
Shiftless Decomposition and
Polynomial-time Rational Summation

J. Gerhard
Maplesoft

57 Erb Street West
Waterloo, ON, N2L 6C2, Canada

jgerhard@maplesoft.com

M. Giesbrecht A. Storjohann E.V. Zima
School of Computer Science

University of Waterloo
Waterloo, ON, N2L 3G1, Canada

{mwg,astorjoh,ezima}@scg.uwaterloo.ca

ABSTRACT
New algorithms are presented for computing the dispersion
set of two polynomials over and for shiftless factorization.
Together with a summability criterion by Abramov, these
are applied to get a polynomial-time algorithm for indef-
inite rational summation, using a sparse representation of
the output.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Algorithms

General Terms
Algorithms

Keywords
rational summation

1. INTRODUCTION
Let K be a field of characteristic zero and consider the

first order linear difference equation

(E − 1)Y = F, (1)

where F ∈ K(x) and E is the shift operator: Ef(x) =
f(x + 1) for any f ∈ K(x). The indefinite rational summa-
tion problem is to assay if (1) has a rational solution for Y ,
and if it does not, then to extract an additive rational part
R ∈ K(x) from the solution such that the remaining part
satisfies a simpler difference equation with denominator of
lowest possible degree. This gives an equality

x

F = R +
x

H (2)

where the denominator of H has lowest possible degree. One
contribution of this paper is a new algorithm for computing
the rational part R and remainder H .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’03, August 3–6, 2003, Philadelphia, Pennsylvania, USA.
Copyright 2003 ACM 1-58113-641-2/03/0008 ...$5.00.

It is well known that the size of R may be exponentially
large as a function of the size of F . Consider the case K = .
The algorithm we present here is distinguished from previous
algorithms because it always returns a compact representa-
tion of R in time polynomial in the input size. For example,
if F = −1000/x(x+1000) our algorithm returns the answer

x

−1000
x(x + 1000)

= LQ(E1000 − 1, E − 1)
1
x

(3)

where LQ denotes the left quotient in the noncommutative
ring of linear recurrence operators over [x]. In general, the
solution may be written as a sum of such unevaluated left
quotients. For the example in (3) note that

LQ(E1000 − 1, E − 1) = E999 + E998 + · · · + E + 1, (4)

so the expanded form of the solution has one thousand
terms. More spectacular examples exist, but the represen-
tation using a sum of LQ’s returned by our algorithm will
always be sparse. The key point is that any potential expo-
nential expression swell is avoided until the final (and op-
tional) left divisions by E−1. As an immediate corollary of
our algorithm we get a polynomial-time test to assay if F is
rational summable, i.e., if H = 0.

If the expanded form of the output is desired (e.g., as
in (4)) this can be computed easily by a left division by
E−1 in time polynomial in the size of the expanded output.
Note that although the result of the left division may be an
operator of high order it may happen to be sparse, e.g.,

LQ(E1000 − E999 + E − 1, E − 1) = E999 + 1. (5)

Other algorithms can suffer from intermediate expression
swell even if the final output ends up to be small, since
their intermediate results are polynomials of degree about
the order of the linear recurrence operator (see below). More
examples are given in Section 7.

Outline
As in a number of previous approaches, a key step in our
algorithm is to compute the auto-dispersion set of a poly-
nomial: DS(g, g) = {h ∈ | deg(gcd(Ehg, g)) > 0}. One
of the contributions here, which is of independent interest,
is to present a new, fast probabilistic algorithm for com-
puting the auto-dispersion set when K = . See Sec-
tion 6. Actually, the algorithm solves the more general
problem of computing the dispersion set of two polynomials:
DS(f, g) = {h ∈ | deg(gcd(Ehf, g)) > 0}. These defini-
tions of auto-dispersion set and dispersion set differ slightly

119

from the corresponding notions in the literature in that they
include negative shifts as well.

A central ingredient of our approach is a decomposition for
univariate polynomials which we call shiftless decomposition.
We define this notion in Section 2 and give an algorithm to
compute it in Section 3. The algorithm requires as input the
auto-dispersion set and is applicable over any field of charac-
teristic zero. The algorithm employs factor refinement and
reduces the problem to shift and gcd computations. Given
the auto-dispersion set of a g ∈ K[x], the algorithm com-
putes a shiftless decomposition of g with O((deg g)4) field
operations from K.

Our rational summation algorithm in Section 5 is based
on the criterion for rational summability in [3]. For clarity,
the criterion was described there using the full factorization
of the denominator of F in K̄[x], where K̄ is the algebraic
closure of K. In fact, the criterion works also for a full
factorization in K[x]. In Section 4 we recall the criterion
and note that it works with a shiftless decomposition as
well.

Previous approaches
The algorithmic treatment of rational summation problems
started with the works of Abramov [1, 2]. There were a
number of algorithms and improvements developed over the
following years, see for example [3, 12, 15, 16, 9]. In partic-
ular [16] gives a complete overview of these algorithms and
improvements to them.

