exploration techniques [9].

Fig. 1. PMC of probabilistic vertex coloring (Alg. 1) for two processes.

protocol. They merely identify the probability? that results in
the best average recovery time. Hence, our techniques can
potentially be applied in dealing with network parameters
and more importantly in identifying the best distribution for
probabilistic schedulers. We also note that our techniques are
completely independent of the probabilistic scheduling policy
in the underlying PMC. In case the type of scheduler is of
importance, one can easily combine the techniques introduced
in this paper with the composition method in [11].

The algorithm of the first approach is implemented using
symbolic computation techniques to calculate the optimum
probability function that results in minimum average recovery
time of stabilizing programs. For the second and third ap-
proaches, we extended the existing techniques of computing
the rational function [12] and approximation via parameter
lifting [13], respectively.

We demonstrate the effectiveness of the three approaches
using two case studies: (1) Herman’s probabilistic-stabilizing
token ring algorithm [4], and (2) the above vertex color
algorithm [8]. Our experiments showed that for the vertex
coloring algorithm the two exact techniques yield the optimal
solution within seconds. For Herman’s algorithm with more
than 10 processes the exact techniques do not scale as well.
The third approximation approach scales better and we are
orders of magnitude faster than the exact techniques while
still ensuring an approximation error below 1%.

Organization: The rest of the paper is organized as
follows. Section II describes our computational model and
introduces (parametric) Markov chains. Section III presents the
concept of self-stabilization and formally states our fine-tuning
problem. Section IV explains the first symbolic algorithm and
its efficient implementation. Section V explains the second
approach using state elimination and Section VI introduces
the approximation approach. Section VII presents the exper-
imental results and evaluates the three approaches. Related

2We consider single probabilities, i.e. one parameter, but the methods can
also be extended to probability distributions with multiple parameters.

work is discussed in Section VIII. Finally, we make concluding
remarks and discuss future work in Section IX.

II. COMPUTATIONAL MODEL AND SELF-STABILIZATION

In this section, we review the preliminary concepts on the
computational model of probabilistic distributed protocols and
self-stabilization.

A. Computational Model

A distributed program D consists of a finite set II of
processes and a finite set V' of discrete variables, where each
variable v € V ranges over a finite domain D,,. A state s of D
is determined by a value assignment to all variables, denoted
by a vector

s = <'Ula---7'U|V\>-

The value of a variable v in a state s is indicated by v(s).
The state space of D (denoted S) is the full set of all possible

states:
S= 1] D
veV

A state predicate is a subset of S. Each process m € II is
associated with a wrifte-set and a read-set. The read-set of a
process 7 (denoted R, is a subset of V. Following the shared-
memory model, two distinct processes 7,7’ € II are called
neighbors if R, N R, # (). We denote the set of neighbors of
a process m by N (). The write-set of a process 7 (denoted
W) is a subset of R, such that for each two distinct processes
m, 7w €11, we have W, N W, = 0.

To concisely specify the behavior of a process 7, we utilize
a finite set of probabilistic guarded commands (denoted G)
of the following form:

(label) : (guard) — p; : (statementy) + --- +

Dn : (statementy,);

where the guard is a Boolean expression over R;. Each
statement; updates variables in W with probability p; and
causes transitioning from one state s to another s’, denoted
by g(s) = s, and when the guard is true, one statement is
executed according to a probability distribution such that

Zpi =1
i=1

Note that the probability p; can be represented by a parameter
instead of a concrete value.

Definition 1 (Computation): A computation o of a dis-
tributed program is an infinite sequence of states:

g = 508182 -

where
o forall i >0, s; € S (called the state of D at time 1),
o for all ¢ > 0, there exists a guarded command g such that
9(s:) = Si41. u
A state with no outgoing transitions is a terminating state.
We consider a self-loop on such states, so that any computation
that reaches them stutters there infinitely.

)

Fig. 2. Example of a vertex coloring problem

Example 1: Throughout the paper, we utilize the probabilis-
tic distributed vertex coloring algorithm of [8] as a running
example. A solution to the vertex coloring problem is an
assignment of colors to vertices (i.e., processes) of a graph
from a given set of colors subject to the constraint that no
two adjacent vertices share the same color. Here, adjacency
is determined by the neighborhood relation. Algorithm 1 runs
on each process 7 in the system. Each process 7 maintains a
variable c,, which represents the color of 7 and ranges over
D, = [0,B], where B is the maximum vertex degree in the
graph. Processes representing adjacent vertices in the graph are
neighbors in the distributed program (they can read the color of
their neighbors). For example, for Fig. 2, Algorithm 1 declares
two processes and two variables each with domain [0, 1]. The
state space of the program is

S = {80 = <0,0>781 = <O, 1>,82 = <1,0>,83 = <1, 1>}

B. Probabilistic Distributed Programs as Discrete-Time
Markov Chains

Discrete-time Markov Chains (DTMCs) are transition sys-
tems equipped with probabilities. By modeling distributed
programs with DTMCs, one can reason about their correctness
and compute their expected performance.

