The Modulo N Extended GCD Problem for Polynomials*

Thom Mulders

Arne Storjohann

Institute of Scientific Computing
ETH Zurich, Switzerland
{mulders, storjoha}@inf.ethz.ch
http://www.inf.ethz.ch/personal/{mulders, storjoha}

Abstract

We study the following problem: Given a,b, N € F[z] with
ged(a,b,N) = 1 and N nonzero, compute a minimal de-
gree f € F[z] which satisfies ged(a + fb,N) = 1. We
give a deterministic algorithm for solving this problem that
is applicable over any field. The algorithm is designed to
solve efficiently a succession of such problems for a fixed N.
When g = #F > deg N the solution will satisfy deg f = 0.
When ¢ < deg N we conjecture that the solution satisfies
deg f < [log, deg N|; in this case the complexity bound we
give for the algorithm depends on this conjecture.

As an application we demonstrate a deterministic algo-
rithm for computing transforming matrices for the Smith
normal form of a nonsingular A € F[z]"*". When q is too
small most previous algorithms require working over an al-
gebraic extension of F' and may not produce transforming
matrices over F[z]. The algorithm we propose will produce
transforming matrices over F[z], for fields F' of any size.

1 Introduction

Let F be a field and N a nonzero polynomial from F[z]. The
restricted modulo N extended gcd problem for polynomials
takes as input a,b € F[z] with ged(a,b, N) = 1, and asks for
a minimal degree f € F[z] which satisfies

ged(a + fb,N) =1. (1)
When #F > deg N it is easy to show that there exists a
solution to (1) with deg f = 0, that is, with f € F. When
#F < deg N there may not exist a solution f € F. A
standard approach taken when the ground field F is too
small is to work over an algebraic extension field K of F
which has a sufficient number of elements. For example, the
randomized algorithms proposed in [6, 7, 10] for computing
normal forms of matrices over F[z] as well as the determin-
istic normal form algorithm in [12] all take this approach.
A drawback of working over K is that the final result may

*This work has been supported by grants from the Swiss Federal
Office for Education and Science in conjunction with partial support
by ESPRIT LTR Project no. 20244 — ALCOM-IT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. ISSAC’98,
Rostock, Germany. © 1998 ACM 1-58113-002-3/ 98/ 0008 $5.00

105

not be over F[z] but over K[z]. This may happen, for ex-
ample, when the algorithms in [7, 12] are used to compute
transforming matrices for the Smith normal form over F[z].

In our work we observe that we can avoid algebraic num-
bers by allowing polynomial solutions to (1) with deg f > 0.
In this way we avoid the presence of algebraic numbers in
the final result of the computation. The possibility of using
polynomials instead of algebraic numbers has also been men-
tioned in [13, Remark 6.4]. To ensure good degree bounds of
the polynomials in the output, we want the solution f to be
small. In particular, the restricted modulo N extended gcd
problem we have posed asks for a minimal degree solution
to (1).

The main contribution of this paper is a deterministic
algorithm for solving the restricted modulo N extended gecd
problem that is applicable over any field. The algorithm is
designed to solve efficiently a succession of such problems
for a fixed N. An important feature of the algorithm is
output sensitivity; the running time depends on the minimal
degree of a solution to (1). To give complexity results we use
the function P(t), which can be taken to be O(M(t)logt),
where M (t) bounds the number of field operations required
to compute the product of two degree ¢ polynomials from
Flz]. We distinguish between the following two cases.

Large field case

When ¢ #F > degN the minimal degree solution
to (1) satisfies degf = 0 and our algorithm requires
O(sP(deg N) + P(deg N)deg N) field operations to solve s
instances of (1) for a fixed N. This is a satisfying result since
for s > deg N the cost is the same as that for computing s
pairwise gcds. Note that we assume that each pair of input
polynomials have degree bounded by deg N.

Small field case

When ¢ = #F < deg N we conjecture that the minimal
degree solution to (1) satisfies deg f < [log, deg N. If this
conjecture is true, then our algorithm has a worst case com-
plexity of O"(s(deg N)?q+ P(deg N) deg N) field operations
for solving s instances of (1) for a fixed N.

We apply our ged algorithm to the problem of comput-
ing transforming matrices for the Smith normal form of a
polynomial matrix. Recall the definition of the Smith form.
Corresponding to any nonsingular A € F[z]"*" there exist
unimodular (square and invertible) U and V over F[z] such
that

UAV = § = diag(s1, 82, ..., 5n),

with each s; nonzero, monic and with s;|s;+1 for 1 < i <
n — 1. Although S is unique, the transforming matrices are
highly nonunique and may have large degree entries. The
goal is to produce U and V with good degree bounds.

Let A € F[z]"*™ have degrees of entries bounded by
d = deg A. The algorithm in [12] computes U and V sat-
isfying degU,degV = O(nd). Moreover, the sum of the
degrees of entries in V will be bounded by O(n*d), meaning
that V' requires about the same space to write down as the
input matrix. These degree bounds are very good. In order
to ensure that transforming matrices are over F[z], the al-
gorithm in [12] requires that #F > 2nd. When d = O(n)
the cost of the algorithm in [12] is O"(n?) field operations
assuming pseudo-linear polynomial multiplication.