Let F = f/g ∈ K(x), with f, g ∈ K[x] \ {0} coprime.
Using division with remainder to split off the polynomial
part, which can be summed using, e.g., conversion to the
falling factorial basis (see [6] §23.1), we may assume that
deg f < deg g, so that F is proper. Let ρ be the dispersion
of F , the maximal integer distance between roots of the
denominator g. If ρ = 0 then we take R = 0 and H =
F in (2), see [1, 3, 16]. In fact, the condition that the
denominator of H has minimal degree is equivalent to the
dispersion of H being zero. Now, let ρ > 0. All algorithms
mentioned above carefully avoid factorization in K[x] and
fall into one of the following two categories.

• Iterative (Hermite reduction analogous) algorithms
will start with R = 0 and H = F and decrease the
dispersion of H by one at each iteration, reducing the
non-rational part H and growing the rational part R.
The number of iterations is equal to ρ, see [2].

• Linear algebra based (Ostrogradsky analogous) al-
gorithms first build universal denominators u and v
such that the denominator of R will divide u and the
denominator of H will divide v. Then, the problem is
reduced to solving a system of linear equations with
size deg u + deg v, see [15, 3, 16]. Since deg u ≥ ρ the
choice of u of the lowest possible degree is obviously
crucial here.

In both classes of algorithms if ρ ≫ deg g the cost of ra-
tional function summation depends essentially on the value
of ρ. Consider the following examples:

x

−2 x + 999
(x + 1) (x − 999) x (x − 1000)

=
1

x (x − 1000)
, (6)

x

x3 − 1998 x2 + 996999 x + 999999
(x + 1) (x − 999) x (x − 1000)

=
1

x (x − 1000)
+

x

1
x

. (7)

The dispersion of the summand in both of these examples
is 1001. On the one hand, iterative algorithms will require
about 1001 steps of polynomial gcd computations. On the
other hand, the universal denominator constructed by the
linear algebra based algorithms will have degree about 1001.
In general, ρ may be as large as the magnitude of the trailing
coefficient of g. Thus, the cost of the iterative and linear
algebra based algorithms for computing a decomposition as
in (2) may be exponential in the size of the input.

In [9] an algorithm is presented for computing a sharp
bound for deg u in the case when F is rational summable,
i.e. H = 0. This algorithm uses full factorization of g over
K[x].

Another approach would be to apply Gosper’s algorithm
for hypergeometric summation [8]. In fact, for (6) Gosper’s
algorithm, together with the improvement from [11] for the
case of rational input, is potentially fast but it only works
in the case when F is rational summable. That is, the algo-
rithm is not applicable for the example shown in (7) since
H = 1/x ̸= 0.

Summarizing, the key features of our algorithm, which
distinguish it from previous approaches, are:

• Using a sparse representation of the output in terms
of left quotients, the algorithm works in deterministic
polynomial time, with the exception of the dispersion
computation stage, which is probabilistic polynomial
time.

• Since the size of the expanded output is exponential in
the input size in general, no polynomial-time algorithm
giving the expanded output exists. In cases where the
size of the expanded output is polynomial in the in-
put size, however, our method obtains the expanded
output in polynomial time as well.

• A trivial modification of our algorithm yields a test for
rational summability which executes in a polynomial
number of operations. This test does not rely on any
special type of data representation.

• Over the field of rational numbers, our algorithm does
not require full factorization, but only factorization
modulo a prime and gcd computations; see Sections 3
and 6.

2. SHIFTLESS DECOMPOSITION
Let K be a field of characteristic zero. Polynomials f, g ∈

K[x] are coprime if gcd(f, g) = 1 (notation: f ⊥ g) and shift
coprime if gcd(f, Ehg) = 1 for all h ∈ (notation: f ⊥S g).
Let g ∈ K[x] be nonzero. Suppose

g = c
v

i=1

ni

j=1

Ehij g
eij
i (8)

for some choices c ∈ K, gi ∈ K[x], hij ∈ and eij ∈ ≥1.

Definition 1. A decomposition as in (8) is a shiftless
decomposition over K[x] if

120

• gi is monic and non-constant;

• gi ⊥S gj for i ̸= j;

• gi is squarefree and the auto-dispersion set of gi is {0};
• 0 = hi1 < hi2 < . . . < hini ;

for 1 ≤ i ≤ v.

Example 2. Let g = x(x2 − 1) ∈ [x]. Then

g =

g1

(x)

g2

(x2 − 1)

is not a shiftless decomposition since g2 has auto-dispersion
set {−2, 0, 2}.

