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Abstract

We present a Las Vegas probabilistic algorithm for reduc-
ing the computation of Hermite normal forms of rectangular
polynomial matrices. In particular, the problem of comput-
ing the Hermite normal form of a rectangular m x n matrix
(with m > n) reduces to that of computing the Hermite
normal form of a matrix of size (n + 1) x n having entries
of similar coefficient size and degree. The main cost of the
reduction is the same as the cost of fraction-free Gaussian
elimination of an m x n polynomial matrix. As an appli-
cation, the reduction allows for the efficient computation of
one-sided GCD’S of two matrix polynomials along with the
solution of the matrix diophantine equation associated to
such a GCD.

1 Introduction

Let A be a matrix in F[z]~x n, F a field, with full column
rank. The Hermite normal form of A is a matrix .H in
F[x] mxn obtainable from A by unimodular row transfor-
mations such that H is upper triangular with all diagonal
entries monic and such that in each column off-diagonal en-
tries have degree less than the diagonal entry. A unimodu-
Iar (invertible over F[z]) matrix U 6 F[z]mx m that satisfies
UA = H is called a pre-multiplier for the Hermite normal
form. In general, the Hermite normal form can be defined
for matrices over any principal ideal domain (cf. Newman
[?]) and was initially introduced in 1851 by Hermite [?] for
the case of square integer matrices. The Hermite normal
form always exists and is unique.

In this paper we consider the problem of computing the
Hermite normal form of a rectangular input matrix F[z]m xn
where m > n + 1. Our motivation for studying this prob-
lem comes from two areas: symbolic integration and linear
systems theory. In the first area, Trager’s algorithm for the
algebraic case of Rlsch’s decision procedure for determining
closed form solutions of integrals with algebraic integrands
makes heavy use of the Round Two algorithm for the com-
putation of integral bases for algebraic extension fields (cf.
Ford [?], Trager [?]). This algorithm requires many Her-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantages, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
ISSAC’95 - 7/95 Montreal, Canada
@1995 ACM 0-89791-699-9/95/0007 $3.5o

mite form reductions of rectangular polynomial matrices,
in particular, of polynomial matrices where m = 2n and
m = nz. In the second area, a central operation in linear
systems theory (cf. Kailath [?]) involves computing minimal
representations for linear systems. In the case where the lin-
ear system is based on matrix fraction forms, such minimal
representations require computing (and removing) one-sided
greatest common divisors of matrix polynomials. This can
be accomplished by computing the Hermite normal form c~f
a rectangular matrix (cf. Section 2).

The classical method for computing the Hermite normal
form H is to directly reduce the m x n input matrix A by
applying a sequence of unimodular row operations (essent-
ially Gaussian elimination over the domain of entries). A
unimodular pre-multiplier matrix U that satisfies UA = ff
can be obtained by recording row operations in a compan-
ion matrix (initially the m x m identity matrix). Computi-
ng Hermite normal forms over F[z] when F is a field of
characteristic zero (e.g. F = Q, the rational numbers) is
known to be especially difficult because of the potential for
excessive growth in the intermediate expressions; a direct
application of the classical method is hopeless in this case.
Aside from the problem of intermediate expression swell,
we remark that the coefficients of polynomials appearing in
the Hermite normal form can typically be much larger than
those in the input matrix. For example, consider the case
F = Q. Let A be an m x n full column rank input matrix
over Q [z]. Assume, without loss of generality, that A has
been preconditioned to have all coefficients be integer (i.e.
A is over 2?[z]) and denote by IIAl [ the largest magnitude in-
teger coefficient appearing in A. Such an integer has length
O(log IIA I1)bits (the number of bits required to represent the
integer in binary). The best known bound on the lengths of
individual numerators and denominators of rational number
coefficients appearing in the Hermite normal form H of A
is 0- (nzd log IIA I1) ~f. Storjohann [?, Theorem 4.6]), This
is a factor of 0- (n d) times as large (number of bits) as
the lengths of integers appearing in A. This bound applies
also to the lengths of numerators and denominators of ra,-
tional number coefficients appearing in a candidate for U, a
unimodular pre-mult ipler for the Hermite normal form.