In this paper we propose an algorithm that returns trans-
forming matrices over F[z] for any field F. Our approach
is to adapt the algorithm proposed in [9] to compute small
size transforming matrices for the Smith form of an integer
matrix. That algorithm was based on computing small solu-
tions to the modulo N extended ged problem for integers®,
which is replaced by our algorithm for solving instances of
the modulo NV extended gcd problem over F[z].

When #F > nd the Smith form algorithm requires
O(n®*P(nd) + ndP(nd)) field operations to produce trans-
forming matrices with the same good degree bounds as in
[12]. If d = O(n) this complexity simplifies to O™ (n") field
operations assuming pseudo-linear polynomial multiplica-
tion.

When #F < nd and the conjecture is true, then the
Smith form algorithm requires O™ (n®P(nd) + ndP(nd) +
n*d?>#F) field operations. If d = 0("2 this simplifies in
the worst case, i.e. #F = nd, to O°(n°). For a constant
small field F' the complexity reduces to O (n®), assuming
pseudo-linear polynomial multiplication.

The rest of this paper is organized as follows. In sec-
tion 2 we present a deterministic algorithm for solving the
restricted modulo N extended gcd problem. In section 3
we investigate the function gr(N) which bounds the degree
of a minimal degree solution to (1) and conjecture a bound
for gr(N) in terms of deg N and #F. In section 4 we give
an algorithm for solving a generalization of the modulo N
extended gcd problem. In section 5 we use the results pre-
sented so far to compute transforming matrices for the Smith
form of a nonsingular A € F[z]**".

Throughout we denote by A the set of nonnegative in-
tegers.

2 The restricted modulo N extended gcd problem

In this section let F' be any field. We will study the
restricted modulo N extended gcd problem, i.e. finding
for polynomials a,b, N € F[z], such that N # 0 and
ged(a,b, N) = 1, a polynomial f € F[z] of minimal degree
such that gecd(a + fb, N) = 1. We will give a deterministic
algorithm to solve this problem.

Definition 1 For N € F[z]\{0}, let gr(N) be the minimal
t € N such that for all a,b € F[z] with gcd(a,b,N) = 1,
there exists an f € F[z] of degree < t such that ged(a +
b, N) = 1.

"Note that [9] contains an error. Fact 1 in Section 2 is an incorrect
quote due to the author of [9]. A correct bound is g(N) = O(r?) (see
[4]). Slight modifications of the algorithms in [9] admit the same
asymptotic bounds for the running time and size of the output. A
correction is in progress.

106

Lemma 1 Let a,b,N € Flz], such that N # 0 and
ged(a,b, N) = 1, and let {p1,...,pr} be the set of all ir-
reducible monic divisors of N which do not divide b. Then,
for f € Flz], we have that gcd(a + fb, N) =1 if and only if
ged(a + fo,pi) =1 for1 <i<k.

Proof. The ’only if’ is clear. The ’if’ follows from the fact
that for p dividing both N and b we have that p does not
divide a + fb (since p does not divide a). °

Lemma 2 For all N € Flz]\ {0} we have gr(N) < deg N.

Proof. Let a,b € F[z] such that gcd(a,b,N) = 1,
{p1,...,pr} the set of all irreducible monic divisors of N
which do not divide b and N = p1---pr. Then, by Lemma
1, we have for all f € F[z] that gcd(a+fb, N) = 1 if and only
if ged(a+ fb, N) = 1. Now let f = (1—a)/b(mod N). Then
a+ fb=1(mod N) so ged(a + fb, N) = 1 and furthermore
deg f < deg N < deg N. °

Lemma 3 Let N € Flz]\ {0} and | the number of irre-
ducible monic divisors of N. If S C F is such that #S > 1,
then for all a,b € F|x], such that gcd(a,b, N) = 1, there is
an s € S such that gcd(a+sb, N) = 1. In particular we have
gr(N) =0 in that case.

Proof. Let a,b € Flz], such that ged(a,b, N) = 1, and let
{p1,...,pr} be the set of irreducible monic divisors of N
which do not divide b. Since k < I, § = S\ {—a/b(mod p;) |
1 <4 <k} is not empty. From Lemma 1 it follows that for
s € S we have ged(a + sb, N) = 1. °

Notice that in practice we will not always know the number
of irreducible monic divisors of IV, but we can use the upper
bound deg N for it.

Now we will give an algorithm for solving the restricted mod-
ulo N extended gcd problem. The algorithm is designed to
solve efficiently a succession of these problems for a fixed
N. In particular, we assume that we already have some
factors of N. The algorithm then solves our problem and
gives a possible refinement of the already known factors of
N (which we remark need not be relatively prime). The
refinement can then be used as input to future calls of the
algorithm.

In the algorithm, M, denotes the set {f € F[z] | deg f =
w} if w > 0 and {0} if » < 0. An explanation of the various
other sets in the algorithm is given in the proof of correctness
following the algorithm.

