Article Submitted to Journal of Symbolic Computation

On Lattice Reduction for Polynomial
Matrices*

T. MULDERS! AND A. STORJOHANN?

YCOMIT Financial Systems AG, CH-8004 Zurich, Switzerland,

thom.mulders@comit.ch

2School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1, astorjoh@scg.math.uwaterloo.ca

Abstract
A simple algorithm for lattice reduction of polynomial matrices is de-
scribed and analysed. The algorithm is adapted and applied to various
tasks, including rank profile and determinant computation, transforma-
tion to Hermite and Popov canonical form, polynomial linear system solv-
ing and short vector computation.

1. Introduction

Let A be a matrix over Flz], F' a field. By applying a sequence of elementary
row operations we can transform A to a matrix R which is in weak Popov form.
An example is given in Figure 1. We defer until Section 2 to define the form

A R
422 4+ 32 +5 422+ 3z +4 622+1 1 6x+3 6
3z +6 3z +5 34+ — 0 0 0
622+ 4x + 2 612 222 + x 2 5 3

Figure 1: Transformation of a 3 x 3 rank 2 matrix to weak Popov form, F = Z /(7).

precisely. For now, we note two key properties of the weak Popov form:
e the number of nonzero rows of R is equal to the rank of A, and

o the sum of the degrees of the nonzero rows of R is minimal among all

*The work for this paper was mostly done during both authors’ stay at the Institute of
Scientific Computing, Department of Computer Science, ETH Zurich, Switzerland

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 2

matrices which can be obtained from A by applying elementary row trans-
formations.

Thus, transformation to weak Popov form is essentially lattice reduction for
polynomial matrices. The weak Popov form is a simplified, non—canonical version
of the well known Popov canonical form from linear control theory.

This paper gives a simple algorithm for transforming an input matrix over
F[z] to weak Popov form. We adapt and apply the algorithm to get solutions to
various other problems involving polynomial matrices, see Table 1.

§2 Transformation to weak Popov form.

§3 Computation of rank profile.

§4 Computation of determinant.

85 Transformation of full column rank matrix to Hermite form.
§6 Polynomial linear system solving.

§7 Transformation to canonical Popov form.

Table 1: Some polynomial matrix computations.

The algorithms we present are designed to handle efficiently the case of in-
put matrices which may be rectangular and/or rank deficient. Consider the well
understood case of matrices over a field. Let A € F™*™ have rank r. Problems
involving A like linear system solving and rank profile computation can be solved
with O(nmr) field operations using gaussian elimination. This paper gives anal-
ogous results for matrices over F[z]. Let A € F[x]"*™ have rank r and degree
bounded by d, where the degree of a polynomial matrix is defined as being the
maximum of the degree of its entries. We show that all the problems listed in
Table 1 can be solved with O(nmrd?) field operations. Note that when r and d
appear in a big-O bounds they should be taken as upper bounds, that is, r > 0
and d > 0.

An algorithm to compute a reduced basis very similar to the weak Popov
form has been given by von zur Gathen (1984) and applied to the problem of
computing short vectors. In Section 8 we indicate the relationship between the
Popov form and reduced basis as defined there. This results in a substantially
faster algorithm for the reduced basis and short vectors problem.

In Section 9 we extend the notion of weak Popov form to the setting of discrete
valuation rings. Analogous results as in the polynomial setting hold. In Section 10
we end the paper with a short summary, some remarks on implementation issues
and some suggestions for further research.

Cost model

We assume we have primitives for polynomial arithmetic which support the
following cost bounds. Let a,b € F[x] be nonzero. Then a 4+ b and a — b can be

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 3

computed with O(1 + max(deg(a),deg(b))) field operations, ab can be computed
with O((1 + dega)(1 4 degb)) field operations, and if dega > degb, then the
unique ¢,r € F[z] with a = bg + r and degr < degb can be computed with
O((1 + dega — degb)(1 4 degb)) field operations.

The algorithms in this paper are deterministic. Allowing randomization, asymp-
totically faster algorithms are known in some cases. For each problem we mention
the currently best known complexity bound. Some of these randomized algo-
rithms allow use of asymptotically fast matrix or polynomial multiplication. Let
f (2 < § < 3) be such that two n X n matrices over a field can be multiplied
together with O(n?) field operations. Let € (0 < € < 1) be such that two degree
d polynomials can be multiplied together with O(d'**) field operations.

2. The weak Popov form

A well known notion in systems theory is the Popov form (Popov (1969)) of
a rectangular matrix with polynomial entries. A non—canonical but still useful
version of the Popov form is the quasi Popov form (Kailath (1980)). In this
section we define the weak Popov form — a form with even less conditions than
the quasi Popov form.

Let F be a field and M = (m;;) € F[z]"*™. In what follows we use M to
define general notions for matrices. We use calligraphic characters to refer to
specific variables used in the various algorithms.

Definition: For 1 < 1 < n we define the ith pivot index IM of M as follows: if
m;; = 0 for 1 < j < m, then IM = 0; otherwise
1. deg(m; ;) < deg(m; m) for 1 < j < IM;

2. deg(mi ;) < deg(my) for IM < j <m.

When IM # 0, the element m; ja is called the ith pivot element of M and is

denoted by PM. The degree of PM is called the ith pivot degree of M and is
denoted by DM. When IM = 0 we put DM = —1.