The first to show that computing Hermite normal forms
over Q [z] is in P (the class of polynomial time algorithms)
was Kannan in [?]. A fast parallel algorithm for computing
the Hermite normal form and pre-multiplier matrix for a
square nonsingular polynomial matrix is given by Kaltofen,
Krishnamoorthy and Saunders in [?] and a generalization
that works for rectangular input matrices in [?]. We remark
that the modulo arithmetic algorithms for matrices over the
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integers presented in [?, ?, ?] can be modified to work fOr
input matrices over F [x] but suffer from excessive coefficient
growth when F = Q. A recent method for computing the
Hermite normal form of a polynomial matrix is given by
Labhalla, Lombardi and Marlin in [?]. Their approach is to
convert the problem to one of triangularizing a large matrix
over the coefficient field.

It is important to note that the Hermite normal form
algorithms in [?, ?, ?, ?] are initially presented for the spe-
cial case of square nonsingular input matrices. Hafner and
McCurley present in [?] a generalization of the modulo arith-
metic approach that works for rectangular matrices but they
are not able to directly compute a candidate for a pre-
multiplier matrix. To handle the case of rectangular input
matrices or the case where a candidate for a unimodular pre-
multiplier matrix is desired, the authors of [?, ?, ?] reduce
to the square nonsingular case. This can be accomplished
as follows. Let UP be an m x m unimodular matrix such
that UPA consists of a permutation of the rows of A with
the first n rows of UPA linearly independent. Let Al be the
n x n matrix consisting of the first n rows of UPA and let
AZ consist of the last (m – n) rows. Then the m x m matrix

(1)

obtained by permuting the rows of A and augmenting with
1~.. is non-singular. Now find an m x m unimodular matrix
U such that UAS = H, is the Hermite normal form of A..
(Note that since A, and H, are nonsingular, U is unique and
can be computed to be U + H, A: I.) Let (UUP)A = H.
Then H consists of the first n columns of H,. Take H to
be the Hermite normal form of A. Uniqueness of Hs implies
uniqueness of H. This method of embedding the rectangular
input matrix into a larger square nonsingular matrix can be
quite wasteful, particularly in case where the input matrix
has dimensions such as nz x n.

In section 4 we present our algorithm for simplifying the
computation of Hermite normal forms of rectangular matri-
ces of polynomials. In particular, for an m x n polynomial
matrix A we produce a new preconditioned polynomial ma-
trix A* having the same Hermite normal form as that of A.
The matrix A* has entries approximately the same size as
those in A but has the added property that only the first
n + 1 rows contain non-zero entries. For example, for an
input matrix A ~ Z[z]mx’ with degrees of entries bounded
by d, the matrix A* produced will have entries polynomials
bounded in degree by d with coefficients integers bounded
in length by O(log IIAI I + log m + log d) bits. The problem
of computing the Hermite normal form of A is thus reduced
to the same problem for the first n + 1 rows of A*. The
latter problem can then be computed using any of the Her-
mite normal form algorithms in [?, ?, ?]. In all cases the
subsequent Hermite normal form computation is done for a
significantly smaller problem.

The preconditioning is Las Vegas probabilistic in the
sense that it will not produce an incorrect reduction but
may fail with arbitrarily small probability. The main cost of
the preconditioning is the same as the cost of matrix triangu-
larization via fraction-free Gaussian elimination along with
approximately 2mn polynomial trial divisions. Fraction-
free Gaussian elimination over Q [z] admits good bounds on
the size of intermediate expressions. For an input matrix
A EZ[Z]nxn with degrees of entries bounded by d, interme-
diate polynomials occurring during the algorithm will have
degrees bounded by nd and coefficients integers bounded

in length O(n(log I]Al I + log m + log d)) bits. In section 6
we give a detailed cost analysis and show how to employ
a homomorphic imaging scheme to achieve a fast, practical
implement at ion.