Algorithm RGCD (Restricted modulo N extended GCD
problem)
Input: a,b, N € F[x], such that N # 0, dega,degb < deg N
and ged(a,b, N) =1, and S C Flz] such that ([] _¢s) | N
and N divides a power of [T _gs.
Output: A minimal degree f € F[z] such that ged(a +
fb,N) = 1. Also, §" C F[z] such that (], . ") | N, N
divides a power of [, 4 s and all s € S are a product of
polynomials in 5.
if gcd(a, N) =1 then return (0, S);
for s € S do (as,bs) := (a (mod s),b(mod s));
S :=8;D:=0;U:=8,
Comment: Extract factors in S’ relatively prime to b.
while U # 0 do {

Choose u € U,

gu = ged(bu, u);
if deg gu = 0 then {U :=U \ {u}; D := D U {u};}
elif deg g, = degu then U :=U \ {u};
else {
S" = (8" U{gu,u/gu}) \ {u};
U:= (UU{u/g.}) \ {u};
(@ /g0 bufan) = (@ (m0d 1/g,), bu (mod u/g,));}}
for d € D do eq := —aq/ba (mod d);
for 1 =0,1,2,... do {
if #F > deg N then Choose L C F such that #L =
deg N + 1;
else L := M;;
for d € D do
Comment: Remove polynomials f such that a +
fb=0(mod d) from L.
for g € M;_gegq do L := L\ {eq + qd};
while L # 0 do {
Choose f € L;
for d € D do f4:= f (mod d);
for d € D do {
hg == gcd(ad + fdbd, d);
if deg hq > 0 then break;}
if deghq = 0 then
return (f,S');
en, = eq (mod hq);
eq/h, = ed (mod d/hg);
S" = (8"U{hq,d/ha}) \ {d};
D= (DU {ha,d/ha}) \ {d};
for d € {hq,d/hs} do
for ¢ € M;j_gega do L:= L\ {eq + qd};}}

Theorem 1 Algorithm RGCD is correct

Proof. In the first while-loop of the algorithm we extract
from the set S’ the set D of polynomials which have no
common divisor with . When a factorization of a polyno-
mial in S’ is found during this process this is incorporated
into S'.

In the big for—loop of the algorithm we try to find the
wanted f by using a sieving process which excludes from the
set of all possible candidates for f those polynomials which
are easily computed to be bad.

By performing the sieving for polynomials of degree i
for + = 0,1,2,... in succession we ensure that a minimal
degree solution f will be returned. When, after performing
the sieving process, we find a candidate f which yields a
factorization of one of the polynomials in D we incorporate
this in D and S’. Then we use the factors found to continue
the sieving process.

Note that the following properties hold at all times dur-
ing execution of the algorithm:

e 5" has the right properties, i.e. ([[,.s) | N, N
divides a power of [[, ¢, 8’ and all s € S are a product
of polynomials in S’.

e D C S’ and for all d € D we have ged(d,b) = 1.
e The polynomials in S’ \ (D UU) divide b.

In particular, after execution of the first while-loop, the
polynomials in S’ \ D divide b.

The while-loop of the sieving process is executed as long
as we find factorizations of already known factors of N and
there are candidates for f left in L. Since N has only finitely
many factors the factor refining process must eventually

107

stop. From this and the fact that L is finite, it follows that
if the algorithm does not terminate, then ¢ will eventually
be increased.

It is clear that when f is excluded from the set L we have
ged(a+ fb,N) # 1. When #F < deg N it follows from this,
and the fact that gr(N) is finite, that the algorithm will
eventually terminate. When #F > deg N it follows from
Lemma 3 that the algorithm will terminate.

If the algorithm returns f it is clear that gcd(a+ fb,d) =
1 for d € D. Since ged(a,b,N) = 1 we also have ged(a +
fb,s') =1 for s € 8"\ D. Since N divides a power of
[I. s s this implies that ged(a + fb, N) = 1. °

In the following two theorems we bound the cost of one call
to algorithm RGCD as well as the amortized cost when the
algorithm is called a number of times for a fixed N. We
denote by P(n) a bound on the number of operations in F'
needed to perform the following operations in F[z]:

e Addition, subtraction, multiplication and division with
remainder of polynomials of degree < n.

e Computing the extended gcd of two polynomials of de-
gree < n, i.e. for polynomials f, g of degree < n, com-
pute g = ged(f, g) and a,b € F[z] of degree < n such
that g = af + bg.

e Computing the residues of a polynomial a modulo poly-
nomials a; where dega, Z dega; < n.

When M (n) is a bound for the number of operations in F'
required to multiply two polynomials of degree < n, we have
the following result.

Lemma 4 P(n) = O(M(n)log(n)).

Proof. See [1]. °
We assume that there is a monotonically nondecreasing

function f(n) such that P(n) nf(n). In practice this
will be no problem. We then have the following lemma.

Lemma 5 For positive integers n,ni, ..
Zi=1 n; we have Zi=1 P(n;) < P(n).

Proof. Zizl P(n;) = Zi=1 n;f(n;) < Zi=1 n; f(n)
nf(n) = P(n). °

First we will bound the cost of one call to RGCD.

.,n such that n =

Theorem 2 Let [be the number of times a factorization of
one of the (up to then) known divisors of N is found dur-
ing execution of algorithm RGCD. Then the algorithm takes
O((14+1)P(deg N) + (#F)? ™M) P(gr(N)) deg N) operations
i F.

Proof. We can view the evolution of factorization of one of
the polynomials s € S as a binary tree B, e.g.

