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Abstract

This paper presents a new algorithm for computing the
Hermite normal form H of an A c Z “m of rank m to-
gether with a unimodular pre-multiplier matrix U such that
UA = H. Our algorithm requires O-(m ‘-lnM(mlog[lAl\))
bit oper@ions to produce both H and U. Here, IIAII =
max,j lAij [, M(t) bit operations are sufficient to multiply
two (t] -bit integers, and 0 is the exponent for matrix mul-
tiplication over rings: two m x m matrices over a ring
R can be multiplied in O(me ) ring operations from R,
The previously fastest algorithm of Hafner & McCurley re-
quires 0-(m2nM (m log IIAI [)) bit operations to produce H,
but does not produce a unimodular matrix U which satis-
fies UA = H. Previous methods require on the order of
0-(n3M(m log I[Al 1)) bit operations to produce a U — our
algorithm improves on this significantly in both a theoretical
and practical sense.

1 Introduction

A fundamental notion for matrices over rings is left equiva-
lence. Two n x m matrices A and B over a principal ideal
ring R are said to be left equivalent if there exists an n x n
unimodular matrix U that satisfies UA = B, (A unimod-
ular matrix has determinant a unit in R and hence is in-
vert ible. ) Any integer matrix A with full column rank can
be transformed to an upper triangular matrix T using on-
ly elementary row operations. The triangularization T can
be made unique by enforcing that diagonal entries be pos-
itive and off-diagonal entries be non-negative and reduced
in magnitude modulo the diagonal entry in each column. In
particular, any A ~ Z ‘Xm with rank m is left equivalent to
a unique upper triangular matrix H. That is, there exists a
unimodular matrix U (i.e. det(U) + 1) such that
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where hj is positive for 1 ~ ~ ~ m and fi;j satisfies () ~
k,j < hj for 1 ~ i, j ~ m. The reduced triangularizatiorl L!
is called the Her-mite normal form of A and the unimodular
U is called a pre-multiplier matrix. The Hermite norlmal
form was first proven to exist by Hermite [5, 1851] for the
case of a square nonsingular input matrix. The Hermite
normal form is in fact a canonical form for left equivalence
over Z — it always exists and is unique (see, for example,
Newman [10, 1972]).

Hafner & McCurley [4, 1991] have given an algorith-
m that requires 0-(m2nM (m log IIAI [)) 1 bit operations to
compute the Hermite normal form of A. They have also
shown how to apply fast matrix multiplication techniques
to the problem of triangularizing matrices over principal
ideal rings. They show how to apply their result to the
case R = Z to get an asymptotically fast algorithm for
obtaining a unimodular triangularization of an integral in-
put matrix. This results in an algorithm that requires
O-(m@-lnM (m log IIAI l)) bit operations to produces an up-
per triangular T left equivalent to A. Here 6’ denotes the
number such that two m x m matrices over a ring R can
be multiplied in O(me) ring operations from R. Using st an-
dard multiplication 0 = 3, while the best known algorithm of
Coppersmith & Winograd [2, 1990] allows 0 = 2.38. Howev-
er, Hafner & McCurley were unable to obtain an algorithm
to compute the complete Hermite normal form with the im-
proved complexity.

For some applications the complete Hermite normal form
of an input matrix is not required; a general triangulariza-
tion sucli as produced by Hafner & McCurleys algorithm
may be sufficient. The Hermite normal form, however, has
some important advantages over a general triangularizati,on,

First, the Hermite normal form is a canonical form for left
equivalence. To determine whether a second matrix B is