This paper is organized as follows. Section 2 gives a
brief description of how to compute a one-sided greatest
common divisors of two matrix polynomials by reducing a
rectangular matrix of polynomials to Hermit e normal form.
This section also describes the linear diophantine equation
associated to the gcd and its relation to the pre-multiplier
matrix for the normal form computation. Section 3 gives the
new preconditioning algorithm with section 4 providing an
example of the reduction. The proof of correctness follows
in section 5 and a cost analysis in section 6.

2 One-sided GCD’S of Matrix Polynomials

Let A = [ PT QT ] T have full column rank n where P
and Q are matrix polynomials of sizes ml x n and m2 x n,
respectively. Let H = [ GT O ] T be the (unique) Hermite
normal form of A with G a matrix polynomial of size n x n
and with U a unimodular pre-multiplier matrix with inverse
V such that

UA=Hwith VU= Iand UV=I. (2)

We can partition U and V into blocks

where Ull and U12 are of size n x ml and n x mz, respectively,
and VII and Vzl are of size ml x n and m2 x n, respectively.
The partitioning in (??) together with equation (??) gives

(4)

with

P=V1lG, Q= V2~G, and U1l VI1 + U1ZV21 = I.

From the above equations it is easy to see that G divides
both P and Q and that there are no additional non-trivial
(i.e. non-unimodular) right divisors of both PG-’ and QG-’.
Thus, G is a greatest common right divisor of P and Q.
Greatest common left divisors can be obtained in a simi-
lar fashion using matrix transposes. We refer to equation
(??) as the associated diophantine equation for the matrix
gcd computation. Note that the solution to (4) is obtained
entirely from the first n rows of the pre-multiplier matrix U.

3 The Rectangular H N F Preconditioned

Let A be an m x n rank n input matrix over F[z] having
m > n + 1. An invariant of the lattice Z(A) (the set of
all linear combinations over F [z] of the rows of A) is the
quantity h“ (A, n), defined to be the gcd of the determinants
of all n x n minors of A. Algorithm REDUCEthat follows
works by preconditioning the input matrix A with a cer-
tain random unimodular matrix UR. With high probability,
the gcd of the determinants of the two n x n minors of URA
comprised of rows [1,2, . . . ,n] and rows [1,2, . . ,n–l, n+l]
will be equal to h“ (A, n). This is sufficient to guarantee that
Hermite(A) = Hermit where A* has first n i- 1 rows
those of URA and all other rows zero. We say the precondi-
tioning is correct in this case. (The idea of preconditioning
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an input matrix using random unimodular matrices was first
used by Kaltofen, Krishnamoorthy and Saunders [?] in the
context of Smith normal form computation to reduce the
computation of the gcd of the determinants of many mi-
nors to the same computation but for only two randomized
minors. )

The remainder of the algorithm attempts to find a con-
struction for a unimodular matrix U* c F[z]m xm that sat-
isfies U*A = A“. Such a matrix U* exists if and only if
the random unimodular pre-multiplier matrix UR gives a
correct preconditioning. If the preconditioning is bad, this
is detected and the algorithm returns FAIL. To bound the
probability of failure by a constant c, where O < e < 1, we
require that #F ~ 2 [n2d/el. Note that this condition on
the cardinality of F is always met for the important case
when F has characteristic zero, In any case, if #F is too
small, we can compute over an algebraic extension K of F
having the required number of elements. In this case, the al-
gorithm will produce a matrix A* ~ K [x]nxm. The Hermite
normal form is an entirely rational form so the Hermite nor-
mal form of A (over F[z]) can be found by computing, over
K [z], the Hermite normal form of A*. The only drawback
to computing over an extension field K is that the option-
ally ret urned unimodular matrix U* may not be over F[z]
and that field operations will be slightly more expensive.

Algorithm: REDUCE
Input: A matrix A c F[x]m x‘ with full column rank and
m>n+l.
Constant: An upper bound O < e <1 on the probability
of failing.
Note: We assume that #F z 2 [712d/el where d bounds the
degrees of entries in A.
Output: A matrix A* c F[z]m ‘n with all zero entries
in the last m – n – 1 rows and such that Hermit =
Hermite(A). Optionally, a unimodular transformation ma-
trix U* ~ F[x]mxm such that U*A = A*.