S

b1 D2

The root of B, is labeled by s. If a vertex is labeled by
some polynomial p which during execution of the algorithm
is factored as p = pip2, then the “children” of p will be
labeled by p1 and p>. In the sequel we will identify a vertex
with its label. Let V denote the set of all vertices in all
B;s (s € S), V, the set of roots in V', V; the set of leaves in
V and V) the set of parents in V, ie. V, =V \ V.. It is
easy to see that #V, < #V;. Furthermore #V is less than
the number of irreducible factors of N, so #V; < degN.
A factorization of one of the (up to then) known factors
of N corresponds to a vertex v € V,. So the number [in
the theorem equals #V,. It is easy to prove the identity
BV \T;) = 24T,

The cost of computing ged(a, N) is O(P(deg N)). Com-
puting the as and bs for all s takes O(P(degN)) since
Zses degs < deg N.

We have to compute the eight quantities gu, u/gu,
Qy/gy> bujgy, €d, d/ha, en, and ey, all for particu-
lar subsets of V. The cost of these computations can
be bounded by 8(3, .. P(degr) + ZUEV\VT P(degN)) <
8(2l +1)P(deg N), since) .. degr < degN.

The computation of the fy for all d € D can be done in
O(P(deg N)) since deg f < degN and), _,, degd < deg N.
We have to perform this computation at most [+ 1 times.

The computation of the hy for all d € D can be done
in) ,.pP(degd) < P(degN). We have to perform this
computation at most [+ 1 times.

Finally we have to compute the cost of excluding the
eq + qd from L. This has to be done for all d in a subset
of V. When #F > degN, we only have to exclude the
eq from L; the number of these is bounded by O(#V) =
O(deg N). Now suppose that #F < deg N. When degd > i
we only have to exclude eq from L in the case that degeq = i.
When degd < i we have #M;_qega = (#F — 1)(#F) 48,
Summing over all i, we see that for a particular d, the total
number of times we have to exclude a polynomial from an
L is <1 when degd > gr(N) and

gr (N)—degd

>

=0

<14+ #HF-1) (#F)J — (#F)QF(N)—degd+1,

when degd < gr(N). Summing over all d € V', we see that
the total number of times we have to exclude a polynomial

from an L is
> 1

< ¥

(#F)QF(N)—deg d+1 +

deV devVv
degd < gr(N) degd > gr(N)
< 2degN 4 (#F) ™M N (gF) el

devVv
degd < gr(N)

>

deV
degd < gr(N)

< 2deg N + (#F)"™M* 1 (2deg N/#F)
O((#F)"" ™ deg N)

IN

2deg N + (#F)9r(N)+! (#F)™"

The cost of computing eq+qd for ¢ € M;_gega is O(P(i)) =
O(P(gr(N))). Summing up all costs proves the theorem. ®

108

Remark 1 In the computation of the cost of RGCD we
have not taken into account the overhead caused by handling
the set L. In practice L can be implemented by an array.
Ezclusion of a polynomial from L is then done by zeroing
an entry in L. When F is the field with p® elements, the
computation of the index of a polynomial g in L can be done
by evaluating a polynomial of degree deg g with coefficients
< p? in p?. We assume that the cost for this is equivalent
to O(deg g) operations in F. Since degg < gr(N) this can
be neglected in our cost computation.

Furthermore, when keeping track of the position at which
we are searching for f € L, the total cost of this search is
linear in the total length of all arrays. When #F > deg N
this length is 1 + deg N, when #F < deg N the length is
(#F)QF(N)+1 < (#F)QF(N) deg N.

Next we will bound the cost of solving a succession of re-
stricted modulo N extended gcd problems for a fixed mod-
ulus N.

Theorem 3 Using the algorithm RGCD, computing (in
succession for ¢ = 1,...,s) for a;,b; € F[z], such that
degai,degb; < degN and ged(ai,bi, N) 1, fi €
Flz] of minimal degree such that ged(a; + fibi, N)
1 can be done in O(P(deg N)deg N + s(P(degN) +
(#F)9* N P(gp(N))deg N)) operations in F.

Proof. We have to perform RGCD s times. For the first call
to RGCD we can use S = {N}. By using finer factorizations
found by RGCD in future calls we see that the total number
of factorizations of known factors of N is bounded by deg N.
°

3 The function gr(N)

In this section we will study the function gz (V) more closely.
In fact we will bound gr(IN) for general N by gr(D) for
some special D (D depending on N). This will be based
on a conjectural bound for gr(D) which then can be used
to bound general gr(NN)’s. Unfortunately we are not able
to prove the conjecture, but we will give some evidence to
support it.

Lemma 6 For N € F[z]\{0}, gr(N) is the minimalt € N
such that for all a € F[z] there exists an f € Fz] of degree
<t such that gcd(a — f,N) = 1.

Proof. Let hg(N) be the minimal ¢ € A such that for all a €
F[z] there exists an f € F[z] of degree < ¢ such that gcd(a—
fyN) = 1. Taking b = —1 we see that hr(N) < gr(N). Now
let a,b € F[z] such that gcd(a,b, N) =1, N the product of
all irreducible monic divisors of N which do not divide b
and a = —a/b (mod N). Let f € F[z] of degree < hr(N)
such that ged(a — f, N) = 1. Then also ged(@ — f,N) =1
and since ged(b, N) = 1 also ged(—b(a — f), N) = 1. But
—b(a—f)=a+fb (mod N)so ged(a+ fb, N) =1 and so,
by Lemma 1, gcd(a + fb, N) = 1. From this it follows that
gr(N) < he(N). o

We see that the function g¢gr is similar to the well-
known Jacobsthal function g from number theory (see
[5], [8]) which can be defined by g(n) min{t € N |
VaenTieq1,...iy:8cd(a + i,n) = 1}, for n € N. We there-
fore call gr the polynomial Jacobsthal function for F. In [4]

it is proven that g(n) = O(k?), where k is the number of
prime divisors of n.