lTo summarize results we use ‘(soft-Oh” notation: for any ~, g :
$?s + R, ~ = O-(g) if and only if f = O(g log’ g) for some constant
C>o.
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left equivalent to A, it is sufficient to compare the Hermite
normal forms of A and B. This check for left equivalence is
not possible using a general (non unique) triangularizat ion.
Secondly, the space required to write down the Hermite nor-
mal form H of A will be small compared to that of general
triangularization T. Consider the case of a square nonsin-
gular input matrix A ~ Z nxn. The total size of H (the sum
of the bit lengths of the individual entries of H) will be on
the order of 0-(n2 log IIA I1) bits, or about the same space as
required to write down the input matrix. The triangulariza-
tion T returned by Hafner & McCurleys algorithm will have
entries bounded in length by O-(n log IIAl \)) bits. This leads
to a total size bound for T of O-(n3 log I IA[ 1) bits, or about
a factor n larger than If. Since A is nonsingular, there will
be a unique unimodular matrix U which satisfies UA = H
and A = HU– 1. Similarly, there exists a unique unimod-
ular P with PA = T and A = TP–l. Entries in U and
U-1 will be bounded in length by O-(n log I[Al 1) bits and by
O-(log IIAI I + log n) bits respectively. Entries of P and P-1,
on the other hand, are bounded in length by O-(n log\ IA I1)
bits and 0-(n2 log I IAI 1) bits respectively.

In this paper we show how to use a fast matrix multi-
plication decomposition for reducing off-diagonal entries of
an upper triangular matrix T. Combining our result with
Hafner & McCurleys triangularization method gives an al-
gorithm for computing the Hermite normal form H of A in
O-(m@-lnM(rnlog IIAII)) bit operations.

In addition, we show how to recover a unimodular pre-
multiplier matrix U which satisfies UA = H. Computing
a pre-multiplier is required in such applications as integer
programming [6, 1969], solving linear diophantine equations
[8, 1989] and computing matrix greatest common divisors
[12, 1995]. In the case where A is square and nonsingu-
lar, U is unique and can be recovered with no increase in
asymptotic complexity by computing U +- HA– 1 using s-
tandard methods. However, for the rectangular case where
A is n x m with n > m, the pre-multiplier matrix U is
not unique. Our algorithm recovers both H and an n x n

O–lnM(m log[IAII)) bit operations.unimodular U in O-(m
The previously fastest algorithm for Hermite normal form,
which works modulo the determinant of the input matrix
to prevent expression swell, has initially been presented for
the case of square nonsingular input matrices (see, for ex-
ample, Domich, Kannan & Trotter [3, 1987] or Iliopolous
[9, 1989]). Hafner & McCurley [4, 1991] extend the mod
determinant approach and give an algorithm that requires
O-(m2nM (m log IIAI 1)) bit operations to produce H, but
they don’t show how to produce a suitable U within this
time. They suggest the following scheme for producing a U.
Permute the rows of A and augment _with the n – m identity
matrix to get a new n x n matrix A which can be written
in block form as

[ 1Al

A= Az In-m

where Al is nonsingular. Compute the Hermite normal for-
m ~ of A at a cost of O-(n3M(mlog IIAII)) bit operations,
and set U G HA–l. The algorithm we give in this pa-
per improves this worst case complexity bound by a fac-
tor of about O(n2 /me – 1) — a significant improvement for
rectangular matrices even assuming standard matrix mul-
tiplication. Moreover, the matrix U will produced by our
algorithm will be “nice”. By this we mean that the entries
of U will be bounded in length by O-(m log IIAI 1) bits and

U will be sparse, with on the order of only O-(nm) nonzero
integer entries.

2 Preliminaries and Previous Results

Following Hafner & McCurley in [4, 1991], we will express
our complexity results in terms of a function B(t) that
bounds the number of bit operations required to solve both
the extended Euclidean problem with two [tlbit integers
and to apply the Chinese remainder algorithm with mod-
uli consisting of all primes less than t. By Theorem 8.20
and 8.21 of Aho, Hopcroft & Unman [1, 1974] we can take
B(t) << M(t) log(t) where M(t) is a monotonic upper bound
on the number of bit operations required to multiply two [tl
bit integers. The Schonhage & Strassen [11, 1971] integer
multiplication algorithm allows M(t) << tlog tlog log t hence

B(t) < t logz t log log t.

In what follows, we write MM(n) = MMR (n) to mean the
number of ring operations required to multiply two n x n
matrices over a ring R, where

MM(n) << no. (1)

It is well known that the product of the diagonal entries
in the Hermite normaI form of an n x m matrix A with rank
m is given by the gcd of all m x m minors of A — in what
follows we refer to this quantity as det (Z(A)). We end this
section with a result of Hafner & McCurley [4, 1991] that
will be required in Sections 3 and 4.

