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Abstract

We describe an O(n®) field operations algorithm for com-
puting the Frobenius normal form of an n X n matrix. As
applications we get O(n?) algorithms for two other classical
problems: computing the minimal polynomial of a matrix
and testing two matrices for similarity. Assuming standard
matrix multiplication, the previously best known determin-
istic complexity bound for all three problems is O(n?).

1 Introduction

Let F be a commutative field. Every matrix A € F"*" is
similar to a unique matrix S in Frobenius normal form. The
Frobenius form, also called the rational canonical form, has
the shape

o
. Cr,
S = dlag(Cfl,Cf2,...,Cfl) =

Cy,

Each block CY, is the companion matrix of a monic f; € F[z]
and fi|fiq1 for 1 < ¢ < [ —1. The minimal polynomial
of Ais f; and the characteristic polynomial is (f1f2--- fi).
The determinant of A is easily recovered as the constant
coefficient of (f1f2--- f1). Recall that the companion matrix
of g=go+gix+ -+ gro1z" ' + 2" € F[x] is given by

0 - 0 —go
Cy = L € F™".
0 —gr—2
1 —0gr-1

Before stating the main result of the paper we make some
comments. From [2] we know that determinant computation
is as difficult as matrix multiplication. Thus, a lower bound
for the cost of computing the Frobenius form is Q(MM(n))
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field operations where O(MM(n)) is the number of field op-
erations required to multiply two n X n matrices over a
field. The current record for matrix multiplication [3] allows
MM(n) = n>37 whereas the standard, eminently practical
algorithm has MM (n) = n®.

The main result of this paper is an algorithm for com-
puting the Frobenius form over an abstract field in O(n?)
field operations. This gives O(n?) algorithms for two other
classical problems: computing the minimal polynomial of a
matrix and testing two matrices for similarity. We are cur-
rently unable to compute in O(n®) field operations a simi-
larity transform matrix U which satisfies UAU ™! = S.

Previous Frobenius form algorithms of Ozello [8],
Liineburg [6] and Steel [9] all require O(n?) field operations
in the worst case. Augot & Camion [1] give various special-
ized results. For example, knowing the factorization of the
characteristic polynomial, the Frobenius form can be com-
puted in O(n®m) field operations where m is the number of
factors in the characteristic polynomial counted with multi-
plicities. In the worst case m = n. Over a finite field they
show that m = O(logn) in the asymptotic average case.
The Frobenius form algorithms in [1, 6, 8, 9] also recover a
similarity transform matrix U which satisfies UAU ' = S.

Now consider randomized algorithms. Giesbrecht [5]
has given a near optimal Las Vegas probabilistic algorithm
which requires O"(MM(n)) - (logn)°®®) field operations to
recover both S and a U. When #F < n? the U produced
may have entries in a small extension field of F'. Under the
assumption of standard matrix multiplication Giesbrecht [4]
develops versions of his algorithm which require O(n® log, n)

field operations for small fields with ¢ = #F < n* and O(n?)
otherwise; these standard arithmetic algorithms always re-
turn a U over F'.

To summarize: the algorithm we present here improves
by a factor of O(n) field operation on the running time of
previous deterministic algorithms [1, 6, 8, 9]. Under the
assumption of standard matrix multiplication we improve
by a factor of O(log, n) field operations on the running time
of the fastest randomized algorithm [4] in the small field
case. On the other hand, the algorithm presented here does
not produce a transforming matrix and we don’t yet know
how to incorporate fast matrix multiplication techniques as
in [5]; these are left as open problems.

The approach we take is to first transform A to Zigzag
form — a matrix with an “almost” block diagonal structure
and fewer than 2n nonzero entries. We show how to recover
a Zigzag form Z together with a similarity transform matrix
U satisfying Z = UAU ™! in O(n®) field operations. Next



we compute the Smith normal form of I — Z over F[z] from
which the Frobenius form of A is easily recovered.

In Section 2 we introduce the Zigzag form. In Section 3
we recall the definition of the Smith normal form and observe
the good behavior of the Smith form algorithm presented in
[10] when applied to a banded triangular input matrix. In
Section 4 we apply the results presented so far to get an
O(n®) field operations Frobenius form algorithm.