From now on let N € F[z]\ {0}. Let I(N) be the set of irre-
ducible monic divisors of N. We have already seen (Lemma
3) that when F' contains more than #I(N) elements, then
gr(N) = 0. So when F is an infinite field we have gr(IN) = 0
for all N.

So from now on assume that F' is a finite field with ¢
elements. First we will introduce some notation. For f €
F[z] we denote by d; the degree of f. Furthermore, let P
be the set of all irreducible monic polynomials over F' and
fort e Nlet My ={f € Flz] | dy <t}. Fort e N,pe P
and a € Fz] let

R,,={feM;|f=a (modp)}.

So Rﬁ,,a is the set of all polynomials f of degree < ¢ such

that ged(a— f,p) # 1. For f € M we have ged(a— f,p) = 1
if and only if f ¢ R’ , whence gcd(a — f, N) = 1 if and only
if f¢ Uper(nyRb,. Fort € N and U C P let

N = max{#(UPeUR;,a) | a € Flz]}.

We see that for t € N, there exists for all a € F[z] an
f € M; such that ged(a — f, N) = 1 if and only if Nf(N) <
#Mt = qt+1. We get the following lemma.

Lemma 7 gp(N) is the minimal t € N such that N;(N) <
gt

The following lemma states that we can replace irreducible
polynomials of high degree by other irreducible polynomials.
Lemma 8 Lett € N, U C P and k,l € P\ U with dj, >
t+1. Then Njjuy < Niogy-

Proof. When N}, = ¢'*', then Néu{k} = Néu{l} = ¢ttt
So assume that Nf; < ¢'*'. Let a € F[z] such that

Néu{k} = #((Upeu R} .) U Rj).

Now
#((UpevR,) URL,) < #(UpeuRp.) + #Ri.
< #(UpevR;,) +1
(since dr, >t +1)
< Np+1,

s0 Ni; > Nfrqy — 1. Let @ € Flz] such that

Ni = #(Upev Ry 5)-
Since Nj; < ¢"*' there exists an f € M¢ \ (UpevRL5). Let
G € Flx] such that a=a (modp) forallpe U anda = f
(mod 1). Then Upev R), ; = Upeu RS ; and thus

Niogy = #(Upeu Ry 5) URL)

> #(UpevRpa)
= N§
> Npugy — 1L

Using Lemma 8 a number of times, we can prove the fol-
lowing lemma, where for a positive integer ¢ we define
I, =PNM:.

Lemma 9 Let t be a positive integer and U C P such that
#U < #I,. Then N, < N},.

Proof. Let U =U\I,. IfU = 0, then U C I; and the lemma
follows. If U # 0, let k € U and [€ I; \ U. By Lemma 8 we
know that N}, < N(tUu{l})\{k} and the theorem now follows

by induction on #U. °

To Lemma 7 and Lemma 9 we get the following corollary,
where for a positive integer ¢ we define D; = Hpelt p, i.e.

D; is the product of all irreducible monic polynomials of
degree < t. The corollary states that, in some sense, D; is
the worst polynomial we can have with a certain bounded
number of irreducible divisors.

Corollary 1 Let N € F|x] such that #I(N) < #I;. Then
gr(N) < gr(Dy).

We conjecture the following bound for the value of g (D:).

Conjecture 1 For all positive integers t we have th <
g+, e gr(De) <t

Unfortunately we are not able to prove the conjecture. We
have however some evidence to support it. First of all the
conjecture is true for t = 1.

Theorem 4 N111 < ¢

Proof. Let a € F[z] such that Nj, = #(Uper, R,,). Let
be F\{a(0)}, S = {(a(i)—b)/i|i € F\{0}} andc € F\S.
Then b+ cx € M1\ (Uper, Bp.0)- °

Furthermore exhaustive tests have proven the following fact.

Fact 1 For (¢,) € {(2,2),(2,9).(2,4),(3,2),(4,2)} we
have N}t < gt

Also numerous (though not exhaustive) experiments indi-
cate that Nj, = #(Uper, R),) for all a € F[z] of degree
< t, which means that a € F[z] of degree < t is the
worst case we can get. For a € F[z] with degree < ¢t
we have M; \ (Uper,Rb.) = {a+c | ¢ € F\ {0}} so

#(Uper, Ry o) =q¢' = (¢ —1) < g

Some of the upcoming results will depend on Conjecture 1.
These results will be labeled “Conjecture Corollary”.

Conjecture Corollary 1 Lett be a positive integer. Then
gr(Dr) = t.

Proof. Taking a = z' we have that ged(a — f, D;) # 1 for
all f € M\ {z' — c| c € F}. This shows that gr(D;) > t.
The result now follows from Conjecture 1 °

Conjecture Corollary 2 dy > ZpEI (V-1 dyp.
aF -

Proof. From Corollary 1 and Conjecture 1 we get
#IgF(N)—l < #I(N)

Since I; contains only irreducible polynomials of smallest
possible degree the corollary easily follows. °

The following lemma follows from some elementary algebra.