Example 3. Let g = (x2 + x + 1)(x + 1)(x + 3) ∈ [x].
Then

g =

g1

(x2 + x + 1)

g2

(x + 1)

g3

(x + 3) (9)

in which case c = 1, v = 3 and n1 = n2 = n3 = 1. As
this example shows, we can always trivially choose ni = 1
for all i . A different decomposition of g based on the same
factorization is given by

g =

g1

(x2 + x + 1)

g2

(x + 1)

E2g2

(x + 3) (10)

in which case c = 1, v = 2, n1 = 1 and n2 = 2.
The decomposition shown in (10) is shiftless while that

shown in (9) is not.

On the one hand, a given factorization of a polynomial
does not necessarily induce a shiftless decomposition, cf. Ex-
ample 2. On the other hand, if a particular factorization
does induce a shiftless decomposition, then this is unique
and is determined by partitioning the factors into a mini-
mal number of shift classes — two factors belonging to the
same shift class precisely when they are integral shifts of
each other, cf. Example 3.

A given polynomial may have non-trivially different shift-
less decompositions based on different factorizations. Some
of the decompositions may be coarser (v is smaller) or more
refined (v is larger). The most refined shiftless decomposi-
tion of a given polynomial is based on the full factorization
in K[x]. These ideas are explained by the following exam-
ples.

Example 4. Suppose g ∈ K[x] admits the shiftless de-
composition

g =
h∈{0,5}

Ehg1

h∈{0,5}

Ehg2

h∈{0,2,7}

Ehg3 , (11)

where g1, g2 are irreducible but, suppose, the full factoriza-
tion in K[x] of g3 is g3 = g31g32. The decomposition shown
in (11) has three shift classes. On the one hand, we can
combine the shift classes corresponding to g1 and g2 to get
the less refined shiftless decomposition

g =
h∈{0,5}

Eh(g1g2)
h∈{0,2,7}

Ehg3 (12)

which has only two shift classes. On the other hand, we can
split the shift class corresponding to g3 to get a more refined

shiftless decomposition

g =
h∈{0,5}

Ehg1

h∈{0,5}

Ehg2

h∈{0,2,7}

Ehg31

h∈{0,2,7}

Ehg32 (13)

which has four shift classes. The decomposition in (12) is
the coarsest while that in (13) is the most refined shiftless
decomposition of g.

The previous examples dealt with decompositions of square-
free polynomials.

Example 5. Let

f = (x + 1)2(x + 3)2(x2 + 1)2(x2 + 4x + 5)2.

Then both

f =

g2
1

(x + 1)2(x2 + 1)2

E2g2
1

(x + 3)2(x2 + 4x + 5)2

and

f =

g2
1

(x + 1)2

E2g2
1

(x + 3)2

g2
2

(x2 + 1)2

E2g2
2

(x2 + 4x + 5)2

are shiftless decompositions of f .

Example 6. Let f = (x+1)2(x+3)2(x2+1)2(x2+4x+5).
Then the coarsest shiftless decomposition of f has v = 2, i.e.

f =

g2
1

(x + 1)2

E2g2
1

(x + 3)2

g2
2

(x2 + 1)2

E2g2

(x2 + 4x + 5) .

Although (h11, h12) = (h21, h22) = (0, 2), however, the shift
classes corresponding to g1 and g2 cannot be combined be-
cause (e11, e12) = (2, 2) while (e21, e22) = (2, 1).

3. SHIFTLESS FACTORIZATION
Let K be a field of characteristic zero. Our algorithm

for shiftless factorization employs factor refinement, and in
particular the construction of a gcd-free basis. Let A =
{a1, a2, . . . , am} be a nonempty set of m polynomials from
K[x]. Let B = {b1, b2, . . . , bn} be a set of monic and non-
constant polynomials. Following [5], the set B is a gcd-free
basis for A if

(a) bi ⊥ bj for all i ̸= j; and

(b) there exist mn non-negative integers eij such that ai =

1≤j≤n b
eij
j for all i, 1 ≤ i ≤ m.

Let the sum of the degrees of the entries in A be equal to d.
In [5] an algorithm GcdFreeBasis is described that computes
a gcd-free basis with O(d2) field operations from K. The
algorithm uses only gcd and exact division in K[x]. Start-
ing with the set {a1, a2, . . . , am}, the algorithm repeatedly
extracts two elements {a, b}, and replaces them with the el-
ements of {a/g, g, b/g)} \ {1}, where g = gcd(a, b). This
is repeated until the set satisfies property (a). Although a
given set A may have more than one gcd-free basis, the ba-
sis obtained using only gcds and exact divisions is unique.
A characterization of this uniqueness is given in [4, Theo-
rem 3]. The observation below follows as a corollary.

121

Lemma 7. Suppose B and B are gcd-free bases of the same
set of polynomials A. If B is the basis obtained from A using
only gcds and exact divisions, and B is also a gcd-free basis
of B, then B = B.

We present our algorithm first for a squarefree g ∈ K[x].
The extension to a possibly non-squarefree polynomial will
be discussed below. Suppose g has a shiftless decomposition

g = c
v

i=1

ni

j=1

Ehij gi.