(1) [Randomize:]
C i- a subset of F with c = ~2n2d/e] elements, no two
of which are multiplicative inverses of each other;
Note: If F has characteristic zero, we may choose
c = {0,2,. . . , c}. Otherwise, choose c – 1 distinct
pairs of nonzero elements {(CU,a; 1) }l~i~c– 1 from F
and set C= {O, al, az, . . ..al–l }
U1 +- a unit upper triangular matrix in F(” - 1)x ‘“- 1)
with entries chosen at random from C;
Uz +- a matrix in F(n - 1)x ‘m-’+l) with entries chosen
at random from C;
&+- a row vector in F’x ‘m-n+l) with entries chosen
at random from C except for cll = 1;
~ +- a row vector in Fl x ‘m-’+l) with entries chosen
at random from C except for % = 1;

4 H+i”IJ---
100]”

trix over F;
Note: UR is unimodular since det(UR) = 1 – a271
which by our choice of C is a nonzero element of F.
B +- URA, a matrix in F[z]m ‘n with the same Her-
mite normal form as A;

rBll

HNote: B = bL’
. +

b~+l
where b~ and b~+ 1 are row

Bz

(2)

(3)

(4)

(5)

(6)

(7)

(8)

vectors and B1 and Bz are of size (n – 1) x n and
(m – n – 1) x n respectively.

[Find Annihilators:l

,.

V’ + –BzM~djP1 where P1 =
[

In_.l

10 [1°0] ;

W’ e –BzM~dJPz where Pz =
[

In-l

10 [0°1] ;
W+- [ W’ dzIn-n-l ];
Note: V and W are left annihilators of B (i.e. VB and
WB are the zero matrix).

[Find probable value for h“ (A, n):]
If both dl and dz are zero then return FAIL;
g; - gcd(dl, dz);

[Check that the preconditioning is correct:]
If g; does not divide all entries of V’ and W’ then
return FAIL;

[Construct A*:1
L

B1 ‘H.A* + bz
bn+l ‘

a matrix in F[z]m x” with same Her-

Lo]
mite normal form as A;
If U* is not required then output A* and terminate,
otherwise continue.

[Solve extended Euclidean problem:]
(a, b) ~ a solution to: adl + bdz = g:;

[Construct unimodular multiplier:l

[

In+l
U* +- 10--&V’ + *W’ Im_n_l UR;

[Output:] U* and A*.

Note that the matrices V and W constructed in step (2)
are indeed left annihilators of matrix B of step (1). For
example, we have

[1B1+VB = [ –B2M:djP1 dllm-n.l ] b~
bn+l
B,

[1B1= –B2 M:dj PI b: + dl B2
bn~l

= –B2M;di A41 + dlB2
. –Bzdl + dlBz

=0

the (n – m – 1) x m zero matrix. A similar decomposition
holds for W.

121



For clarity, and to simplify the complexity analysis in
section 6, we have shown how the construction of annihila-
t ors V and W reduces to computing adjoints, determinants
and matrix multiplication. III practice, we compute suitable
annihilators by triangularizing a single m x (n+l) matrix us-
ing fraction-free Gaussian elimination (cf. Geddes, Czapor
and Labahn [?] or the original articles by Bareiss [?, ?]).
First, let l?’ be the matrix [BIZj 6 F~x(n+l) where B is as
computed in step (1) and d is an m x 1 column vector with
all entries Oexcept for the n-th entry, which is 1. Next, per-
form fraction-free Gaussian elimination on B’, up to column
n, and with row pivoting limited to the first n rows. Record
row operations in a companion matrix (initially the m x m
identity) to obtain the pre-multiplier

[
v= “ o 1V2 cllI~-n-t

Then, VI?’ has entries below the diagonal in the first n
columns zero whence the matrix V = [ V2 dl 1~–~– 1 ]
is a left annihilator of B. Continue fraction-free Gaussian
elimination for one more column, with row pivoting limited
to the first n + 1 rows, and keep recording row operations
in the companion matrix. The last m – n – 1 rows of the
companion matrix are now W = [ W2 Li21~-~– 1 ], the
second annihilator of B. This procedure may break down if
the principle n x n minor of B is singular (i.e. dl = O) in
which case a zero pivot will be encountered during fraction-
free Gaussian elimination. If this is the case, then we set V
to be the (m – n – 1) x m zero matrix. Similarly, if dz = O,
then we set W to be the (m – n – 1) x m zero matrix.