Definition 2 (DTMC): A Discrete-time Markov Chain is a
tuple D = (5, So, tinit, P, L) where,

e S is a finite set of states

e Sy is the set of initial states

o Linit : So — [0,1] is the initial state distribution such that

Z Linit(8) =1
IS
e P: S xS — [0,1] is the transition probability matrix
(TPM) such that

VseS: ZP(S,S/)Zl

s'eS

e L : S — 247 is the labeling function that identifies
which atomic propositions from a finite set AP hold in
each state.]

In Definition 2, if the transition probabilities include symbolic
values, it yields a parametric Markov chain (PMC) [14].

Definition 3 (PMC): A parametric Markov chain is a tuple
PD = (S, S0,U, tinit, P, L) where,
e 5,80, L are as defined in Definition 2,
o U= {uy,ua, - ,u,} is a finite set of real parameters,
o Linit - So — Fp is the initial state distribution and Fy is
the set of multivariate polynomials in u = (uq,- -, uy),
e P:S xS — Fy is the transition probability matrix. W

An evaluation function eval : U — R assigns real values to
parameters in the set U. Given an evaluation function eval and
a polynomial f € Fy, eval(f) denotes the value obtained by
replacing each parameter u; in f by eval(u;). An evaluation
function is valid for a PMC with parameter set U if the
induced TPM (Pcyq = eval(P) : S x S — [0, 1]) and initial
distribution (tingt,,,, = eval(timi) : S — [0,1]) satisfy the
following conditions:

o Vsc§: Z Pevai(s,s') =1
s'es
o D tiniteu(s) = 1.
s€So
The transition system of a process and, hence, a distributed
program can be modeled by a DTMC. The TPM of a process
can be trivially derived from its set of probabilistic guarded
commands.
Example 2: The TPMs of Algorithm 1 for processes m; and
mo in Fig. 2 are respectively the following:

00 11 01 10 00 11 01 10
00f(1-p O 0 »p 00|(1-p O p 0
11 0 1-p p O 11 0 1-p 0 »p
01| O 0 1 0 01| O 0 1 0
10| O 0 0 1 10| O 0 0 1

TPM(m) TMP (73)

Given an asynchronous scheduler, Fig. 1 illustrates the transi-
tion system of Algorithm 1 for processes 71 and 7o in Fig. 2.

III. FINE TUNING OF PROBABILISTIC
SELF-STABILIZATION PROGRAMS

A. Probabilistic Self-Stabilization and Recovery Time

A distributed program D is called self-stabilizing for state
predicate LS (called the set of legitimate states) iff: (1)
starting from any arbitrary initial state, every computation au-
tomatically converges to a legitimate state in a finite number of
steps, (2) after which it is guaranteed to remain in a legitimate
state as long as a fault does not occur. The first condition
is known as strong convergence and the second as closure.
Since strong convergence is a rather strict condition and has
led to several impossibility results, probabilistic convergence
and, hence, probabilistic stabilization under a probabilistic
scheduler was introduced [4].

Example 3: For example, in our vertex coloring problem,
the set of legitimate states is where each two neighboring
processes do not share a color:

LS = {s1 = (0,1), 55 = (1,0)}.

Our focus in this paper is on probabilistic stabilization. We
represent a probabilistic stabilizing program by a DTMC D =
(S, So, tinit, P, LS), where S = Sy (i.e., any arbitrary state
can be an initial state), and LS C S is the set of legitimate
states. Thus, in the sequel, we omit Sj.

Definition 4 (Recovery Path): Let D = (S, tinit, P, LS) be
the DTMC of a probabilistic stabilizing program, and s be

a state in S. A recovery path of D from state s is a finite
computation o, = sgSj - - - Sp, such that

e S9) =S,
o for all i € [0,n), we have
- S5 ¢ LS
- P(Si,SH_l) >0
e S, € LS |

We denote the set of all recovery paths from a state s by
or(8). The recovery probability of a recovery path o, is

P(o,) = [[Plsisinr)
1€[0,n)
Thus, the probability of recovery from a state s is

P(s)= Y P(o)

o€or(s)

Definition 5 (Probabilistic stabilization): A distributed
program D is probabilistic stabilizing iff the following
conditions hold:

e Probabilistic recovery: For all s € S, we have P(s) = 1.
o Closure: Vs € LS :Vrell: Vg€ G :g(s)e LS. N

The recovery time of a recovery path o, = sp---5s, iS
R(o,) = n. The expected recovery time for a state s is

Y P(o) R(o)

o€o,(s)

R(s) =

and the expected recovery time for a program D =
(S, L,L'm;t,P,L) is

ERT(D) =Y _ tinit(s) - R(s) (1)

seSs

Eq. 1 states that the expected recovery time of a stabilizing
program is calculated by summing the expected recovery time
of a state times the probability of starting the program in that
state over all states.

B. The Fine Tuning Problem

Our fine tuning problem takes as input the parametric
Markov chain of a probabilistic-stabilizing distributed program
PD and outputs a valid evaluation function that minimizes the
expected recovery time of PD.

Instance. A probabilistic-stabilizing program modeled by a
PMC PD = (S, SO = S, U, Lingts 1:)7 LS)

Fine tuning problem. Find an evaluation function eval,, :
U — R that is valid for PD and minimizes its expected
recovery time. That is,

eValmin = argmilll ERT(PD)

eva

In the following we present three approaches to solve this
problem.