By combining shift classes and coarsening the factorization
if necessary we may assume without loss of generality that

(hi1, . . . , hini) ̸= (hj1, . . . , hjnj) (14)

holds for all 1 ≤ i < j ≤ v. This condition gives the coarsest
possible shiftless decomposition of g (v is minimal). Let A
be the auto-dispersion set of g.

Theorem 8. Let B be the gcd-free basis of

{gcd(g,Ehg)}h∈A

obtained using only gcd and exact division. Then

B = {Ehij gi}1≤i≤v,1≤j≤ni .

Proof. Apply Lemma 7 with B = {Ehij gi}1≤i≤v,1≤j≤ni .
It will be sufficient to show that for any two distinct factors
f1, f2 ∈ {Ehij gi}1≤i≤v,1≤j≤ni there exists an h ∈ A such
that exactly one of the fi divides gcd(g, Ehg) and the other
is relatively prime to gcd(g,Ehg). Suppose f1 and f2 belong
to the same shift class: without loss of generality say that
f1 = Es1g1, f2 = Es2g1 and s1 > s2. We can then choose
h = s1, in which case f1| gcd(g,Ehg) and f2 ⊥ gcd(g,Ehg).
Now suppose that f1 and f2 belong to different shift classes:
without loss of generality say fi ∈ Esigi, i = 1, 2. Let
Hi = {si − hij}1≤j≤ni , i = 1, 2. Then Hi is the set of
all shifts s such that fi| gcd(g,Esg), i = 1, 2. Because of
assumption (14), we have H1 ̸= H2 so we can choose an
h ∈ H1 such that h ̸∈ H2 or vice versa.

We now extend the ideas above to work for a possibly
non-squarefree f ∈ K[x]. Suppose f has a shiftless decom-
position

f = c
v

i=1

ni

j=1

Ehij g
eij
i .

By combining shift classes if necessary, we may assume with-
out loss of generality that at least one of

(hi1, . . . , hini) ̸= (hj1, . . . , hjnj), or

(ei1, . . . , eini) ̸= (ej1, . . . , ejnj)
(15)

holds for all 1 ≤ i < j ≤ v. This condition gives the coarsest
possible shiftless decomposition of f (v is minimal). Let
f1 = SquareFreePart(f), and factor f as f = f1f2 · · · fk

where fi = SquareFreePart(f/(f1 · · · fi−1)), 2 ≤ i ≤ k. Let
A be the auto-dispersion set of f . In our algorithm we will
use the fact that A is also equal to the auto-dispersion set
of f1. The proof of the next theorem is similar to that of
Theorem 8.

Theorem 9. Let B be the gcd-free basis of

{gcd(f1, E
hfi}h∈A,1≤i≤k

computed using only gcd and exact division. Then

B = {Ehij gi}1≤i≤v,1≤j≤ni .

The correctness of Algorithm ShiftlessFactorization
follows from Theorem 9. In Phase 3 of the algorithm we
compute the gcd-free basis of {gcd(f1, E

hfi}h∈A,1≤i≤k iter-
atively. We use the fact that, for A, B ⊂ K[x],

GcdFreeBasis(GcdFreeBasis(A) ∪ GcdFreeBasis(B))

= GcdFreeBasis(A ∪ B).

Algorithm: ShiftlessFactorization

Input: f ∈ K[x], deg f = n.
Output: a shiftless decomposition of f .
(1) g := f ;

for i while g ̸= 1 do
fi := SquareFreePart(g);
g := g/fi

od;
(2) A := AutoDispersion(f1);
(3) B := {};

for h ∈ A do
B := B ∪ {gcd(f1, E

hfi)}1≤i≤k;
B := GcdFreeBasis(B)

od;
(4) Partition B into shift equivalence classes to obtain f1 =

v
i=1

ni
j=1 Ehij gi.

(5) Output f = v
i=1

ni
j=1 Ehij g

eij
i where eij is chosen

maximal such that Ehij g
eij
i is a divisor of feij , for 1 ≤

i ≤ v, 1 ≤ j ≤ ni.

Theorem 10. The algorithm ShiftlessFactorization
works as stated. If deg f = n then the algorithm uses O(n4)
field operations, plus the cost of computing the auto-disper-
sion set of f .

Proof. Step 3 will dominate the cost. The product of
all entries in B after each iteration of the loop will be an
associate of f1. The sum of degrees of entries in B for each
basis refinement will be ≤ 2 deg f , giving a total cost for
step 3 of O(n2|A|). Since |A| ≤ n2 the result follows.