Lemma 1 (Hafner & McCurley ([4, 1991]) ‘There ez-
ists a determinist~c algorithm that takes as input an n x m
rank m integral matrix A and pos~tive integer d! that is a
multiple det(.C(A)), and produces as output an upper trian-
gular matrix T that is left equivalent to A. Entries in T will
be bounded in magnitude by d and the running time of the
algorithm is O(mnB(log IIAI 1)+ me-in log(2n/m) B(log d))
bit operations.

Hafner & McCurley also show also how to obtain a suit-
able multiple d of det (L(A)) which satisfies d s mm/2 IIAI Im.

Theorem 2 (Hafner & McCurley [4, 1991]) There
exists a deterministic algorithm that takes as input an
n x m rank m integral matrtz A, and produces as out-
put an upper triangular matrix T that is left equivalen-
t to A. Entries in T will be bounded in magnitude by

mm/211 Allm, and the running time of the algorithm is
0(mo–lnlog(2n/m) B(mlog mllAll)) bit operations.

3 Asymptotically Fast Hermite Normal Form

In this section we give our asymptotically fast algorithm
for computing the Hermite normal form of an A c Z ‘x m.
First we apply the triangularization algorithm of Theorem
2 to transform A to an upper triangular T E Z ‘x m having
diagonal entries the same as those in the Hermite normal
form of A. Our approach is to consider T as a matrix over
Z d, where d_is a positive integer multiple of det (T). In par-
ticular, let T be the matrix obtained from T by reducing
each entry modulo d. In Subsection 3.1 we present an algo-
rithm which computes a unit upper triangular ~ c Z ~xn
which satisfies UT = H mod d, where iY is in Hermite nor-
mal form over Z d, that is, has off-diagonal entries in each
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column reduced modulo the diagonal entry in each column.
The Hermite normal form of T is simply ET, considered now
over Z rather than Z d. In Subsection 3.2 we make this ar-
gument precise and give the complete Hermite normal form
algorithm.

3.1 Hermite Normal Form of a Triangular Matrix

In this subsection we work completely over the ring Z d.
In particular, all matrices will be over Z d, and equations
should be taken to hold modulo d. For brevity, we give our
complexity results in terms of the number of operations from
Z d — a single operation from Z d has cost O(B(log d)) bit
operations.

Let R(n) = ~(n) be a bound on the number of opera-
tions from Z d required to compute, for an upper triangular
TEZ;X” with nonzero diagonal entries, a unit upper tri-
angular pre-multiplier U such that UT = H, with H in
Hermite normal form. Our result is the following.

Theorem 3 R(n) << ne.

We prove Theorem 3 by reducing to a special case for
which we require some notation. For n even, let T. be the
set of n x n nonsinguh upper triangular matrices over Z d
that can be written in block form as

1+1IA
B

LIJ

where A and B are (n/2) x (n/2), B is in Hermite nor-
mal form, and the empty block is used to denote the zero
matrix. Let R*(n) = R)(n) be the number of ring oper-
ations required to compute, for a T 6 T., candidates for
(n/2) x (n/2) matrices Q and R over Z d such that

[+-+1[+1=[+1
with the matrix on the right hand side in Hermite normal
form.

Lemma 4 For n a power of 2, we have

R* (n) < no

Proof We show how to reduce the problem to four subprob-
lems of half the size which can be combined using matrix
multiplication. We claim that

R*(n) < 4R* (n/2)+ MM(n)

s 4R* (n/2) + cne (2)

for some absolute constant c. The second line in this in-
equality follows from (1). To prove (2), we start with a
T ~ T., which, using a block decomposition, we can write
as

r~l IAIIA37

T=

[%J

I AZ A4
B1 Bz

B3

where all blocks are of size (n/4) x (n/4). At a cost of
2R* (n/2), compute (n/4) x (n/4) matrices Q1, R], Q2 and
R2 such that

[++ [-++-1=[-+-+1

and

[-++1[+1 “ [+]
with the matrices on the right hand side in Hermite normal
form. At a cost of MM(n), compute the matrix product

to get the transformed (n/4) x (n/4) blocks A! and AL. The
last stage is now similar to the fist. At a cost of 2R* (n/2),
compute (n/4) x (n/4) matrices Q3, R3, Q4 and R4 such
that