4 Example of H N F Preconditioning

Let P be the matrix

I

–4x2+2z–4 14x2–16z–16 –3z2–5z+2

8Z2+4Z+6 –3z2 +60x+23 17Z+7

–2X2+2 4X2+8 –9x+3

–2X2 6X2–2X–2 –2x2–6x–2 1

and Q be the matrix

–6x2+4 14z2–2z +14 –2x2–24x+4

–6x2–4x–2 –X2–42X–7 2X2–17X–3

–8x2–4x–8 X2–70Z–29 –14z–8

8Z2+4Z +10 –3z2 +72x+39 –X2+11X+7

2X2+2 –2z2+16z -+6 2Z2+3Z+3

Using the method of section 2 together with algorithm REDUCE
we will find a greatest common right divisor G of P and Q
as well as a solution (Ull, Ulz ) to the associated diophantine
equationul ~p + U12Q = G which we may write as

we choose

[113Ul=ol,

[

0302020
U2 = 12030223’

(Z= [1030020],

~= [2120030],

leading to the randomizing matrix

‘130302020-

012030223

001030020

002120030

UR = 000010000
000001000
000000100
000000010
000000001

Let B be the 9 x 3 matrix consisting of the matrix product
URA, In step (2) we obtain

where d] = –3524x6 – 14102 X5 – 17462 X4 — 20810 X3 –
20998 X2 + 14788x – 340 and dz = –16236 X5 – 24174X4 –
2664 X6 – 20952X3 – 37998X2 + 23040 z – 612. The greatest
common divisor is given by g = gcd(dl, dz) = Z4 + 2 Z3 +
X2 + 4 x – 2 and this divides every entry of both V’ and
W’ which proves that the preconditioning is correct. As a
result, the Hermite normal form of A is the same as that of
A* = [ (AX)T O ] ~ where A# is the matrix

r 18z2+14x+30 15z2+218z +111 –7T2+16Z +25 1
I -8x2+ 4z+32 37z2+106z +119 –70z+32–2z2 I

I –4x2+34+8z 40z2+128+138z –59$+29–8x2 ‘

1 6Z2+42+12Z 33z2+159+210z –39z+33–9z2 J

comprised of the first four rows of B. We compute the Her-
mite normal form of Ax to be

P 3x+4 –3/2x + 1/2 1

[11 o Z2+2Z–1 of## .
:=0 o Z2+2

o 0 0 I
hence the matrix greatest common right divisor of P and Q
is G.

To solve the associated diophantine equation (??) we also

(5)

First we apply algorithm REDUCEto the 9x 3 rectangular ma-
trix polynomial A = [ PT QT ]‘. In step (1) of REDUCE

require finding a 4 x 4 unimodular pre-multi lier matrix U#
$along with I@ that satisfies U#A# = H . The desired

solution [ Ull U12 1 can then be taken as the first 3 rows
of the m~trix produc~
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Note that [ UI I fJ12 ] is completely determined here from
UR and U#, the result of the smaller Hermite normal form
computation, and that the computation of the 9 x 9 matrix
U* in steps (6) and (7) was not required.

5 Algorithm Correctness

We first show that algorithm REDUCE never returns an in-
correct result. First note that by construction in step (5)
the matrix A* has the first n + 1 rows those of 1? = URA
and remaining m – n – 1 rows zero. To prove that A and
A* have the same Hermite normal form it is sufficient to
show that A* is obtainable from A via premultiplication by
a unimodular matrix. This is accomplished by the following
lemma.

Lemma 1 If algorithm REDUCE does not return FAIL, then
the matrix U* produced in step (7) is unimodular and satis-
fies U*A= A*.