4. ABRAMOV’S CRITERION
Let K be a field of characteristic zero. As in the introduc-

tion, and following [3], we consider the difference equation

(E − 1)Y = F, (16)

where F is a non-zero proper rational function in x. A solu-
tion to the rational summation problem consists of proper
R, H ∈ K(x) such that

x

F = R +
x

H, (17)

where H is a rational function whose denominator has dis-
persion zero. We temporarily replace the coefficient field K
by its algebraic closure K. The full partial fraction decom-
position of F has the form

F =
m

i=1

ti

k=1

βik

(x − αi)k
, (18)

122

with αi, βik ∈ K. Write αi ∼ αj if αi−αj is an integer. Ob-
viously, ∼ is an equivalence relation in the set {α1, . . . , αm}.
Each of the corresponding equivalence classes has a largest
element in the sense that the other elements of the class
are obtained by subtracting positive integers from it. Let
α1, . . . , αv be the largest elements of all the classes (v ≤ m).
Then (18) can be rewritten as

F =
v

i=1

li

k=1

Mik(E)
1

(x − αi)k
. (19)

Here Mik(E) is a linear difference operator with constant
coefficients (a polynomial in E over K). Let F have the
form (19) and suppose that (16) has a solution R ∈ K(x).
The rational function R can be written in a form analogous
to (19):

v

i=1

li

k=1

Lik(E)
1

(x − αi)k
. (20)

This presentation is unique and therefore

(E − 1)Lik(E) = Mik(E). (21)

Theorem 11 (Rational Summation Criterion 1).
A necessary and sufficient condition for existence of a ratio-
nal solution of (16) is that for all i = 1, . . . , v; k = 1, . . . , li
there is an operator Lik(E) such that (21) holds. This is
also equivalent to the condition that for all i = 1, . . . , v;
k = 1, . . . , li the sum of coefficients of the operator Mik(E)
is equal to zero.

If the conditions for the above theorem are met then equa-
tion (16) has the solution (20) and all other rational solu-
tions of (16) can be obtained by adding arbitrary constants.
Abramov [3] used this criterion to describe the structure of
a universal denominator. We remark that his algorithm for
rational summation did not use any factorization of the de-
nominator of F . In fact, the criterion also works for coarser
decompositions of the denominator such as the full factor-
ization in K[x] and, more importantly, the shiftless decom-
position.

If at least one of operators Mik(E) is not divisible by
E − 1 then (16) has no rational solution. We want then to
construct a decomposition as in (17). Consider one term
from (19),

Mik(E)
1

(x − αi)k
, k ≥ 1,

and compute the quotient Lik(E) and the remainder rik:

Mik(E) = (E − 1)Lik(E) + rik, rik ∈ K. (22)

Write the right-hand side of (17) for this term in the form

Lik(E)
1

(x − αi)k
+

x

rik

(x − αi)k
. (23)

This gives a solution to the decomposition problem for this
single term, since the denominator of the rational function
in the indefinite sum has dispersion zero. If there are several
Mik(E) not divisible by E − 1, then the non-rational part

H =
x

v

i=1

li

k=1

rik

(x − αi)k

has the lowest possible degree for the denominator, since it
also has dispersion zero.

Summability criterion using a shiftless decomposition
Consider (17), assuming again that F is a proper rational
function. Suppose the denominator of F has a shiftless de-
composition

v

i=1

ni

j=1

Ehij g
eij
i .

The unique partial fraction decomposition of F with respect
to this decomposition of the denominator is

F =
v

i=1

ni

j=1

eij

k=1

fijk

Ehij gk
i

.

Let li = maxj eij and specify that fijk = 0 in case k > eij .
Then interchanging the second and third summation gives

F =
v

i=1

li

k=1

ni

j=1

fijk

Ehij gk
i

=
v

i=1

li

k=1

Mik(E)
1

gk
i

, (24)

where Mik(E) = ni
j=1 fijkEhij . Note that the coefficients

fijk are in K[x] with 0 ≤ deg(fijk) < deg gi. Let F have
the form (24) and suppose that (16) has a solution R ∈
K(x). Because the denominators of the reduced fractions
R and (E − 1)R have the same shift classes with the same
multiplicities, the rational function R can be written in a
form analogous to (24):

v

i=1

li

k=1

Lik(E)
1

gk
i

. (25)

This presentation is unique because the decomposition is
shiftless and therefore

(E − 1)Lik(E) = Mik(E). (26)

Theorem 12 (Rational Summation Criterion 2).
A necessary and sufficient condition for existence of a ratio-
nal solution of (16) is that for all i = 1, . . . , v; k = 1, . . . , li
there is an operator Lik(E) such that (26) holds. This is
also equivalent to the condition that for all i = 1, . . . , v;
k = 1, . . . , li the remainder from left division of the operator
Mik(E) by E − 1 is equal to zero.

Let Mik(E) = apEp + ap−1E
p−1 + . . . + a1E + a0. Then

the left remainder from the division of Mik(E) by E − 1 is
simply rik = E−pap +E−(p−1)ap−1 + . . .+E−1a1 + a0. The
summability criterion states that this last polynomial must
be identically equal to zero, for all i, k.