IV. APPROACH 1: A SYMBOLIC LINEAR ALGEBRAIC
TECHNIQUE FOR COMPUTING MINIMUM EXPECTED
RECOVERY TIME

A. Absorbing DTMCs

We use the theory of absorbing DTMCs to reduce the
computation of expected recovery time of stabilizing programs
to the computation of absorption time in DTMCs. In this
section, we first define absorbing DTMCs. Next, we present
a mapping from stabilizing programs to absorbing DTMCs
such that the expected absorption time of transient states in
the absorbing DTMC is equivalent to the expected recovery
time of the stabilizing program.

Definition 6 (Absorbing DTMC): A
D = (S, So, tinit, P, L) is absorbing iff

e Absorption: It contains at least one absorbing state from

where there exists one and only one self-loop:

dse S:P(s,s)=1

DTMC

e Reachability: All non-absorbing (called transient) states
can reach at least one absorbing state. |

We denote the set of absorbing states of an absorbing
DTMC by A. Note that transient states are not required to be in
the set of initial states Sy. The reachability condition requires
for each transient state s the existence of a computation that
once it arrives in s at time ¢ (s; = s for ¢ > 0), it should be
able to reach an absorbing state at time j > i (s; € A).

Definition 7 (Absorption Time): The absorption time of a
state s € S in a computation o = sps; - - - starting from s is:

T(os) =min{i | so = s AVk €[0,i) : s ¢ AN s; € A}

We consider T'(os) = oo for computations that never reach an
absorbing state.]

B. Computing Recovery Time in Absorbing DTMCs

We use the canonical representation of the transition prob-
ability matrix of the absorbing DTMC. The canonical form of
representing an absorbing Markov chain with ¢ transient and
r absorbing states is as follows:

P= |:Qt><t

Rtxr
, 2
07“><t :| ()

Lrser

where (@) is a t X ¢ sub-matrix of one-step transition probability
among transient states, R is a ¢ X r sub-matrix of one-step
transition probability from transient states to absorbing states,
0 is a r x t zero sub-matrix and [is a 7 X r identity matrix
resulting from the self-loops at absorbing states.

The expected absorption time of the transient states of an
absorbing DTMC can be computed as follows [10]:

N=(Ye)E=u-@ s Q)
i=0

where € is a column vector of size ¢ filled with ones, N

is a column vector of size ¢ such that N(¢) is the expected

absorption time of the ith transient state, i.e., N(i) = T(0;).

C. Stabilizing Programs as Absorbing DTMCs

We exploit the two fundamental properties of stabilizing
programs, convergence and closure, to model a stabilizing pro-
gram D as an absorbing DTMC (denoted D*). This mapping
helps us employ Eq. 3 to compute the expected recovery time
of stabilizing programs.

a) Closure = Absorption: The closure property of
stabilizing programs states that once a program reaches a
legitimate state, it is trapped in the set of legitimate states
unless a transient fault occurs. This implies that entire set of
legitimate states can be viewed as an absorbing state. We will
justify this assumption shortly.

b) Convergence —> Reachability: Convergence en-
sures that every non-legitimate state has at least one path
to a legitimate state (now absorbing), which satisfies the
reachability property of transient states of absorbing DTMCs
in Def 6.

The transition probability matrix of a stabilizing program
with ¢ non-legitimate and r legitimate states can be divided
into 4 sub-matrices as follows if written in the proper order:

-LS LS
3
r Qixt Risxr
P= ,

0
~ \‘ 07’><t CTX’I“J

where @@, R, 0, and C' are the one-step transition probability
among —LS to —LS, -LS to LS, LS to —=LS, and LS
to LS states, respectively. The closure property ensures that
the transition probability from LS states to non-LS states is
zero leaving the lower left quarter of P all zeros. Converting
legitimate states to absorbing ones will modify P as follows:

-LS LS
n
~
r tht Rtxr
P* = ,
n
~ \‘ 07"><t I’I’X’I“J

where, I, is the identity matrix. Observe that P* is in the
form of an absorbing DTMC (Eq. 2). It is now easy to draw
a connection between the absorption time of transient states
in D* and the recovery time of states in —LS in D. As a
matter of fact, they are equivalent (the absorption time of a
transient state is the first time it reaches an absorbing state,
just as the recovery time of a non-legitimate state is the first
time it reaches a legitimate state). Hence, we use Eq. 3, Eq. 1,
and the fact that legitimate states have zero recovery time to
calculate the expected recovery time of a stabilizing program
as follows:

ERT(D*) = init(I — Q)~'&, 4)

where, init is a 1 x t row vector containing ¢;,;+(s) for each
s € LS. Recall from Eq. 3 that (I — Q)~'& produces a t x 1
column vector N of expected recovery times of non-LS states.
Thus, the dot product of init with N gives Eq. 1. For example,
the average recovery time of the program of Fig. 2 is derived
as follows:

101 p 0 o n 1
s 0y 9 []-4
c) Discussion: We modeled stabilizing programs with
absorbing DTMCs to use the fundamental matrix (Eq. 3) to
calculate the expected recovery time. Calculating the sum of
powers of a matrix, especially for large powers, is computa-
tionally expensive. Eq. 3 becomes particularly more interesting
in our case because it reduces calculating the sum of powers
of a matrix to calculating the weighted sum of the elements
of the inverse matrix. The latter does not involve finding the
inverse itself explicitly and takes less computational time. We
elaborate on the computation of the weighted sum of elements
of the inverse matrix in Section IV-D. The similarity, however,
implies that as far as absorption time of transient states
(equivalently, recovery time of non-LS states) is concerned,
we can represent the stabilizing program P with P*.