Proof By construction, the matrices V and W found in step
(2) are (m – n – 1) x m left annihilators of B = URA. It
follows that the matrix f

N = :[V’ old]++ [w’ d,I]

= [&v’+ -&w’ 1]

is also a left annihilator of B where (a, b) is a solution to
adl + bdz = g; as found in step (6). Furthermore, since
step (4) did not return FAIL, we must have g; a divisor of
all entries in V’ and W’ hence JV contains only polynomial
entries. By construction in step (1), det(UR) is a nonzero
constant polynomial in F[z] hence UR is unimodular. This
shows that U* as constructed in step (7) is is the product
of two unimodular matrices so U* is unimodular. Finally,
note that

[

In+l
u“A =

o
V’+ ~W’ In.._l

1
URA&

= A*

The challenge lies in proving that algorithm REDUCE is
a correct Las Vegas algorithm. Note that by construction,
entries of V’ and W’ are associates of determinants of n x n
minors of B so that step (4) will not return FAIL if g; =
h“ (B, n). Thus, we desire that in step (3) the identity g; =
h“ (B, n) holds with high probability so that repetition of
the algorithm will almost never be necessary. (Recall that
h* (B, n) is the gcd of the determinants of all n x n minors
of B.)

The following lemma assures us that g; will be correct
provided that the entries in UR do not form a root of a
certain polynomial bounded in degree by 2n2d. By a result
of Schwartz [?], the probability of this happening is less
than 2n2d/#C (i.e. less than e). This approach was inspired
by two articles of Kaltofen, Krishnamoorthy and Saunders
[?, ?]. In particular, the proof of the following lemma hinges
on a key result presented in [?].

Lemma 2 Let A be a matrix in F[z]mx’j m > n + 1, of
rank n and with the degrees of entries bounded by d. Then
there is a polynomial K in (2m(n+ 1) – n(n+3))/2 variables
such that if

(1) UR in F(n+’)xm has the form

WIU1 U2
uli= O Z

o?

where UZ ~ F( ‘–llx(m–n+l), U1 as unit upper trian-

gular in F(n-l)x(n-l) , and Z and ~ are row vectors
in FIX(~–fl+l) with c1 = [l, ~z, cY3,. ,am–~+l] and
7=[71)1>73> >7m-n+ll;

(.2) dl is the determinant of the principal n-th minor of
URA;

(3) dz is the determinant of the n x n minor formed by
rows [1,2,..<, n–l, n+l]ofuRA,

then gcd(dl, dz) = h“ (A, n), unless the (2m(n + 1) – n(rz +
3))/2 entries in Uz, Z, ~ and above the diagonal in U1 form
a root of T. The degree of T is no more than 2n2d.

Proof First consider the case when UR contains indetermi-
nate entries. In particular, let the entry in the i-th row k-th
column of [UIIUZ] be ~z,k where ~ = (pi,k)l<i<~–l,i<k<m is

a vector of indeterminates and let ti = (cr2, a2, . . . . am–n+ ~)
and ~ = (~1, 73, ..., -y~-n+l). By a result of Kaltofen, Kr-
ishnamoorthy and Saunders [?, Lemma 3.6] we must have
dl = h* (.4, n)pl, where pl 6 F[z, ~, @] either is an irre-
ducible polynomial in F p,@, Z] \ F[z] or is 1. Similarly, we

\
\

must have dz = h* (A, n pz, where pz ~ F x, ~, ~] either is
an irreducible polynomial in F[P, ~, z] \ F[z or is 1. Hence,
we must have gcd(dlj dz) = h* (A, n) if pl is not an associate
of pz. To show this, It will be sufficient to demonstrate that
either pl depends on @ or pz depends on ~. Let As be the
submatrix comprised of the last m – n + 1 rows of A and
let C’i,j denote the cofactor of the entry in the i-th row j-
th column of the principal n-th minor of URA. Then, we
can express dl and dz according to their n-th row cofactor
expansion

m

[

q2
1 Cq c13 . . . f2m_n+l—— 1[,]q3yl 1 73 -j’m-n+l

(’7)