If at least one of the operators Mik(E) is not divisible by
E − 1, then writing

Mik(E) = (E − 1)Lik(E) + rik, rik ∈ K[x], (27)

we obtain the nonrational part in (17)

H =
x

v

i=1

li

k=1

rik

gk
i

,

which has dispersion zero.
Note that although Mik(E) is a sparse operator of order

hini , the left quotient Lik(E) may be a dense operator of
order hini − 1.

123

5. AN ALGORITHM FOR RATIONAL
SUMMATION

Algorithm: RatSum

Input: f, g ∈ K[x], f ⊥ g, deg f < deg g.
Output: H,R ∈ K(x) as in (17) with denominator of

H of lowest possible degree.
(1) ShiftlessFactorization(g)

→ g = v
i=1

ni
j=1 Ehij g

eij
i ;

(2) Compute a partial fraction decomposition

f
g

=
v

i=1

li

k=1

Mik(E)
1

gk
i

where Mik(E) =
ni

j=1

fijkEhij .

(3) for i to v do
for k to li do

Write Mik(E) = apEp + aqE
q + . . . + asE

s.
rik := E−pap + E−qaq + . . . + E−sas;
M̃ik := Mik − rik

od
od;

(4) H :=
v

i=1

li

k=1

rik

gk
i

;

(5) Output

v

i=1

li

k=1

LQ(M̃ik(E), E − 1)
1

gk
i

+
x

H

Theorem 13. The algorithm RatSum works as stated. If
deg g = n then the algorithm uses O(n4) field operations
from K, plus the cost of computing the auto-dispersion set
of g.

Proof. Correctness of algorithm RatSum follows from the
criterion of Theorem 12 and the discussion following it. Since
the dispersion of H is zero, the denominator of H will have
lowest possible degree.

Now suppose K = and assume without loss of gener-
ality the input f, g ∈ [x]. In the next section we give a
fast algorithm for computing the auto-dispersion set of g.
It is clear the algorithm can be made deterministic and
still have running time bounded by (log ∥f∥ + log ∥g∥ +
deg g)O(1) bit operations, where the (max) norm of f =

0≤i≤n fixi ∈ [x] is defined as ∥f∥ = maxi |fi|. The
same is true for all other steps in algorithms RatSum and
ShiftlessFactoriziation. This gives the following

Corollary 5.1. Let K = and f, g ∈ [x] be valid in-
put to algorithm RatSum. The algorithm can be implemented
to be deterministic and use (log ||f ||∞+log ||g||∞+deg g)O(1)

bit operations.

6. COMPUTING THE DISPERSION SET
OVER [X]

In this section we present an algorithm for computing the
dispersion set of two integer polynomials. A similar algo-
rithm for integer polynomials is given by the first author
in [7], Section 7.2. The idea is related to that of Man &
Wright [13], who describe an algorithm for dispersion based
on polynomial factorization in [x]. The main idea of their

algorithm is that if gcd(f(x + h), g(x)) is non-constant for
some h ∈ , then there exist irreducible factors f̄ ∈ [x] of f
and ḡ ∈ [x] of g such that f̄(x+h) = ḡ(x). Since irreducible
factors remain irreducible under a shift, this condition is eas-
ily tested if the irreducible factors are given. Our algorithm
uses a similar idea, but only requires a (faster) p-adic fac-
torization of the input polynomials for a small prime p.

We first note that the size of any h ∈ DS(f, g) is at most
|f(0)|+|g(0)|, since f̄(x+h) = ḡ(x), so h is an integer root of
f̄(y)− ḡ(0), and hence is either 0 or a divisor of the constant
term. We define the (max) norm of f = 0≤i≤n fix

i ∈ [x]
as ∥f∥ = maxi |fi|.

Algorithm: pDispersionSet

Input: f, g ∈ [x];
Output: a set S ⊇ DS(f, g), S ⊆ ;
(1) Let n := max{deg f, deg g};
(2) Let f := SquareFreePart(f), g := SquareFreePart(g);
(3) Choose a prime p > n not dividing the leading coeffi-

cients or discriminants of either f or g;
(4) Factor

f ≡ a · f1 · · · fk mod pµ

fi ∈ pµ[x] monic, irreducible, a ∈ pµ

g ≡ b · g1 · · · gℓ mod pµ

gj ∈ pµ[x] monic, irreducible, b ∈ pµ

where µ > logp(2(|f(0)| + |g(0)|));
(5) For 1 ≤ i ≤ k assume fi = xdi + fi,di−1x

di−1 + · · · +
fi1x + fi0; Let f̄i := fi(x − fi,di−1/di) mod pµ;

(6) For 1 ≤ j ≤ ℓ assume gj = xej + gj,ej−1xej−1 + · · · +
gj1x + gj0; Let ḡj := gj(x − gj,ej−1/ej) mod pµ;

(7) Find S := {(i, j) : f̄i = ḡj};
(8) Output

DSpµ(f, g) := {gj,ej−1/ej − fi,di−1/di : (i, j) ∈ S}
⊆ {−pµ + 1, . . . , pµ − 1}.