D. Symbolic Linear Algebraic Technique

We now explain how we compute Eq. 4. Observe that
ERT(D*) is the weighted sum of the elements of (I — Q)L
The dot product (I — Q)" 'é produces a column vector N
whose elements are the sum of the elements in each row of
(I — Q). Computing the dot product of init with N gives
the weighted sum of the elements of N, which by linearity of
addition is equal to the weighted sum of elements of (I—Q) L.
In the sequel, we describe the techniques we used from the
literature of symbolic computation.

We begin by estimating the size of the symbolic expression
irﬁ't([— @Q)~'&, a rational function in the variable p. The
matrix () is filled with integer polynomials in the variable
p. Let n be the dimension of @), let d be the degree of @)
(i.e., the maximal degree in p of all entries of (), and let
a be an upper bound for the number of bits in the binary
representation of any integer coefficient of any entry of (). The
total size of (number of bits to represent) () is then bounded by
n?(d+1)a. Now consider (I — Q)~!. By Cramer’s rule, each
entry (I — Q)L_Jl is equal to +B; ;/ det(I — Q), where B; ; is
a minor of I —) of dimension n — 1 and det(I — Q) is the
determinant of / — Q). The degrees of B; ; and det(/ — Q) are
thus bounded by (n —1)d and nd respectively, so on the order
of n times larger than the degree of). Moreover, the integer
coefficients of B, ; and det(l — @) are bounded in length by
O(n(a +logn +logd)) bits [15], so on the order of roughly
a factor of n larger than the length of the integer coefficients
in Q. This analysis shows that we can expect the size of the
single rational function init(I — Q)~'& to be about the same
as the size of the entire input matrix (), and the size of the
entire inverse (I —Q)~! will be on the order of n? times the
size of (). Because of the growth in degrees and bitlengths,

computing the entire inverse (I — @Q)~! explicitly, let alone
storing it in memory, would become prohibitively expensive
as n grows.

Fortunately, we can avoid the computation of (I — Q)~!
entirely by exploiting a simple homomorphic imaging scheme.
We choose a collection

X = (z:)o<i<nd+(n—1)d

of distinct integer points that are not roots of det(I — @), and
compute the rational numbers

= (Gt = @8 Iy .

Y ((W (I=Q)78) [p=s, 0<i<nd+(n—1)d

Fast polynomial interpolation [16, Section 10.2] and rational
function reconstruction [16, Section 5.7] can recover init(I —
Q)~'é from the list of independent and dependent values X
and), respectively. By far the dominant cost of this scheme
is to compute the evaluations). To this end, note that

(init(I — Q)™'8) lp=a,= init((I = Q) |p=a,) '€,

that is, we can first evaluate I — @ at the point p = x; to
obtain an integer matrix

A=(I-Q) ‘p:xw

then solve the nonsingular rational system Av = € for v, and
finally compute the dot product init v. In our implementation
we solved the systems Av = € using the Integer Matrix
Library (IML) [17], a highly optimized C library for integer
matrix computations. The evaluations (I — Q) |p=, and the
reconstruction of the rational function init(I — Q)~'& from
X and)Y were performed using the Maple computer algebra
system>. We were able to call IML directly from Maple using
Maple’s DefineExternal facility to link to the library.

Once FRT(D*) has been computed, the values of p in
the interval [0, 1] that minimize the expected recovery time
must be a subset of the set of real roots of the derivative
of the numerator of ERT(D*). These roots can be found
using Maple’s realroots or RootFinding[Isolate]
procedures.

V. APPROACH 2: PARAMETER SYNTHESIS VIA RATIONAL
FUNCTION

In this section, we apply an already existing parameter
synthesis approach [12] used in probabilistic model checking
to compute the rational function representing the expected
recovery time. Again, we use the parametric Markov chain
D* obtained from the stabilizing program D as input. The
approach then operates on the PMC D* and is twofold:

1) On the given PMC D*, we first compute the expected
recovery time ERT(D*) in the form of a rational
function 1.

2) Next, we compute the first derivative of the rational
function ()" = 2 and check for roots of the numerator

r3 to obtain the optimal parameter value(s).

3http://www.maplesoft.com

Pd
PaPc
@0 - OO
by

Fig. 3. State elimination

To compute the expected recovery time, we use Eq. 1:

ERT(D*) = ZLGzf(S) : (Z P(o) - R(U))

sES oc€a,(s)

In the Markov chain, this translates to the expected time of
eventually reaching a legitimate state LS for each possible
path in D*. We solve this using the algorithm from [18],
which is based on the state elimination idea of [19]. Similar
to the transformation of a finite state automaton into a reg-
ular expression the state elimination algorithm successively
eliminates states of the PMC. An example of this elimination
is depicted in Fig. 3, where state s; is eliminated and the
transition probability from sg to s2 is updated accordingly. The
crucial part during the state elimination is the simplification of
the intermediate rational functions. By keeping them as small
as possible the performance can be significantly increased.