[++1[++$-1=[+-+1
and

[-++1[+-+=[+-H
with the matrices on the right hand side in Hermite norm~al
form. We now have

[ 1I -QI –Q3

I –Q2 –Q4

I

I

——I ]I R1 R3

I RZ R4

B1 B2

B3

wit h the premult iplier matrix on the left unit upper triang u-
lar and the matrix on the right hand side in Hermite normal
form. This shows that

R“(n) < 4R*(n/2) + MM(rz)

which verifies (2). Iterate (2) to obtain

R*(n) ~ 4R* (n/2) + cn”

= 16R*(n/4) + cne + 4c(n/2)e

(10g2 n)–2

= 4(10g2 ~klR*(z) + c
~ ($)’

,=0

<< n2R*(2) + no.
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The Lemma now follows since the cost of R* (2) is 0(1)
operations from Z d. ■

We now return to the proof of Theorem 3. By embed-
ding an n x n upper triangu~ar nonsingular input matrix T
into the block diagonal matrix diag(lP, T), with p a nonneg-
ative integer bounded by n, we can assume without loss of
generality that n is a power of two. We claim that

R(n) < 2R(n/2) + MM(n) + MM(n/2) + R* (n)

< 2R(n/2) + cn” (3)

for some absolute constant c. The second line of the inequal-
ity follows from (1) and Lemma 4. To prove (3), we start
with an n x n nonsingular upper triangular matrix T, which,
using a block decomposition, we can write as

T= [+1B1 AZ
B2 “

At a cost of 2R(n/2), compute (n/2) x (n/2) matrices U1,
Ill, Uz and Hz such that U1B1 = HI and UZB2 = Hz with
Hl and 17z in Hermite normal form and U1 and Uz unit
upper triangular. At a cost of MM(n), compute the matrix
product

[+1 =[+-d[+++
At a cost of R*(n), compute (n/2) x (n/2) matrices Q and
R2 such that

[++1[+-4=[+-4
Finally, at a cost of MM(n/2), compute the matrix Q’ as
Q’ +-- –QUZ. We now have

[-+1[+$-1=[+1
with the premultiplier matrix on the left unit upper triangu-
lar and the matrix on the right hand side in Hermite normal
form. This shows that

R(n) < 2R(n/2) + MM(n) + MM(n/2) + R*(n)

which verifies (3).
Iterate (3) to obtain

R(n) ~ 2R(n/2) + cne

= 4R(n/4) + Cne(l + 2(1/2)8)

(10g2 n)–1

—— 2(10!32 ~)-l~(q + ~ne ~ (2/2’)’
i=(l

< n2R(2) + no.

The result now follows since the cost of R(2) is O(1) opera-
tions from Z d. ■

3.2 The Hermite Normal Form Algorithm

Theorem 5 There exists a deterministic algorithm that
takes as input an n x m rank m integral matrix
and produces as output the Hermite normal form
A. The running time of the algortthm M bounded
O(mO-in log(2n/m)B(m log ml[Al[)) bzt operations.

A,
of
by

Proof Use the algorithm of Theorem 2 to produce an up-
per triangular T left equivalent to A. As an intermedi-
atee step, the algorithm of Theorem 2 computes a pos’it ive
integgr multiple d’ of det (L(A)) with d’ ~ mm/2 [ IA I]~.
Let T be the matrix obtained from A by reducing entries
modulo d, where d = 2d’, and compute the Hermite nor-
mal form H of ~ over Z ~ using the algorithm of Theo-
rem 3. So far, the running time is seen to be bounded
by O(mo - in log(2n/m) B(m log ml [Al [)) bit operations. The
following lemma shows that the Hermite normal form of T,
and hence A, is also H, considered now over Z rather than
Zd. ■

Lemma 6 Let ~, T and H be m x m integral matrices with
U unit upper triangular, T upper triangular with positive
diagonal entrtes and H in Hermite normal form. If

UT= H mod 2 det(T), (4)

then H is the Hermite normal form of T.

Proof Since the Hermite normal form is a canonical form for
left equivalence, we will be finished if we show their exists
aUGZm Xm which is unimodular and satisfies UT = H.
It follows from (4) that the matrix UT – H has all entries
divisible by 2det(T). Set U + ~ – (1/(2 det(T))(~T –

H) (2TadJ ). Then U is integral and

UT = (U – (1/(2 det(T)))(~T – H)(2Tadj))T

—— VT – (DT – H)(l/det(T))TadjT

= OT–(OT– H)

= H.