2 The Zigzag form
A square matrix Z over F is in Zigzag form if
aen Blz1 -

Ce,

By, Ce, B’Zg

ca
Czk—2

Bbk—2 C‘fk—l Bbkt—l

L Cl .

with k even, the i-th diagonal block a companion matrix for 4
odd, transpose of a companion matrix for ¢ even, and blocks
labeled Bj; having entry in the upper left corner equal to b;
and all other entries zero. Each C¢; has degc; > 1 except for
¢, for which we allow degc;, > 0; this conveniently handles
the case when the actual number of companion blocks is odd.
Note that the dimensions of a block labeled By, are always
conformal with adjacent blocks. It is easily verified that
any matrix in Zigzag form will have fewer than 2n nonzero
entries.

We will describe an algorithm for reducing a matrix to
Zigzag form using only elementary similarity transforma-
tions. First recall some definitions. An elementary row op-
eration is one of:

- Interchanging two rows.

- Multiplying a row by an invertible element.

- Adding a multiple of a row to a different row.

The elementary column operations are defined analogously.
An elementary similarity transformation of A is given by
A — EAE~! where E is the elementary matrix correspond-
ing to an elementary row operation. For example: switching
rows ¢ and j is followed by switching columns i and j; mul-
tiplying row i by a is followed by multiplying column i by
a~'; adding a time row j to row i is followed by subtracting
a times row i from row j.

Lemma 1 An A € F™*" can be reduced to a similar ma-
triz with the shape shown in (2) using at most O(ndegc)
elementary similarity transformations where ¢ is found dur-
ing the reduction.

C. By

. (2)

Proof. There are three stages to the reduction. After stage
1, 2 and 3 the work matrix has the shape shown in (4), (5)
and (2) respectively.

Stage 1: Using the method in [8] we reduce column j of
the work matrix to correct form for j = 1,2,... ,degc in
succession. The algorithm is inductive and it is sufficient to
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consider a single column. After the first j — 1 columns have
been reduced the work matrix can be written as

L
0 A[j—1j][* -
1 AR s e s ®)
AT+
I Alngl e o]

Note that the input matrix can be written as in (3) with
j = 1. If the lower left block of the work matrix (3) is zero
then the principal block is C. with degc = j and we are fin-
ished this stage. Otherwise, choose 7 with j+1 < i < m and
Ali, 7] # 0. Perform the following (at most) n+1 row opera-
tions to reduce column j to correct form: switch rows i and
j so that A[j+1, 5] # 0; multiply row j+1 by A[j+1,4]"" so
that A[j+1,j] = 1; add appropriate multiples of row j+1 to
the other n—1 rows to zero out entries above and below entry
Alj+1,j] in column j. Directly following each of these row
operations we must also perform the corresponding inverse
column operation on the work matrix. It is easily verified
that none of these column operations will affect the entries
in the first j columns of the work matrix. Since we perform
this elimination process for columns j = 1,2,...,degc this
stage requires at most (n + 1) degc elementary similarity
transformations.

Stage 2: At this point the work matrix can be written as

ro 0 A[l,7] |* --- %17
) . .
0 Alj—1][e o s
1AL | ®
* *
_ o]
where j = dege. For ¢ = 5,5 — 1,57 —2,...,2 in succes-

sion, zero out entries to the right of entry A[i, j] in row ¢ by
adding appropriate multiples of column i —1 to the last n—j
columns. This requires at most n — j column operations for
each row for a total of (n — j)(5 — 1) column operations.
When working on row i, the corresponding inverse row op-
erations that we must perform involve adding multiples of
the last n — j rows of the work matrix to row 7 — 1. Because
of the structure of the work matrix, the only effect these
row operations can have is to change the last n — j entries
in the unprocessed row ¢ — 1. Thus, it is important that we
perform the elimination in the order specified, that is, for
row i =75,7—1,7—2,...,2 in succession.