After eliminating all possible states only transitions from
initial to legitimate states remain and we obtain a rational
function representing the expected recovery time of the model.
This rational function is then used in the second step to auto-
matically synthesize optimal parameter values using standard
root finding techniques.

Notice that the elimination of a state in the PMC D*
corresponds to a Gaussian elimination step in the transition
probability matrix P. Thus approaches 1 and 2 compute the
same rational function.

VI. APPROACH 3: APPROXIMATION VIA PARAMETER
LIFTING

In this section, we apply the parameter lifting algorithm
(PLA) of [13] to approximate optimal parameter values. In-
stead of computing the exact optimal parameter values this
approach computes regions containing the optimal parameter
values. By iteratively refining and tightening these regions
we can approximate the optimal values up to the desired
precision. Note that for ease of presentation we only consider
one parameter in the following, but the algorithm is applicable
to several parameters in the same manner.

For our parameter synthesis problem, we start with the PMC
D*, an initial region R := [f,u] C [0,1] of the values for
parameter p and a threshold A > 0 as input. The question is
now to find all sub-regions of R where the expected recovery
time on D* is below the given threshold A:

Rox(D*) = {R' | R CRAVv R : ERT(D*|,—y) < A}

We start by computing an over- and under-approximation of
the exact result for the given region. The idea here is to
choose for each transition either the minimal or maximal

Algorithm 2 Algorithm for approximating optimal values

Input: PMC D*, Precision € > 0
Output: Region R, Bounds for optimal value [Ag, Ay]
I D,] = [0,1];

2: R:=A{[0,1]}

3: while PLA(D*, R, \y,) = None do
4: Ao, Au] = [Auy Au - 2]

5: end while
6
7
8
9

. while A\, — Ay > ¢ do

.V T
me=s g
res := PLA(D*, R, m);
if res = Some then

10: R := KeepSatRegions(R);

11 [Aes Au] := [Ag, m];

12: else if res = None then [Ag, Ay := [m, Au];

13: else R := Split(R); > result Unknown
14: end if

15: end while

16: return R, [Ag, Ay];

possible probability value and therefore computing upper and
lower bounds for the result. This is done by transforming the
PMC into a Markov Decision Process (MDP). An MDP is an
extension of a DTMC containing additional non-deterministic
choices over the probability distributions in each state. In our
transformation for each state in the MDP a non-deterministic
choice is introduced, modelling the choice of either taking the
lower bound ¢ for the given parameter or the upper bound
u. After the transformation an over- (under-) approximation
of the actual result can be computed by model checking the
MDP and maximizing (minimizing) the reachability result.
This approximation can be compared to the given threshold A
to determine if all or none or some parameter values inside the
region fulfil the threshold. If only some parameter values fulfil
the threshold the approximation is too coarse and a refinement
can be made for instance by splitting the region [¢, u] into two
regions [£, m], [m,u] with m := &£

Notice that the approach is only sound if the extremal
probabilities occur at the region bounds. We can ensure this by
splitting the region at the extreme points into multiple regions
and check each region independently.

Using the parameter lifting approach the optimal parameter
values can be approximated up to a desired precision using
Algorithm 2. The algorithm gets a PMC D* and a desired
precision € as input and returns the region(s) containing the
optimal parameter values and the bounds for the optimal recov-
ery time. It starts by computing a coarse initial approximation
of the best expected recovery time using the parameter lifting
algorithm PLA (Lines 3-5). Next, it iteratively refines the
approximation until the desired precision is reached (Lines 6-
15). In each loop the parameter lifting algorithm PLA is called
for the PMC, a set of regions and the new threshold and returns
whether parameter values satisfy the threshold (Line 8). If at
least one region fulfils the threshold, we keep the satisfying
regions (Line 10) and the upper bound is decreased as there
exists a parameter value corresponding to this recovery time
(Line 11). If all regions violate the threshold, the lower bound
is increased since the given recovery time cannot be realized
for any possible parameter value (Line 12). Otherwise, we

still have regions where the result is Unknown meaning we
split these regions to get finer regions and therefore also better
approximations (Line 13). In the end, the algorithm returns the
set of satisfying regions R which correspond to a recovery
time in the interval [Ag, Ay].

VII. EXPERIMENTS AND ANALYSIS

We compare the three approaches on two probabilistic-
stabilizing algorithms: (1) Herman’s token circulation in
synchronous anonymous rings [4], and (2) Gradinariu and
Tixeuil’s vertex coloring of arbitrary graphs [8].

We performed all experiments on a HP BL685C G7 re-
stricted to 64GB RAM and used a single 2.0GHz core.

A. Vertex Coloring of Arbitrary Graphs

Algorithm 1 is a probabilistic-stabilizing vertex coloring
algorithm designed for arbitrary graphs. When synchronous
execution of neighbors is possible, the challenge is to find
the optimum value of p that minimizes the expected recovery
time. A higher value of p increases recovery time by increasing
the probability of simultaneous execution of two enabled
neighbors, while it decreases recovery time by increasing the
probability of making progress. Our experiments verified that
as the value of p increases, the average recovery time decreases
up to a certain point. Beyond that value, the recovery time
increases again. The optimum probability values for graphs
with line topology and sizes up to 5 under a synchronous
scheduler are demonstrated in the first part of Table 1. For the
approximation approach we used a precision of 10~2. Note
that for the first approach, we only list the number of transient
states || whereas for the second approach we count all states.