Since ~ is unit upper triangular and 2 det (T) is strict-
ly larger than each diagonal entry of T, the matrix H =
UT mod 2 det (T) will have the same diagonal entries as T
In particular, this means that det (H) = det(T) and it fol-
lows from the identity UT = H that U is unimodular. ■

4 Asymptotically Fast Pre-multiplier

In this section we consider the problem of computing, for
an n x m rank m integral input matrix A, an n x n uni-
modular pre-multiplier matrix U that satisfies UA = H,
Our approach is based on an algorithm given by Hafner &
McCurley [4, 1991] for triangularizing matrices over rings.
Combining one of their results, essentially the algorithm of
Theorem 2, with the result of Section 3 leads directly to an
algorithm that computes an n x n matrix ~ that satisfies

fiA=Hmodd (5)

for some positive integer multiple d of det (L(A)). The cost of
producing U will be bounded by O-(m@-’nB(mlog m\lA[l))
bit operations. Note that this complexity result is almost
linear in n even though the output includes the n x n ma-
trix U. It turns out the the matrix U produced is sparse,
with only O(nm log(2n/m)) nonzero entries. Unfortunately,
equation (5) will not hold over Z , nor will det(@ = +1.

The result of this section is a modification of Hafn-
er & McCurley’s triangularization algorithm that produces
an n x n integral matrix U that satisfies both UA = H
and det(U) = +1. The algorithm also requires only
O-(m@-lnB(m log ml\ A1/)) bit operations, Moreover, U will
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have entries bounded in length by 0(log(2n/m)rn log mllA[l)
bits. The major portion of our work will go into ensuring
that the size of intermediate integers occurring during the
construction of U do not become too large.

Our algorithm has two steps which we present separately
in Subsection 4.1 and 4.2. In Subsection 4.1 we present a
fast preconditioning step which ensures that certain m x m
minors of the input matrix are nonsingular — we require
this to properly bound the size of intermediate integers dur-
ing the remainder of the algorithm. In Subsection 4.2 we
present our algorithm for a special type of rectangular input
matrix that can be decomposed using a block decomposition
into m x m Hermite normal form matrices. Finally, we com-
bine these results in Subsection 4.3 and present the general
algorithm.

Before continuing, we present some simple results which
will be required later on. The following result establishes
some useful bounds on the magnitudes of entries occurring
in matrices which arise during intermediate computations.
Recall that we write lIUII to mean the magnitude of the
largest entry inaninteger matrix U.

Lemma 7 Let U,A and H be n x n nonsingular integral ma-
trices which satisfy UA = H where H is in .Hermite normal
jorm. 1’ d = I det(A)l, then

llHadjll <d.

If B is any other n x n integral matrix, then

]IHBII < dllB1l.

Lemma 8 There exists a deterministic algorithm that takes
as input a 2m X m matrix

[–1HI
‘= Hz ‘

where both HI and Hz are m x m of rank m and in Her-
mite normal form, and produces as output the Hermite nor-
mal form H of A together with a unimodular matrix U such
that UA = H. If d bounds both det (H1 ) and det (Hz) then
IIUII < d2. The”
operations.

Proof Compute

cost of the algorithm is O(m* B(log d)) bit

the Hermite normal form ~ of

[-HA= ‘1
Hz 1~

By Theorem 5 the cost of this is Q(gze B(log d)) bit opera-
tions. We will compute U as U & HA– 1. First we establish
the bound on IIUII. Let dl = det(Hl) and dz = det(Hz),
then

Ilu(l = [IRA-11]

< dl Aadj(l/d J (6)

<

= [>1.H;djaJdlI–H2H1

< max(llH~dJll, l]H2H~dJ[l, dl)

< max(dl, dzdl, dl ) (7)

< d2.

where lines (6) and (7) follow from Lemma 7. The matrix
U can now be computed in O(me B(m log ml IAI l)) bit oper-
ations using a standard homomorphic imaging scheme. ■

4.1 A Preconditioning Algorithm

Let A be an n x m rank m integral input matrix. We can
write A using a block decomposition as

rAll

!:lA2

Al
B

(8)

where each A, is m x m, 1 = [n/mj, and B is t x m with
t = n – lm. The purpose of this section is to give a fast
algorithm for transforming A to an equivalent matrix, but
where A, is nonsingular for 1 < i < 1. Our result is tlhe
following.