Theorem 14. The algorithm pDispersionSet works as
stated. If deg f, deg g ≤ n and ∥f∥, ∥g∥ ≤ β then the algo-
rithm uses O(n3 log2 n + n2 log n log2 β) bit operations.

Proof. This algorithm relies on the fact that if there is
an h ∈ DS(f, g), then there exists a ḡ ∈ [x] dividing g and
f̄ ∈ [x] dividing f such that f̄(x+h) = ḡ(x). This relation
holds modulo pµ as well, though f̄ and ḡ may factor further
modulo pµ. Note, however, that DSpµ(f, g) may be larger
than DS(f, g).

In step (3) we choose a prime p > n not dividing the
discriminant of f and g. It is easily shown that disc(f) =
res(f, f ′) ≤ 22nn3n∥f∥2n, and that the condition is that
our prime not divide a number w ≤ 24nn6n∥f∥2n+1∥g∥2n+1,
the product of the leading coefficients and discriminants
of f and g. Since w has at most log2 w = O(n(log n +
log ∥f∥+ log ∥g∥)) many prime factors, a random prime less
than 2 log w log log w will not divide w with high probability
(see [14]). The selected prime will have O(log n + log log β)
bits, That p does not divide the discriminant of f or g is
quickly checked by factorization modulo p, which is required
in step (4).

In step (4) we factor f and g modulo p (using Berlekamp’s
algorithm) and lift to a factorization modulo pµ. In steps (5)
and (6) we normalize each fi and gj to f̄i and ḡj respectively,
whose second highest coefficient is 0. For each fi, the unique

124

shift x 0→ x− fi,di−1/di ensures f̄i := fi(x− fi,di−1/di) has
second highest coefficient zero. Any shift is an automor-
phism of [x], so clearly if f̄i = ḡj then fi and gj are shift
equivalent modulo pµ. Conversely, since the shift which en-
sures the second highest coefficient is zero always exists and
is unique, if fi and gj are shift equivalent, then f̄i must equal
ḡj (the shift from fi to gj can be composed with the shift
from gj to ḡj to get a shift from fi to ḡj). In step (8) we
determine the dispersion set over pµ.

The cost of the algorithm follows easily. See [6], Theorem
14.32 and 15.18.

The above algorithm returns a superset of the dispersion
set, which is sufficient for our intended application in Algo-
rithm RatSum. To determine if some h ∈ DSpµ(f, g) actu-
ally has deg gcd(f(x + h), g(x)) ≥ 1 (i.e., h ∈ DS(f, g)),
we can test it directly by computing the resultant R =
res(f(x + h), g(x)). The shifted polynomial f(x + h) sat-
isfies (crudely) ∥f(x + h)∥ ≤ nβ2nhn and log ∥f(x + h)∥ =
O(n log β). Thus

|R| ≤ (2n)2n(nβ2nhn)nβn ≤ (2β)n2+2nn3n,

and log |R| ≤ ϱ := (n2+2n) log(2β)+3n log n = O(n2 log β+
n log n). By [14], the number of primes less than or equal
to z is at least z/ log(z) for z ≥ 17, from which it is easily
derived that there are at least 10ϱ primes in L = {2, . . . ,
20ϱ log ϱ+300}. Compute R mod p for a subset L′ of L such
that p∈L′ p > |R|. Clearly #L′ = O(ϱ). Then reconstruct
R using the Chinese remainder theorem. This allows us to
certify R = 0 with O(ϱn2 · log2 ϱ) bit operations.

A faster Monte Carlo probabilistic approach is to choose
a second random prime q, and hope that q does not divide
R (assuming R ̸= 0). We choose a random prime q ∈ L
and compute Rq = res(f(x + h), g(x)) mod q and output
whether or not Rq ≡ 0 mod q. If R = 0 then we always
output the correct answer 0. If R ̸= 0, we output “non-
zero” with probability at least 9/10 on any invocation. This
can, of course, be repeated to obtain greater probability of
correct output.

Theorem 15. Let f, g ∈ [x] with deg f, deg g ≤ n and
∥f∥, ∥g∥ ≤ β, and h ∈ .

• We can certify whether gcd(f(x + h), g(x)) = 1 with
O(n4 log β · (log n + log log β)2) bit operations.

• If gcd(f(x + h), g(x)) ̸= 1 the randomized method de-
scribed above always outputs this fact correctly. If
gcd(f(x+h), g(x)) = 1 it outputs correctly with proba-
bility at least 9/10. The cost of this randomized method
is O(n2(log n + log log β)2) bit operations using stan-
dard arithmetic.