Lemma 10) dp > q".

p€El:
Proof. Let K be an extension field of degree ¢ over F. For
a € K let m, be the minimal polynomial of a over F. We
say that a,b € K are equivalent (a ~ b) if m, = ms. This
defines an equivalence relation on K. Let K/~ denote the
set of equivalence classes and for ¢ € K/~ let m. be the
corresponding minimal polynomial. Since F' C K is a Galois
extension the number of elements in the equivalence class of
a € K is equal to the degree of m,. From this we get

Dodp= Y duo=) He=#K=4"

pEIl: ceEK /[~ cEK [~
°

From Lemma 10 and Conjecture Corollary 2 we now get the
following corollary.

Conjecture Corollary 3 dy > ¢?F V)1,

3.1 Average case analysis: a partial result

In this section we will show that for many polynomials a €
F[z] there exists a constant ¢ € F such that gcd(a—¢, N) =
1. From this it follows that the running time of algorithm
RGCD will in general be much better than the worst case
bound given by Theorem 2. We emphasize, though, that the
result presented here is still far from a complete average case
analysis. We will omit the proofs of the various statements.

It is clear that we only have to consider a € MdN _1, since we
can take a modulo V. The following lemma gives a formula
for the portion of polynomials a € Mg, —1 for which there
exists a ¢ € F such that ged(a — ¢, N) = 1.

Lemma 11 Let N € Flz]\ {0}, I(N) = {p1,...
N =pit---p%*. Then

7p3} a‘nd
#{a € Mgy—1 | Feer:ged(a—c,N) =1} /# Mgy 1

>yt (i) [T —=ira®o.

j=1 i=1

(2)

We won'’t give extensive estimates of the right hand side of
(2) but will only give some examples. By performing some
manipulations we see that the right hand side of (2) is equal
to 1 when s < ¢ (which agrees with Lemma 3) and can
be bounded from below by 1 — ¢g!/¢? when s = ¢, which
converges to 1 very rapidly. Already for ¢ > 9 we have
1—4q!/q? > 0.999. When we take for N the product of
all monic irreducible polynomials of degree < 2 we get the
values of the following table for the right hand side of (2).

q

2 | 0.375
3 | 0.572
5 | 0.780
8 | 0.914
23 | 0.999

110

4 The generalized modulo N extended ged problem

For a matrix A over F[z] we write gcd(A) to mean the ged
of all entries in A. The generalized modulo N extended ged
problem takes as input an A € F[z]**™ together with a
nonzero N € F[z], and asks for a ¢ € F[z]™*! such that
ged(Ac, N) = ged(A, N). Here we are interested in com-
puting a solution ¢ with small degree entries, that is, with
degrees of entries bounded by gr(IN). We first give a solu-
tion to this problem for the case m = 2. In what follows we
write A.; to denote the i-th column vector of A and ¢; to
denote the i-th entry of c.

Lemma 12 There exists an algorithm that returns a so-
lution f € Flx| to the equation gcd(A.; + fA.2, N)
gcd(A, N) where A € Flz|™*%. The solution will satisfy
f < gr(N). If degrees of entries in A are bounded by deg N,
then the cost of the algorithm is O(nP(deg N)) field oper-
ations plus the cost of computing a single solution to the
restricted modulo N extended ged problem.

Proof. Let T be a copy of A. At a cost of O(nP(deg N)) field
operations transform 7', using unimodular row operations
and reduction modulo N, to have the form

a b
x 0
T=1|*0
£ 0

where * denotes a possibly nonzero entry and b = gcd(A.2).
Compute f to be a solution to the restricted modulo N
extended gcd problem ged((a/g)+ f(b/g), N) = 1 where g =
ged(a,b). Then ged(a + fb, N) = ged(a,b, N) and deg f <
gr(N). Tt follows that gcd(Tw1 + fTw2, N) = ged(T, N).
Since T is left equivalent to A (modulo N) we must also
have gcd(A.1 + fA.2, N) = ged(A4, N). °

Theorem 5 There exists an algorithm that returns a solu-
tion ¢ € Flx]™*" to the generalized modulo N extended ged
problem with input A € Flz]"*™. The solution will satisfy
c1 = 1 and degce; < gr(N) for 2 < i < n. If degrees of
entries in A are bounded by deg N, then the cost of the al-
gorithm is O(nmP(deg N)) field operations plus the cost of
computing m — 1 solutions to the restricted modulo N ex-
tended ged problem.

Proof. Set ¢1 <+ 1. Initialize B to be a copy of A.1. For
i = 2,3,...,m perform the following steps. (1) Using the
algorithm of Lemma 12 compute an f such that gcd(B +
fA«,N) = ged(B, A.i, N). (2) Add f times A.; to B and
reduce modulo N the entries in B. (3) Set ¢; + f. °

5 An algorithm for the Smith normal form

Given a nonsingular polynomial input matrix A € F[z]"*",
we want to produce unimodular transforming matrices
U,V € Flz]**" such that S = UAV = diag(s1, $2,--.,5n)
is the Smith normal form of A. In [9] we presented an al-
gorithm for producing transforming matrices in the case of
an integer input matrix. That algorithm depends on a sub-
routine for solving the modulo N extended gcd problem for
integers and incorporates ideas from [3, 7, 12]. Using the
subroutine for solving the generalized modulo N extended

ged problem for polynomials presented in section 4, the al-
gorithm in [9] is easily adapted to work for a polynomial
input matrix.