Lemma 9 There exists a deterministic algorithm that takes
as input an n x m rank m tntegral matrix A, and returns
as output an n x n permutation matrvz P together with a
unimodular matrix

where 1
matrix

1Rlo
[n/m], t = n – lm, each

1~
It I

FL is m x m, and the

I&A2RPA = :

Al
B

has each m x m block ~i nonsinqular for 1 < i < 1. The. . — —
matrix R will satisfy IIRII = O(m log mllA[l), and the run-
ning time oj the algorithm is O(mo–lnB(m log mllAll)) bit
operations.

Proof Compute a number z such that b = fl~<~mep :>

mm/2 [lAllm. By Hadamard’s bound every minor of A is
has magnitude less than b. For each prime p < z :.
O(m log ml IA[ l), compute the rank of (A mod p), and let
p be the first prime for which A has rank m over Z ~. This
can be accomplished in O(m@– 1nB (b)) bit operations using
an algorithm of Ibarra, Moran and Hui [7, 1982]. The al-
gorithm of Ibarra et al. [7, 1982] also returns a maXimal
set of linearly independent rows over Z ~, and this gives the
permutation matrix P such that PA can be written as in
(8) with Al nonsingular over Z and Z,. Fix some j witlh
2< j <1. Our goal is to compute a matrix RJ such that
Aj = Aj + RjAl is nonsingu~ar. Note that if (Aj mod p) is
nonsingular over Z ~, then Aj will be nonsingular over Z.
Our approach is t~ find an Rj with entries between O and
p – 1 such that (Aj mod p) i~ nonsingular over Z ~. Since
Al is nonsingular over Z ~, (Aj mod p) will be nonsingular
over Z ~ if and only (ZJ A; 1 mod p) is nonsingular over Z ~.
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Working mod p, decompose (Aj A; 1 mod p) as the sum of a
unit upper triangular matrix Uj and lower triangular matrix
LJ. Set Rj = (–Lj mod p). Then entries in Rj are between
Oandp– land

AjA~l s (AjA~l +Rj) modp

~ (( Uj+LJ))-L, )modp

E UJ mod p

whence (~~ A; 1 mod p) is nonsingular over Z ~. The cost
of computing (Aj A; 1 mod p) for 2 < -j < 1 is bounded by
O(nze-l nB(log p)) bit operations. ■

4.2 A Special Case of the Algorithm

In this section we develop our algorithm to compute pre-
multiplier matrices for a special class of input matrices. Fix
some positive integer parameters m and d, and let fi =
fi[m, d] be the set of all lm x m rank m integral matrices
which can be written using a block decomposition as

(9)

where each m x m block A~ is either the zero matrix or is
nonsingular and in Hermit e normal form, and where d is
a positive multiple of det(A, ) for 1 < i < 1. Let H(l) =
H[m, d](l) denote a function which bounds the number of
bit operations required to compute, for a given input matrix
A E fi[m, ~, a unimodular matrix U such that UA = H,
the Hermite normal form of A. Our result is the following.

Theorem 10 H[m, d](l) <<1 log(21)me B(log(21) log red).

Our proof of Theorem 10 has two parts. First, we prove
the existence of a deterministic algorithm that constructs
a candidate for U that will both be sparse and have small
entries. For the second part, we analyze the complexity of
the algorithm.

We need to define some notation. A pm x qm matrix X
can be written using a block decomposition as

LXII & . Xlq
X21 X22

1 (lo)

1’Xpl x,, 1
where each block is m x m. We denote the sub matrix XtJ
by block(x, i, j) = blockw(x, i, j). For 1 s i < p, we also
define L(X, i) = L~ (X, i) by

L(X, i) := {j :1< j < q, block(x, i,j) is not the zero matrix}.

The quantity ~~=1 IL(x, i) I indicates the degree of sparsit y
of the matrix X, that is, the number of nonzero m x m
blocks in the decomposition (10).