By way of comparison with the algorithm of [13], we note
that algorithm is dominated, at least in theory, by the cost of
factoring f and g over [x]. This alone takes approximately
O(n10 + n8 log2(∥f∥ + ∥g∥)) for a rigorously analyzed algo-
rithm: see [6], Corollary 16.25. In practice, this can often
be done much more quickly; for example the algorithm of
[10] performs very well. However, all known factoring al-
gorithms over [x] essentially lift a factorization modulo p
and then attempt some form of factor combining to recover
integral factors. The dominant cost in pDispersionSet is
exactly this factorization modulo p and lifting (to about the
same bound as for factoring in [x]), and so in some sense
is intrinsically faster than the full factorization in [x].

7. EXAMPLES
We have a prototype implementation of algorithms

ShiftlessFactorization and RatSum in Maple. Here we
show several examples of summation. When the input ex-
pression is

2 x + 3

(x + 101)2 + 1
−

1

(x + 1)2 + 1
−

2 x + 1

(x + 100)2 + 1
+

4

(x2 + 1)

(the input is given in decomposed form here for readability
only), our procedure RatSum returns the answer

LQ (2x + 3)E101 − (2x + 1)E100 − E + 1, E − 1
1

x2 + 1

+
x

3
x2 + 1

in 0.16 seconds1. Conversion to the expanded form

2 x + 1
(x + 100)2 + 1

− 1
(x2 + 1)

+
x

3
x2 + 1

takes 0.01 seconds. We note that only the cost of this step
depends on the dispersion of the denominator of summand.
In this case the left quotient is a sparse operator and the
expanded output is small. The standard Maple summation
routine returns the answer in 434.63 seconds.

For the input

x4 − 149 x2 − 14999 x − 500050
(x3 + 300 x2 + 30001 x + 1000101) (x3 + x + 1)

,

the answer

LQ (x +
1
2
)E100 − x +

199
2

, E − 1
1

x3 + x + 1

+
x

x − 100
x3 + x + 1

is returned in 0.09 seconds. Observe, that after expansion
the left quotient here will be a dense operator with 100
terms. Since computation of this left quotient involves only
very simple operations of substitution and addition of poly-
nomials, expansion takes only 0.06 seconds for this example;
the answer is not shown to save space. Maple’s standard
summation does not return after 20 minutes on the same
input.

Acknowledgements
The authors thank the referees for their valuable comments
and suggestions.

8. REFERENCES
[1] S.A. Abramov. On the summation of rational

functions. U.S.S.R. Comput. Maths. Math. Phys. 11,
pp. 324–330, 1971. Transl. from Zh. vychisl. mat. mat.
fiz. 11, pp. 1071–1075, 1971.

[2] S.A. Abramov. The rational component of the
solution of a first-order linear recurrence relation with
a rational right-hand side. U.S.S.R. Comput. Maths.
Math. Phys. 15, pp. 216–221, 1975. Transl. from Zh.
vychisl. mat. mat. fiz. 15, pp. 1035–1039, 1975.

[3] S.A. Abramov. Indefinite sums of rational functions.
Proceedings ISSAC’95, pp. 303–308.

1All timings are taken on a 650 MHz Intel Pentium III pro-
cessor.

125

[4] E. Bach, J. Driscoll and J. O. Shallit. Factor
Refinement. Journal of Algorithms. 15, pp. 199–222,
1993.

[5] E. Bach and J. Shallit. Algorithmic Number Theory.
Volume 1: Efficient Algorithms. MIT Press,
Boston MA, 1996.

[6] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, Cambridge,
U.K., 1999.

[7] J. Gerhard. Modular algorithms in symbolic
summation and symbolic integration. PhD thesis,
Universität Paderborn, Germany, 2001.

[8] R.W. Gosper. Decision procedures for indefinite
hypergeometric summation. Proc. Natl. Acad. Sci.
U.S.A. 75(1), pp. 40–42, 1978.

[9] M. van Hoeij. Rational solutions of linear difference
equations. Proceedings ISSAC’98, pp. 120–123, 1998.

[10] M. van Hoeij. Factoring polynomials and the knapsack
problem. J. Number Theory. 95, pp. 167-189, 2002.

[11] P. Lisoněk, P. Paule and V. Strehl. Improvement of
the Degree Setting in Gosper’s Algorithm. J. Symbolic
Comput. 16, pp. 243–258, 1993.

[12] Y.K Man. On computing closed forms for indefinite
summation. J. Symbolic Comput. 16, pp. 355–376,
1993.

[13] Y.K. Man and F.J. Wright. Fast polynomial dispersion
computation and its application to indefinite
summation. Proceedings ISSAC’94, pp. 175–180, 1994.

[14] J.B. Rosser and L. Schoenfeld. Approximate formulas
for some functions of prime numbers. Ill. J. Math. 6,
pp. 64–94, 1962.

[15] P. Paule. Greatest factorial factorization and symbolic
summation. J. Symbolic Comput. 20(3), pp. 235-268,
1995.

[16] R. Pirastu. On combinatorial identities: symbolic
summation and umbral calculus. PhD thesis, Johannes
Kepler Universität Linz, Austria, July 1996.

126