The approach taken in [9], first used in [7], is to compute
a unit lower triangular matrix C such that AC can be trans-
formed using only unimodular row operations to an upper
triangular T with i-th diagonal entry s; for 1 < i < mn. We
call C a Smith conditioner for A. In [12] T is called a tri-
angular Smith form of AC. Once a Smith conditioner and
triangular Smith form have been computed, transforming
matrices are easily recovered.

In the Las Vegas probabilistic algorithm in [7], choosing
the entries in C randomly from a subset of F' of cardinality
4n3d will ensure probability of failure less than 1/2. The
algorithm in [12] computes C' € F™*" deterministically but
also requires that F' has at least 2nd distinct elements. If
#F is too small then the algorithms in [7, 12] may require
computing over an algebraic extension of F' which may lead
to algebraic numbers in the transforming matrices. In the
following example we give an input matrix for which there
does not exist a Smith conditioner over F.

Example 1 Let F be the field of two elements and consider
the nonsingular input matrizc

T 1
A= { 2?2 P4 r+1

The gcd of all entries of A is 1. We want to condition A

so that the ged of the entries in the first column is equal 1.

When we multiply A on the right with

B

the ged of the entries of the first column is for ¢ = 0 equal
to x and for ¢ = 1 equal to x + 1. In both cases this is not
the ged of all entries of A. Now let F C K be an extension
of degree 2 and let y € K such that y*> +y + 1 = 0. Taking
c =1y we get

|

and ged(z +y,(y + D’ +yz+y) =1= 1+ z)(z+y) +
y((y + Da® +yx +y). This gives

C

T+y 1

AC = .
¢ {(y+1)m2+ym+y 2 +z+1

r+1 y
(y+D)z’+yr+y z+y

J ac -

|

By clearing the top-right entry by a column operation we
finally get

1y’ +(y+De+y+1
0 3+

1 0
UAV_[O x3+x:|’
where
U= x+1 y
Tl D yr 4y x4y |
vo |t yr?+ (y+ Dz 4+y+1
= > .
Y (y+1)z* +=

We see that both U and V' contain algebraic numbers.

111

We can avoid the use of algebraic numbers by allowing poly-
nomials for the entries of the Smith conditioner matrix C.

Example 2 Consider the same input matriz as in Ezample
1. Taking c =z + 1 we get

and ged(1,2® + 22 +1)=1=1-140- (2® + 2> +1). This
gives
|

and by clearing the top-right entry by a column operation we
get

1 1

Acz{m3+m2+1 22+x+1

0 1 1
1]ACZ[O 2+

1
{x3+x2+1

1 0
e[y 0]
where
1 0 1 1
U_{m3+m2+1 1:|’V_[a:+1 q;:|

Now both U and V' don’t contain algebraic numbers.

We now adapt the algorithm in [9] to work for polynomial
input matrices. The algorithm computes the columns of
C as solutions to instances of the generalized modulo N
extended gcd problem with N = det A. This leads to the
following two theorems.

Theorem 6 There exists a deterministic algorithm that
takes as input a nonsingular A € F[z]"*™, and returns as
output a Smith conditioner C for A together with a triangu-
lar Smith normal form T of AC which has degrees of entries
in column i bounded by deg s;. If degrees of entries in A are
bounded by d, then the cost of the algorithm is O(n®P(nd))
field operations plus the cost of solving n—1 instances of the
generalized modulo N extended ged problem with N = det A
and with dimension bounded by n.

Proof. The algorithm is analogous to that for integer matri-
ces presented in [9]. For a detailed presentation and a proof
of correctness see [9]. °

Theorem 7 Let A € F[z]"*" be nonsingular with degrees
of entries bounded by d. Let C' be a Smith conditioner of A
and T a triangular Smith form of AC with degrees of entries
in column i bounded by deg s;. If degrees of entries in C' are
bounded by dc, then unimodular U and V such that UAV =
S can be recovered from T and C in O(n®*P(n(d + dc)))
field operations. Degrees of entries in U will be bounded by
(n—1)(d+dc) and degrees of entries in column j of V will
be bounded by dc + degs;.

Proof. Note that S is given by the diagonal entries
of T. Compute V<« C(S7'T)™', and U +
(TC~'A*)(1/ det(A)). Then UAV = S as required. It
remains to establish the degree bounds for entries in U and
V. The matrix S~'T will be unit upper triangular with the
degree of entry in column j row ¢ bounded by deg s; —deg s;.
The inverse matrix R = (S7'T)™! will also be unit upper
triangular with the entry in column j row ¢ bounded by
degs; — degs; [12, Proof of Corollary 4.1]. The claimed

bounds for the degrees of entries in V' follow easily. Entries
in A% and C~! will be bounded in degree by (n — 1)d and
(n — 1)dc respectively. Noting that degrees of entries in T
are bounded by deg(det A) we get the bound (n—1)(d+dc)
for degrees of entries in U. The cost of recovering U and V'
follows from the degree bounds. °

From Conjecture Corollary 3 and Theorems 3, 5, 6 and
7 we get the following conjectured corollary.