Now, the Cn, * in (??) will be independent of (G, ~) since
they are associates of determinant of minors of the first n – 1
rows of URA. In particular, the polynomials g. in (??) will
depend only on (~, x) and not on (@, ~). Since dl and d2 are
nonzero (A has rank n), there must exist a smallest integer z,
1< i < m–n+l such that qi is nonzero. If i = 1,then dz de-
pends on ~l; if i = 2, then dl depends on CM; if 3< i < m–n
then dl depends on Qi and d2 depends on ~i. This shows
that gcd(dl, dz) = h“ (A, n) as required. An application of
Lemma 3.5 in [?] yields the existence of a 2nd x 2nd de-
terminant A, whose entries are coefficients of x of dl and
dz, such that for any evaluation (~, d, ~) -+ (~, ~, ~) where
(p, ~,?) is a corresponding list of field elements that are not
a root of A, gcd(dl, dz) = h* (A, i). It remains to establish a
degree bound for A. Coefficients of x of URA are of degree 1
whence coefficients of x of dl and dz will have total degrees
bounded by n. This leads to a bound on the total degree of
A of 2n2d. Finally, set n = A to complete the proof. ■
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Theorem 1 Algorithm REDUCE never returns an incorrect
result and requires repetition with probability less than e. ■

6 Algorithm Complexity

Let P(d) be the number of field operations required to mul-
tiply two degree d polynomials over F[z] and let M(t) be
the number of bit operations required to multiply two t bit
integers. In this paper we assume standard polynomial and
integer arithmetic: P(d) = d2 and M(t) = t2.We also as-
sume standard matrix multiplication: two n x n matrices
over a ring R can be multiplied in O (n3 ) ring operations.

We first derive a complexity in terms of field opera-
tions over F. The computation of matrix B in step (1)
is E!SpeCkdly Sh21@? ShJCE! UR COIIhhS OXdy COIIStaIJt poly-

nomials. Matrix B is found in 0(rnn2 d) field operations
and will have entries bounded in degree by d. The main
cost of the algorithm will be computing the annihilators
V = [ V’ dl~n.~.l ] and W = [ W’ dzIn-n-l ] in
step (2). Entries of V’ and W’ are determinants of n x n
minors of B. These have degrees bounded by nd. Since
we assume that #F ~ 2 [2n2d/el > nd we can use an eval-
uation/interpolation scheme to compute V and W as fol-
lows. Let l?lr=z, denote the matrix obtained from B by
evaluating each polynomial entry at x = z,. Choose a list
(z,),=o.,~~ of distinct evaluation points in F and perform
the following steps: (1) find the images (l?]z=~i )o<i<~~ at a
cost of O(rnn. nP(d) log d) field operations; (2) find dl l~=zi
and itf~d’lz=zi for i = O,..., nd at a cost of O(~d n’)
field operations; (3) find V’ lc~zi = –B2 I.=.i A4fdJ I.=.i PI
for i = O, . . . , nd at a cost of O(nd mn2) field operations;
(4) use Chinese remaindering to reconstruct dl and the at
most (m – n – l)n nonzero degree nd polynomial entries in
V’ from their images at a cost of O(nm . P(nd) log nd) field
operations. The determinant dz and matrix W’ are found
similarly. Assuming standard polynomial arithmetic, this
leads to a cost of ON (n3d2m) field operations for comput-
ing the annihilators V and W in step (2). This bounds the
cost of the gcd computation in step (6) and the O(rnn) trial
divisions in step (4). The construction of U* in step (7) can
be accomplished in 0(n2rn2d) field operations by using the
obvious block decomposition for the matrix multiplication.