All three approaches found an optimal solution within a
short time. However for larger instances the computation time
of the exact approaches grows exponentially whereas the PLA
still returns results within seconds.

We also study Algorithm 1 under an asynchronous (central)
scheduler (second part of Table I). In this case, no two
neighbors ever execute their commands at the same time
which brings us to the trivial conclusion that a deterministic
algorithm recovers faster. In fact, the deterministic algorithm
recovers twice as fast as a probabilistic algorithm with a fair
coin. Our experiments for line and ring structures of size up
to 6 showed that the expected recovery time is of form C%p,
where c;, co € N, which is a proof of the aforementioned fact.
The performance of all three approaches on the asynchronous
examples is fast as the resulting rational function is linear
and therefore the computation scales well. Note that for the
line structure the input matrix for the first approach and the
input model for the other two approaches are slightly different
leading to different recovery times.

B. Herman’s Token Circulation

The token circulation problem ensures that only one process
holds a token (privilege) at any time and every process is
infinitely often granted the token. It has been shown that a non-
probabilistic self-stabilizing algorithm for the token circulation
problem in anonymous networks does not exist [4], [20].

Algorithm 3 Probabilistic-stabilizing Token Circulation (pro-
cess 1)
1: Variable: z; : boolean € [0,1]
2: Guarded Commands:
T =Ti—1 — prx; =0 + (1—])):1’1' =1
Ty F wioy — 1z =m0

Herman’s probabilistic algorithm [4] (see Algorithm 3) is
designed for distributed systems in which an odd number
of identical processes are connected in a ring. It breaks the
symmetry by randomizing processes actions. Every process
owns a binary variable z and looks at the value of its own
variable and that of its left neighbor. If they are identical, the
process holds a token and it sets its corresponding variable
to 0 with probability p and to 1 with probability 1 — p.
Otherwise, it flips its value with probability 1. The size of
the state space of this program is 2", where n is the number
of processes. By taking advantage of topological symmetry in
anonymous rings, we were able to reduce this size to 0(2%),
since, approximately, every n distinct states of the state space
represent the same topology. Notice that approaches 2 and
3 first build the complete state space and then reduce it via
bisimulation minimization.

An interesting observation made in [5] was that for more
than 9 processes, p=0.5 does not yield worst-case recovery
time anymore. We calculate the precise value of p that results
in the minimum average recovery time for networks of sizes
3—15 (see Table II). Based on our results, we see that for
networks of size over 7, p=0.5 is a local maximum and there
are two points, one smaller and one larger than p=0.5, that
minimize expected recovery time. Thus, for larger networks
a biased coin is more effective. We conjecture that as the
network size grows, the two minimum points grow farther (one
towards lower and one towards higher values) and a biased
coin can significantly reduce the expected recovery time.

The performance of the three approaches on Herman’s
algorithm is depicted in Fig. 4 where the computation time (in
seconds) to find the optimal probabilities is displayed in log-
scale. For PLA, we give the time needed to reach a precision
of 1072 and 1074, respectively. The comparison of the exact
approaches shows that the symbolic approach performs better
than the rational function approach. This is mainly due to
the algorithm being specifically optimized for the fine-tuning
problem and the mature techniques implemented in Maple.
However, as the computation time grows exponentially in
the number of processes the exact approaches do not scale
well. In fact, for more than 11 processes, it was not even
feasible to obtain a solution on our experimental platform.
For a network with 15 processes (not shown in Fig. 4), the
symbolic approach consumed a total CPU time of half a year
running several instances of Maple in parallel on a machine
with 64 cores. On the contrary, for larger numbers of processes
the approximation method performs orders of magnitude better
than the exact approaches. If an approximation error of 1%

Model Matrix Rational Function Approximation (1E-2)
Sched. | Topol. | Size | |Q] | Popt Ertopt # States | # Trans. | popt | Ertopt | Time (s) Popt Ertopt | Time (s)
2 2 | 0.50 1.00 5 14 0.50 1.00 0.31][0.48, 0.52] [[1.00, 1.01] 0.51
g' g 3 [251 0.69 2.74 28 159 0.69 2.74 0.36[[0.67, 0.71] [[2.73, 2.75] 1.20
& 3 4 [771064 2.95 82 753 0.64 | 2.95 1.49(10.63, 0.65] | [2.94, 2.95] 1.49
5 [237] 0.64 3.44 244 3671 0.64 | 3.44 80.94 [[0.61, 0.66] | [3.44, 3.47] 4.41
3 [251 1.00 % =1.80 28 108 1.00 1.85 0.37 | [0.94, 1.00] | [1.84, 1.86] 0.43
§ g 4 |77 | 1.00 Lg? =242 82 378 1.00 | 2.21 0.50 | [0.94, 1.00] | [2.20, 2.22] 0.38
£ =[5 [237] 100 | JIZDST 508 | 244 1296 | 1.00 | 282 0.60 [[0.94, 1.00] | [2.81, 2.83] 0.55