Conjecture Corollary 4 Let F be a finite field and q =
#F. There exrists a deterministic algorithm that takes as
input a nonsingular A € F[z]"*" with degrees of entries
bounded by d, and returns as output the Smith normal form
S of A together with unimodular transforming matrices U
and V' such that UAV = S. Degrees of entries in U will
be bounded by (n — 1)(d + [log, nd]) and degrees of entries
in column j of V' will be bounded by [log, nd] + degs; for

1 < j < n. The cost of the algorithm is O(n*P(n(d +

logn)) + ndP(nd) + n*d?>qP(log nd)) operations from F.

As a corollary to Lemma 3 and Theorems 3, 5, 6 and 7 we
get the following.

Theorem 8 Let #F > nd. There exists a deterministic
algorithm that takes as input a nonsingular A € F[z]™*"
with degrees of entries bounded by d, and returns as output
the Smith normal form S of A together with unimodular
transforming matrices U and V' such that UAV = S. The
degrees of entries in U will be bounded by (n — 1)d. The
degrees of entries in column j of V' will be bounded by deg s;
for 1 < j < n. The cost of the algorithm is O(n>P(nd) +
ndP(nd)) operations from F.

6 Conclusions and future work

In this paper we have presented a deterministic algorithm
to solve the restricted modulo N extended gcd problem. In
the large field case this algorithm always gives a solution of
degree 0. In the small field case we have, besides a trivial
upper bound, conjectured an optimal bound for the degree
of a solution. We have given some evidence to support the
conjecture but we are still far from a proof.

Furthermore we have shown how this algorithm can be
used to adapt the algorithm in [9] to compute transforming
matrices for the Smith form of a nonsingular matrix over
F[z]. This algorithm always returns transforming matri-
ces over F[z] and gives good bounds on the degrees of the
entries in the transforming matrices (these bounds depend
however on the conjecture in the small field case). Previous
algorithms in [7, 12] may return transforming matrices with
entries in some algebraic extension field of F'.

In the small field case the worst case complexity of our
algorithms depend on the conjecture. It is not difficult to
compute a solution to the restricted modulo N extended
ged problem of not necessarily minimal but moderate de-
gree (see [11]). Using this, our algorithm for Smith form
computation will become independent of the conjecture al-
though the degree bounds will be less attractive. We will
not go into detail.

In our algorithm, following the approach in [2], we per-
form a big part of the computations modulo det A. This
ensures a good bound on the degrees of intermediate poly-
nomials. The algorithm in [12] computes transforming ma-
trices for the Smith form of a matrix over Q[z], where Q

112

is the field of rational numbers. It is designed to give good
bounds on the size of intermediate and final rational num-
bers.

In the future we will present an algorithm for Smith form
over Q[z] which is based on homomorphic imaging; a key
step in this algorithm will be to compute transforming ma-
trices for the Smith form over F[z], where F is a prime field,
using the algorithm we have presented here. Also, the Smith
form algorithm we have presented here should be generalized
to work for rectangular and/or singular input matrices.

A cknowledgment We are grateful to the referees for their
useful comments.

References

[1] AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

Dowmich, P. D., KANNAN, R., AND TROTTER, JR.,
L. E. Hermite normal form computation using mod-
ulo determinant arithmetic. Mathematics of Operations
Research 12, 1 (1987), 50-59.

GIESBRECHT, M. Fast computation of the Smith nor-
mal form of an integer matrix. In Proc. Int’l. Symp.
on Symbolic and Algebraic Computation: ISSAC 95
(1995), A. H. M. Levelt, Ed., pp. 110-118.

2]

3]

[4]

IwaNIEC, H. On the problem of Jacobsthal. Demon-
stratio Mathematica 11, 1 (1978), 225—231.

JACOBSTHAL, E. Uber Sequenzen ganzer Zahlen, von
denen keine zu n teilerfremd ist I-III. Norske Vid.
Selsk. Forhdl. 83 (1960), 117-124, 125-131, 132-139.

KALTOFEN, E., KRISHNAMOORTHY, M. S., AND SAUN-
DERS, B. D. Fast parallel computation of Hermite and
Smith forms of polynomial matrices. STAM Journal of
Algebraic and Discrete Methods 8 (1987), 683—690.

[5]

[6]

KALTOFEN, E., KRISHNAMOORTHY, M. S., AND SAUN-
DERS, B. D. Parallel algorithms for matrix normal
forms. Linear Algebra and its Applications 136 (1990),
189-208.

KanoLp, H.-J. Uber eine zahlentheoretische Funktion
von Jacobsthal. Math. Annalen 170 (1967), 314-326.

STORJOHANN, A. A solution to the extended ged prob-
lem with applications. In Proc. Int’l. Symp. on Symbolic
and Algebraic Computation: ISSAC 97 (1997).

STORJOHANN, A., AND LABAHN, G. A fast Las Vegas
algorithm for computing the Smith normal form of a
polynomial matrix. Linear Algebra and its Applications
258 (1997), 155—173.

STORJOHANN, A., AND MULDERS, T. Fast algorithms
for linear algebra modulo N. To appear in Proc. of
Sizth Ann. Europ. Symp. on Algorithms: ESA’98.

[9]

[10]

[11]

[12] VILLARD, G. Generalized subresultants for computing
the Smith normal form of polynomial matrices. Journal

of Symbolic Computation 20, 3 (1995), 269—286.

VILLARD, G. Fast parallel algorithms for matrix reduc-
tion to normal forms. Applicable Algebra in Engineer-
ing, Communication and Control 8 (1997), 511—537.

[13]