Theorem 2 For some fixed e, O < e <1, let F be field that
satisfies #F ~ 2 [2n2d/el There exists a Las Vegas proba-
bilistic algorithm that takes as input a matrix A G F[x] mx n
with full column rank, degrees of entries bounded by d and
with m > n + 1, and returns a matrix A* c F[x]mx” with
degrees of entries bounded by d, last m – n – 1 rows zero,
and having the same Hermite normal form as A. Option-
ally, the algorithm returns a unimodular U’ E F[x]m x m with
degrees bounded by 2nd that satisfies U8 A = A’. The algo-
rithm requires repetition with probability less than c. us-
ing standard polynomial and matrix multiplication, the algo-
rithm requires an expected number of 0- (n3d2m) field oper-
ations from F to produce A* alone and an expected number
of 0- (n2dm(nd-t- m)) field operations from F to produce A*
together with U’. H

Now consider the case when F = Q. Without loss of
generality, and as is done in [?], we assume that the input
matrix has been preconditioned to have all integer coeffi-
cients. Although we are implicitly computing over Q[z],
beginning with an input matrix A 6 Z[z]~x’ allows all
computation in steps (1) through (5) of algorithm REDUCE
to be accomplished over the simpler domain 7Z[Z]. We start

with an input matrix A E Z[z]~ x” having degrees of en-
tries bounded by d – 1. Let ] IAl I denote the largest in-
teger coefficient appearing in A. The integer coefficients
appearing in the randomized matrix B computed in step
(1) will be only slightly larger than those appearing in A.
In particular, we can choose C = {O, 2,... , [2n2d/el – 1}
so that ]IBII = IIURAII < m . [2n2d/el llA\l. In pradke,
the dominant cost of the algorithm will almost certainly be
finding the annihilators V and W of B in step (2). En-
tries in V and W are determinants of n x n minors of B.
These determinants will be degree (at most) nd polynomi-
als in Z[z] with integer coefficients bounded in magnitude
by ,8< (@dllB]l)n < (@dm[2n2d/el llAll)’. Asymptoti-
cally we have log P = O(nlog mdl\All). For p a prime, let
AP = A mod p be the matrix in ZP[Z]” x n obtained from
A by replacing each integer coefficient with its image mod
p. To compute V and W, we find Vp and WP over ZP [x]
for sufficiently many primes p to allow recovery of the in-
teger coefficient appearing in V and W via the Chinese re-
mainder algorithm. To apply the evaluation/interpolation
scheme for computing VP and WP developed earlier, we need
to choose primes p Iarger than nd to ensure enough eval-
uation points in the field ZP. The following lemma from
Giesbrecht shows that we can choose all our primes to be
q = max(6 + log log ~, 1 + log nd) bits in length.

Lemma 3 ([?]) Let x z 3 and 1 = 6 + loglogz. Then
there ezist at least 2[[log J2z)l/(1 – 1)1 primes p such that
21-l <p <21. 9

It follows from this lemma that we can choose a list of
s = 2 [[(log 2~)1 /(q — 1)1= @((log @)/q) distinct primes
(p~)l<a<s that are bounded in length by q bits and that sat-
isfy both pi > nd for 1 < i < s and ~l<i<, si > /3. Next,
perform the following steps: (1) find the ~m~ges (Bp; ) l<i<.;
(2) find Vp, and dp, for i = 1,. . ..s at a cost of ON (.sn’d’m)
bit operations using the evaluation/interpolation scheme de-
veloped earlier; (3) apply Chinese remaindering to recover
the 0(mn2d) integer coefficients appearing in V and dl at
a cost of 0(mn2d. itf(log B) logs) bit operations. Note that
the complexity of step (1) will be bounded by that of step
(3). Combining these complexity results and assuming stan-
dard polynomial and integer multiplication, P(d) = dz and
M(t) = t2, we obtain the following result.

Theorem 3 Let A E ZZ[z]m ‘“ have full column rank with
m > n + 1 and degrees of entries bounded by d. The cost of
one pass of algorithm REDUCE (up to step (5)) with input A
is ON (n4md(log I IA I I+ d) log IIAI 1) bit operations using stan-
dard integer, polynomial and matrix arithmetic plus a single
gcd computation and no more than O(nm) trial divisions in-
volving polynomials that are factors of entries in the matri-
ces V and W found in step (2). Entries in V and W will be
polynomials with degrees bounded by nd and with integer co-
efficients bounded in length by O(n(log I]Al I + log m + log d))
bits. If the algorithm does not return FAIL, the matrix
A* returned will have entries polynomials bounded in de-
gree by d and with integer coejicients bounded in length by
O(log IIAII + logm + logd) bits. 9
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