I
= 6 [721] 1.00 7;34;119”6701010402 =3.56| 730 4374 | 1.00 [334 0.94[[0.94, 1.001 | [3.31, 3.34] 0.77
% 3 |21 1.00 ;7 =1.00 28 108 1.00 1.00 0.39 1 [0.94, 1.00] | [1.00, 1.01] 0.34
< _%D 4 (79| 1.00 % =2.81 82 378 1.00 | 2.81 0.50 | [0.94, 1.00] | [2.81, 2.83] 0.32
~ 5 [233] 1.00 % =2.32 244 1296 1.00 | 2.32 0.51[0.94, 1.00] | [2.31, 2.33] 0.49
981097 _—
6 |[715] 1.00 3016005 3.36 730 4374 1.00 | 3.36 0.75[0.94, 1.00] | [3.34, 3.38] 0.52
TABLE I
RANDOMIZED VERTEX COLORING

Model Matrix Rational Function Approximation (1E-2)

Size | |Q|| Popt |ERTopt|ERTp—o.5|diff(%)|# States| # Trans. | popt |Ertopt|Time (s) Popt Ertopt |Time (s)
3 2 0.50 0.33 0.33 0 9 36 0.50 0.33 0.37 [0.44, 0.56] [0.33, 0.33] 0.41
5 6 0.50 1.93 1.93 0 33 276 0.50 1.93 0.26 [0.43, 0.57] [1.92, 1.94] 0.79
7 18 0.50 4.49 4.49 0 129 2316 0.50 4.49 1.01 [0.43, 0.57] [4.47, 4.50] 2.29
9 58 [0.46, 0.54| 7.9210 7.9215 0.006 | 513 20196 [0.46, 0.54] 7.92 115.45 [0.39, 0.61] [7.88, 7.94] 7.18
11 [186[0.37, 0.64] 12.1020 | 12.2058 0.85 2049 | 179196 [0.37, 0.64| 12.10 [97257.30([0.33, 0.44], [0.60, 0.67]([12.00, 12.12]| 32.49
13 [630[0.33, 0.67| 16.95 17.35 2.31 8193 | 1602516 - - -[10.29, 0.38], [0.62, 0.71]([16.88, 17.00]| 275.15
15 [2190]0.31, 0.69| 22.46 23.34 3.77 | 32769 [14381676 - - -[10.29, 0.34], [0.66, 0.71]([22.38, 22.50]| 3332.92

TABLE II

HERMAN’S RANDOMIZED TOKEN CIRCULATION
— L L L | | -
100.000 || 00Matrix HBRatFunc BEPLA (1E-2)BEPLA (1E-4) 07,257 R
’ 7
10,000 | 7
B 7 1,377 .
2 1L000 | %
= 777 290 E
Q - ;22]
é 100 £ 72795249 E
1 ; 0.37 0.41 0.42 222 ;

Bl el 0.26 0.26 727

2P e A
Herman 3 Herman 5 Herman 7 Herman 9 Herman 11 Herman 13 Herman 15
Fig. 4. Solving times on Herman’s algorithm

suffices, it gives a solution within 1 hour for the largest
instance. Here we also benefit from the iterative nature of the
approximation approach as we can stop the approximation at
any time if the precision suffices.

VIII. RELATED WORK

In [14], the authors modify the probability of controllable
transitions to achieve a new model of the program that
satisfies a desired property represented in the form of a
rational function over a set of parameters while minimizing
the cost function. They use the state elimination method
presented in [19] to obtain the rational parametric function.
They show that this problem can be reduced to a non-linear
optimization problem. Their work is similar to our second
approach which also uses the rational function. However as

seen in the experiments this approach does not always scale
well making the use of dedicated methods like the symbolic
approach or approximation methods necessary.

In [21], instead of performing non-linear optimization as
done in [14], which is not scalable, the authors take a greedy
approach to finding the optimal evaluation of parameters that
results in satisfying the property. Our work is different from
this work as we are not only interested in satisfying the prop-
erty, e.g., having a recovery time below a certain threshold, but
in achieving the optimal recovery time. Moreover, we compute
the symbolic expression of expected recovery time as well as
optimal numerical values for parameters.

In [5], the authors verified the asymptotic bounds on the
worst-case recovery time of Herman’s token circulation algo-
rithm with probabilistic model checking. By calculating the

worst-case expected recovery time for different probabilities
and network sizes, they made an interesting and surprising
observation that a fair coin does not lead to minimum worst-
case expected recovery time for networks of size greater
than 9. In this paper, for each network size, we compute
the parametric average-case expected recovery time of the
algorithm, a symbolic rational function over p, and find the
exact optimum value of p.

In a recent work [22], the authors approached our prob-
lem with genetic algorithms. Their results for Algorithm 3
is almost identical to ours. The drawback of using genetic
algorithms is that there are no guaranteed theoretical bounds
on the optimality of the result. In contrast our approximation
approach gives sound error bounds on the result.

In [11], the effect of schedulers, not the internal behavior
of the program, on possibility and speed of convergence
is studied through an empirical study. Our experiments in
Subsection VII-A confirm the results presented in [11]. A
higher value of p improves convergence time by increasing the
probability of making progress, while a lower value worsens
it by increasing the probability of simultaneous execution of
two enabled neighbors.