Stage 3: At this point the work matrix can be written as

ro 0 A[l,4] |= *W
) . .
Ali— 1.
v )




where j = degc and all entries below the first row of the
upper right block are zero. If the entire upper right block
is zero we are finished. Otherwise, choose k with j +1 <
k < n and A[l,k] # 0. Perform the following (at most)
n—j+1 column operations to complete the reduction: switch
columns j + 1 and k; multiply column j+1 by A[1,j+1]71;
add appropriate multiples of column j+1 to the last n—j—1
columns of the matrix to zero out entries to the right of
entry A[l,j + 1]. The inverse row operations corresponding
to these column operations only affect the last n — j rows of
the work matrix. n

We now outline our approach for reducing an A € F"*"
to Zigzag form. The key idea can be understood by con-
sidering the first few steps. First apply the algorithm of
Lemma 1 to transform the work matrix to a similar matrix
with shape shown in (2). Then transpose the work matrix
so that it has the block lower triangular shape

t
Ce,

B, | (6)

Our goal now is to improve the structure of the trailing block
labeled # to have the shape shown in (2) whilst leaving the
other blocks unchanged. We claim we can accomplish this
by applying the algorithm of Lemma 1 to the trailing block
of (6). In particular, the proof of Lemma 1 indicates which
elementary similarity transformations should be applied to
the trailing n — deg c¢i rows and columns of the work matrix
to effect the desired transformation. It follows from the next
observation that the required row operations will not change
the block labeled By, since this block has no nonzero entries
below the first row.

Observation 1 The only possibly required row operations
involving row one in the algorithm given in the proof of
Lemma 1 are those which add a multiple of a different row
to row one.

In general, the important point is that there be no nonzero
entries below the first row in any block to the left of the
trailing block.

Theorem 1 There exists an algorithm which takes as input
an A € F™*", and returns as output a U € F"™™ such that
Z =UAU™" is in Zigzag form. The cost of the algorithm is
O(n®) field operations.

Proof. Initialize U to be the identity matrix and Z to be a
copy of A. Perform the following steps:

[Zig:] Using the algorithm of Lemma 1 transform Z to have
the shape shown in (2). Apply all row operations also to U.
[Zag:] Transpose Z and U. Apply the algorithm of Lemma
1 to the trailing (n — degci) x (n — deg ¢1) submatrix of Z.
Apply all column operations also to U. Transpose Z and U.

At this point
Ce, | By,

7
Ce,

UAU =27 = (7)

By, *

Recursively apply the Zig and Zag steps on the lower right
block * of Z as shown in (7). Terminate when Z is in Zigzag
form. The cost follows from Lemma 1 and by noting that
degci +degea + - -- +deger =n. u
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3 Smith normal form of a banded triangular matrix

First recall some definitions about matrices over F[z]. Non-
singular A, B € F[z]™*" are equivalent if each is trans-
formable to the other by applying a sequence of elemen-
tary (and invertible over F[z]) row and column operations.
A nonsingular S € F[z]"*" is in Smith normal form if
S = diag(s1, 2, .., 8,) with each s; monic and s;|s;4+1 for
i <i<n—1. Every nonsingular A € F[z]"*" is equivalent
to exactly one matrix in Smith form.

Let A € F[z]"*™ be nonsingular upper triangular with
degrees of off-diagonal entries bounded by d = degdet A.
Using the approach in [10] we can transform A to Smith form
in O(n?d?) field operations. The algorithm works in stages
for r =1,2,...,n — 1. At the end of stage r the principal
r-th submatrix has been diagonalized and the work matrix

has the shape
D|B
T

where D is r x r diagonal, T is the unmodified (n — r)-th
trailing submatrix of the input matrix, and B is a dense
r X (n — r) matrix. The cost of completing stage r + 1
is bounded by O((n — r + 1)d?) field operations [10, The-
orem 3.2]. Summing this cost for r = 1,2,...,n leads to
the claimed bound O(n?d?) field operations for the entire
computation.