Lemma 11 There exists a deterministic algorithm that
takes as input an 2km X m integral matrix A E Tzk [m, dl,
and produces as output:

● the lists L(U, i) for 1 < i < 2k.

If the last tm rows of A are zero, then U can be written as

diag(~, li~). Furthermore, ~~~1 IL(U, i)l ~ 2~(k + 1), and
Zj d is a positive integer multiple of det(A~) for 1 < i < 2k,
then ]IUII < (md2)k.

Proof We prove the existence of an algorithm which satisfies
the requirements of Lemma 11 by induction on k. For the
initial case k = O, set U +- Im, H ~ A and L1 +- {l}.

The bounds on ~~~1 IL, I and IIUI I are trivially satisfied.
Assume the lemma holds for k = N. To prove the lemma
holds for k = N + 1, let A be a 2N+lm x m input matrix in
TzN+l.Write A in block form as

[1Al--z--
A

where Al and Az are 2N m x m and in T2N.By induction,
there exists a deterministic al~orithm that commtes 2N m x
2N m unimodular U1 and Uz ;uch that

‘HI’

[*] [*] . ~

o

0,

where Ill and HZ are m x m and in Hermite normal for-
m with determinants bounded by d. We also get the lists
L(Ul, i) and L(Uz, i) for 1 < i < 2N. Compute a 2m x 2m
unimodular matrix

[+1PQ
RS’

with each block m x m, and that satisfies

[$+-$1[+=[+1
where H is m x m and in Hermite normal form.

(11)

Remark 1: By Lemma 8, the cost of producing
P,Q,R and S is bounded by O(me B(log d)) bit
operations.

Embed P,Q,R and S into the 2N+1m x 2Nh1m identity ma-
trix and compute U as

1P Q
I

“. 1

‘“l*r( ’2)
so that U is unimodular and satisfies

[i

H
o

UA= .

0

● the Her-mite normal form H of A,

● a unimodular pre-multiplier U such that UA = H,
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By the induction hypothesis, IIU1 l], IIU2 II < (md2)N, and by
Lemma 7, entries in P, Q, R and S are bounded by d2. It
follows that IIU]I < m. d2 . (md2)N = (md2)~+l as required.

Remark 2: The matrix multiplication in (12) re-
quires 2N multiplications of airs of 2m x 2m
blocks. RSince IIUII < (md2) ‘1, entries in U
are bounded in length by log IIUll = O(N log md)
bits — this bounds as well the length of entries
in the matrices P, $?,R,S and U,, U2. This leads
to a bound of 0(2 MM(m) B(N log red)) bit op-
erations to accomplish the multiplication in (12).

For convenience, define b = 2N. By (12), we have L(U, i) =
L(U1, i) for 2 < z < b. Similarly, for 2 < i < b, we can
obtain L(U, b + i) from the list L(u2, i) by adding 2N to each
entry. The lists L(U, 1) and L(U, b + 1) can be computed by
examining each of the blocks block(U, 1, j) and block(U, b +
l,j) for 1 <j<2N+1.

Remark 3: The cost of examining each of the
blocks block(u, 1,.j) and block(~, b + l,j)for
1 ~ j ~ 2b is bounded by O(bm log d) bit op-
erations, and this bounds the total cost of com-
puting L(U, i) for 1 ~ z < 2b.

It remains to bound the quantity ~~~1 IL(u, i) 1. It follows
from the construction of U in (12) that both IL(U, 1) I and
lL(U, b+ 1)1 are bounded by IL(U1, 1)1+ IL(uZ, 1)1. We get

~lL(U,i)l
i=l

- IL(U,l)I + lL(U, b+ 1)1 + ~(lL(U, i)l + ll-(CJ, b+i)l)—
i=2

—— 2([L(uI,1)I + [L(U2,1)I) + ~(lL(u, z)l + lL(u2, i)l)
;=2

s lL(Ul,l)l +lL(U2,1)l +’$(lL(u, i)l+lL(u2, i)l)
i=l

< 2N+2N+22’V(N+l)

2N+1 + 2N+1(N+ 1)