IX. CONCLUSION

In this paper, we proposed three automated methods to com-
pute the probability values that result in the minimum average
recovery time in a given probabilistic-stabilizing algorithm. In
the first approach, using parametric absorbing Markov chains,
we reduced the problem of computing expected recovery time
to the problem of calculating the weighted sum of elements
in an inverse matrix which is computationally cheaper than
computing the inverse itself or other iterative approaches. We
used existing symbolic algebraic algorithms to compute the
weighted sum and to find optimum values. The second ap-
proach computes a rational function representing the recovery
time via state elimination. The third approach approximates
the optimal values by use of the parameter lifting algorithm
and scales best for large numbers of processes. Our results
systematically confirmed the previous empirical method [5]
that a fair coin (p=0.5) does not necessarily yield minimum
expected recovery time in Herman’s randomized stabilizing
token circulation. Given the observed trend in our experiments,
we conjecture that as the network size grows the choice of a
better p becomes more effective. In the case of the vertex
coloring problem, a deterministic approach (p=1) is optimum
for an asynchronous scheduler whereas a biased coin is best
for a synchronous scheduler.

Future work includes the study of the problem in the
context of other distributed algorithms such as randomized
leader election and consensus, and for programs with mul-
tiple parameters. One can also study the same problem in
the presence of different scheduling schemes (modeled as
a Markov decision process). A more challenging avenue of
research is to not only parameterize the probability function,
but also make the computational model parametric in terms of
the number of processes. Finally, we can use our techniques

10

to automatically generate state encoding [6], [7] schemes to
orthogonally improve the recovery time.

REFERENCES

[11 A. Ttai and M. Rodeh, “Symmetry breaking in distributed networks,”
Information and Computation, vol. 88, no. 1, pp. 60-87, 1990.

M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM Journal of Computing, vol. 15, no. 4, pp. 1036-1053,
1986.

G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM, vol. 32, no. 4, pp. 824-840, 1985.

T. Herman, “Probabilistic self-stabilization,” Information Processing
Letters, vol. 35, no. 2, pp. 63-67, 1990.

M. Z. Kwiatkowska, G. Norman, and D. Parker, ‘“Probabilistic ver-
ification of herman’s self-stabilisation algorithm,” Formal Aspects of
Computing, vol. 24, no. 4-6, pp. 661-670, 2012.

N. Fallahi, B. Bonakdarpour, and S. Tixeuil, “Rigorous performance
evaluation of self-stabilization using probabilistic model checking,” in
Proceedings of the 32nd IEEE International Conference on Reliable
Distributed Systems (SRDS), 2013, pp. 153 — 162.

N. Fallahi and B. Bonakdarpour, “How good is weak-stabilization?”
in Proceedings of the 15th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), 2013, pp. 148-162.
M. Gradinariu and S. Tixeuil, “Self-stabilizing vertex coloring of
arbitrary graphs,” in Proceedings of 4th International Conference on
Principles of Distributed Systems (OPODIS), 2000, pp. 55-70.

C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

C. M. Grinstead and J. L. Snell, Introduction to Probability. American
Mathematical Soc., 1997.

S. Aflaki, B. Bonakdarpour, and S. Tixeuil, “Automated analysis of
impact of scheduling on performance of self-stabilizing protocols,” in
Proceedings of 17th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (S8S°15), 2015, pp. 156-170.

C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes,
J.-P. Katoen, and E. Abrahdm, “Prophesy: A probabilistic parameter
synthesis tool,” in Proceedings of the 27th International Conference on
Computer-Aided Verification (CAV), 2015, pp. 214-231.

T. Quatmann, C. Dehnert, N. Jansen, S. Junges, and J.-P. Katoen,
“Parameter synthesis for Markov models: Faster than ever,” in Proceed-
ings of the 14th International Symposium on Automated Technology for
Verification and Analysis (ATVA), 2016, pp. 50-67.

E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A.
Smolka, “Model repair for probabilistic systems,” in Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), 2011, pp.
326-340.

A. J. Goldstein and R. L. Graham, “A Hadamard-type bound on the
coefficients of a determinant of polynomials,” SIAM Review, vol. 16,
pp. 394-395, 1974.

J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed.
Cambridge University Press, 2013.

Z. Chen and A. Storjohann, “A BLAS based C library for exact
linear algebra on integer matrices,” in Proceedings of the International
Symposium on Symbolic and Algebraic Computation. ACM Press, New
York, 2005, pp. 92-99.

E. M. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability for
parametric Markov models,” International Journal on Software Tools for
Technology Transfer, pp. 3—-19, 2010.

C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” in Proceedings of the First International Conference
on Theoretical Aspects of Computing (ICTAC), 2004, pp. 280-294.

D. Angluin, “Local and global properties in networks of processors
(extended abstract),” in Proceedings of the 12th Annual ACM Symposium
on Theory of Computing (STOC), 1980, pp. 82-93.

S. Pathak, E. Abrahém, N. Jansen, A. Tacchella, and J. Katoen, “A
greedy approach for the efficient repair of stochastic models,” in Pro-
ceedings of the 7th NASA Formal Methods International Symposium
(NFM), 2015, pp. 295-309.

L. Zhu, J. Chen, and S. S. Kulkarni, “Refinement of probabilistic
stabilizing programs using genetic algorithms,” in Proceedings of the
17th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS), 2015, pp. 217-232.

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