Now consider the case when T is not only upper trian-
gular but also k-banded, that is, with at most the first k — 1
off-diagonal entries in each row nonzero. The input matrix
now has the shape

(8)

Up to and including stage r no row operations involve rows
r+1,r7+2,...,n. Also, the only column operations involving
columns r+1,r+42,...,n are those which add a multiple of
the first r columns to these latter columns to reduce entries
modulo the diagonal entry in the same row. It follows that
at the start of stage r + 1 the work matrix can be written
as in (8) with B having at most the first £ — 1 columns
nonzero. For example, for r approximately n/2 the work
matrix at the end of stage r and beginning of stage r + 1
has the shape

.
|
|
|

where the dashed lines demark the principal (r + 1) x (r +
k + 1) submatrix; all row and column operations applied
during stage r + 1 will change entries only in this principal
submatrix. The cost of moving to stage r+1 is now bounded
by O(kd?). This leads to the following.

Proposition 1 There ezists a deterministic algorithm that
takes as input a nonsingular upper triangular matriz A €
F[z]"*", and returns as output the Smith normal form of



A. If A is upper k-banded and degrees of off-diagonal en-
tries in A are bounded by d = degdet A, then the cost of
the algorithm is O(nkd?) field operations assuming standard
polynomial multiplication.

4 Frobenius normal form

A fundamental theorem from linear algebra relates the
Smith and Frobenius form as follows: if the Frobenius form
of Z € F™*" is diag(Cy,,Cy,, - .., Cy,) then the Smith form
of I — Z € Flz|™*" is diag(1,1,...,1, f1, f2,..., fi) and
vice versa (see [7]).

The next two purely technical lemmas show how to trans-
form the problem of computing the Frobenius form of a
Zigzag form Z € F"*" to that of computing the Smith form
of an upper 4-banded matrix T € F[z]*** with k < n.

Lemma 2 Let ¢ € F[z] be monic of degree r. There erist
unimodular matrices matrices U, Ve € Flz]"*" with U, unit
upper triangular and

Ud(zI — Co)Ve = S,

— c} € F[z]™".  (9)

Proof. Choose U, to be the upper triangular Toeplitz matrix

with Ueli, j] = 2’7" for 1 < ¢ < j <r. The existence of a V
satisfying the lemma follows easily by noting that

Ud(zl — C.) = { = - }

In the picture below we use i to indicate k — 3.

Lemma 3 Let Z € F™"*™ be in Zigzag form as in (1). Then
xl — Z € Flz|™*™ is equivalent to diag(In—x,T) where

rel bl -
C3 b2 b3
C2
Cs b4 b5
C4
T= € Flz]***
cz ba b3
C3
C{ bi bk
C3
L Cp

Proof. Define U = diag(Ucl,Vctz,...,Uci,Vctk)) and V =
diag(Ve,, ULy, ..., Ve, Ufk) where the blocks are defined as
in (9). Then U,V € F[z]"*" are unimodular and

Se; B,
St
U(x[ — Z)V = .
Sck—l Bbli—l
Ses,

The important point is that premultiplication by an upper
triangular U., and postmultiplication by a lower triangular
Ul leaves blocks labeled By, unchanged. The above matrix
can be transformed to the equivalent upper 4-banded matrix
diag(In—,T) by permuting the rows and columns. n
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Theorem 2 There exists a deterministic algorithm that
takes as input an A € F"*™, and returns as output the
Frobenius normal form S of A. The cost of the algorithm is
O(n®) field operations using standard matriz and polynomial
multiplication.

Proof. Recover a Zigzag form Z of A in O(n®) field oper-
ations using the algorithm of Theorem 1. Then zI — Z is
equivalent to diag(I,_x,T) where T € F[z]*** is the upper
4-banded matrix defined in Lemma 3. By Proposition 1 we
can recover the Smith form of 7' (and hence the Frobenius
form of A) in O(n?) field operations. "

5 Open problems

We have given an O(n?) field operations algorithm for com-
puting the Frobenius form S of an n x n matrix A over an
abstract field. This result leads naturally to two open prob-
lems. First, can we recover a similarity transform matrix
U such that UAU ! = S in the same time? Second, can
we incorporate fast matrix multiplication techniques? This
second question is also given in [4, Open Question 1]. Fi-
nally, what about computing the Frobenius form of a sparse
input matrix? See [4, Open Question 2] for details; this is
an exciting problem but so far we know nothing.
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