: #’J+l(Ar + 2)

as required. ■

We now return to the proof of Theorem 10. We claim
that for H(l) = H[rn, d](l) we have

if(l) < 2H(l/2) + clme B(log2(2t) log md) (13)

for some absolute constant c. Let A be in T with Hermite
normal form 27. By augmenting A with at most (1—1)m rows
of zeros, we may assume that 1 = 2N+l for some IV G Z.
Rewrite (13) with 1 = 2N+l to get

H(2N+1) < 2H(2N) -t C2‘+lme B((N + 2)) log md) (14)

The algorithm presented in Lemma 11 reduces the problem
of computing a unimodular U with UA in Hermite normal
form to two subproblems in T2Nand some combining steps.
Thus, to prove (14), it is sufficient to show that the cost
of the combining steps is bounded by 0(2N+l me B((N +

2) log md) bit operations — but this follows from Remarks
1,2 and 3. Iterate (14) to get

<

2H(2N) + C2N+1 m“B((fV + 2) log md)

4H(2N-1) + cm” B((N + 2) log md)(2N+’ + 2 2“’)

N-+2
2N+1H(0) + cme B((~ + 2) log md) ~ 2’2N+2-’

%=0

2NNmo B(N log md)

and we have our result since 1 = 2N+1. 9

4.3 The Premultiplier Algorithm

Theorem 12 There exists a deterministic algorithm that
takes as input an n x m rank m integral matrix A, and
produces as output the Hermite normal form H of A togekh-
er with a unimodular pre-multiplier matrix U that satisfies
UA = H. The running time of the algorithm is bouna!ed
by 0(me–lnlog(2n/m) B(log(2n/m)m logmllAll)) bit oper-
ations.

Proof The algorithm has four steps. First, use the algorith~m
developed in Subsection 4.1 to compute an n x n permutation
matrix P and an n x n unimodular matrix

1
Im
Rz 1~
R2 Im

R= . “.

R1
o

such that

[1

&
&

A= RPA= :

Al
B

where each m x m submatrix ~, is nonsingular, 1 = in/mj,
and B is t x m where t= n–lm. By Lemma 9, the cost of thlis
will be bounded by O(me– lnB(m log mllAl])) bit operations.
Secondly, compute an (m+ t) x (m+ t) unimodular matrix
U1 such that

+++] = [*]

with the matrix on the right hand side in Hermite normal
form. In particular, Efl will be m x m and in Hermite normal
form. Thirdly, compute matrices U1, Uz, ..., U1-. 1, each m x
m and unimodular, and satisfying

!Uu’%lz=
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with each 27, an m x m matrix in Hermite normal for-
mforl<i <l. By Theorem 5, the cost of com-
puting U, and H, for 1 ~ i < 1 is bounded by
O (lm B (m log mllAl[ ) bit operations. Compute the quanti-
ty d = lcm(det(~l ), det(lfz), . . . . det (HI)). By Hadamard-
s inequality on determinants, we will have log d =
O(m log mll~ll). Fourthly, use the algorithm described in
Subsection 4.2 to compute an lm x lm unimodular S satis-
fying

rHll

where H is
m x m and in Hermite normal form. By Theorem (10), this

0–lnlog(2n/m)B( log(2n/m)m log ml] All)) bit op-costs O(m
erations, which bounds the total cost up until this point.
Finally, set

U1

[ II
U2

u= s ~, d RP (15)

(71-1
ul

so that U is unimodular with UA the Hermite normal for-
m of A. It remains to establish a bound on the cost of
the matrix multiplications in (15). By Lemma 11, we have

2 Z!=l IL~ (S, i) I S 2((2n/m) log(4n/m)), which, because
of the special structure of R and the second matrix in the
product (15), bounds the number of pairs of m x m matrix
blocks which need to be multiplied. By the bounds estab-
lished on the magnitudes of entries in S, U1, U2,.. ., Ut, we
have

log [IUII = 0(log(2n/m)mlog mllAl\),

leading to a cost for the multiplications in (15) of
O(me-in log(2n/m)B(log( 2n/m)m log ml\All)) bit opera-
tions. By Lemma 9, the entries in R will be bounded in
magnitude by cm log m IIA (I bits fo~ some absolute const an-
t c. This leads to the bound \lA\l < cm211A[l log~llA1l.
The result now follows by noting that m log mllAll =
O(mlogmllAll). ■
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