A pivot element is the rightmost element with maximal degree in its row.

Definition: The carrier set CM of M is defined as CM = {1 <i < n | IM #£ 0},

Definition: M 1is said to be in weak Popov form if the positive pivot indices of
M are all different, i.e. if

EleCY k41 = IMA£IM

By applying unimodular row-transformations, we want to transform a given ma-
trix to weak Popov form. We now define a particularly simple kind of unimodular
transformation.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 4

Definition: If k € CM [# k and deg(mhléw) > DM there are unique ¢ € F and
e € N such that
deg(my o — ce B < deg(my).

In that case we call subtracting cz® times row k from row [the simple transfor-
mation of row k on row [. If IM = IM the transformation is called of the first
kind, otherwise it is called of the second kind.

Sometimes we want to apply a simple transformation on M and simultaneously
apply the same transformation on a vector or matrix A. We then say that we
apply the transformation on [M | A] Note that we only consider M when we
determine the pivot element of a row.

Definition: When [N | B] is the result after applying a number of simple trans-
formations on [M | A], we write [M | A] — [N | B] Note that in that
case [N|B] is left equivalent to [M|A],i.e. [N|B] = U[M|A]

where U is unimodular and even det(U) = 1.

EXAMPLE 1: Let

and , .\
1 =z z z
N:{x x :1;3—2:1;2]’ B:{x2—2x5}'

Then IM = 2 and by applying the simple transformation of the first row on the
secondrowof[M|A], weseethat[M|A] —>[N|B].

Algorithm WeakPopovForm, shown in Figure 2, transforms a matrix by applying
simple transformations of the first kind. The algorithm is based on the following
trivial lemma.

LEMMA 2.1: M s not in weak Popov form if and only if we can apply a simple

transformation of the first kind on M, that is, not all nonzero pivot indices of
M are different.

We remark that the copying of matrices is done only in order to be able to
reason about the algorithm. Correctness of the algorithms output follows from
Lemma 2.1. That the algorithm always terminates will follow as a corollary of
our cost analysis.

The next lemma notes how the pivot indices and pivot degrees may change
when we apply a simple transformation.

LEMMA 2.2: Let N be the matriz we get after applying the simple transformation
of row k on row [of M. If the simple transformation is of the first kind, then
either DY < DM or (DN = DM and IN < IM). If the simple transformation is
of the second kind, then IN = IM and DN = DM.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 5

algorithm WeakPopovForm
input: M € Flz]"™*™.
output: A in weak Popov form, obtained by applying simple transfor-
mations of the first kind on M.
A := copy(M);
while A is not in weak Popov form do
Apply a simple transformation of the first kind on A

od;
N = copy(A);
return N

Figure 2: Algorithm WeakPopovForm

Now we bound the cost of Algorithm WeakPopovForm. For this, the following
corollary of Lemma 2.2 is important.

COROLLARY 2.1: If d is a bound on the degree of M, then the degree of A is
always bounded by d.

Now we describe the possible values that a pair (D', I#') can assume during the
course of Algorithm WeakPopovForm.

Definition: The set IM = {IM | € CM} of nonzero pivot indices of M is called
the index set of M.

The next two lemmas follow from Lemma 2.2 and the definitions of a simple
transformation of the first and second kind.

LEMMA 2.3: If N is the matriz we get after applying a simple transformation
on M, then I C IV,

LEMMA 2.4: For 1 < | < n, the values that the pair (D, IY) can assume
during the course of Algorithm WeakPopovForm are all in the set {D{v, D{v +
1,...., DM} x (IMN U {0}).

LEMMA 2.5: If the piot indices of all rows of M are positive and different, then
the rows of M are independent over F(x).

M

Proof: Let N be the matrix we get by multiplying, for 1 < i < n, row i by 2=,
Then N = Ny + N, where N € 27 F[271]"*™ and N, € F"™*™ has independent
rows. Consider F(z) C F((z™')). It is clear that the rows of N are independent
over F((z7')) and thus are also independent over F(z). O

COROLLARY 2.2: rank(M) > #IM.

THEOREM 2.1: Algorithm WeakPopovForm is correct. The cost of the algorithm
is bounded by O(nmrd?*) field operations, where r is the rank of M and d is a
bound on the degree of M.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 6

Proof: From Lemma 2.4 it follows that, during the course of the algorithm, the
pair (D7}, I') can assume at most (DM + 2)(#I"V 4 1) values. Since rank(N) =
rank(M), it follows from Corollary 2.2 that #IY = r. By Lemma 2.2, every
simple transformation of the first kind decreases, for one [, the pair (D, I}*)
in the lexicographic order. It follows that the number of simple transformations
applied during the course of the algorithm is O(nrd). By Corollary 2.1 the cost
of one simple transformation is bounded by O(md) field operations. O

To be able to compute the amortized cost of some algorithms we have to
specify in more detail the number of simple transformations applied by Algorithm

WeakPopovForm.
Definition: The state S™ of M is defined by

SM =" (DMm + 1)

eCM

LEMMA 2.6: SM > 0. Moreover, when N is the matriz we get after applying a
simple transformation of the first kind on M, then SN < SM.

So the state of M is a bound on the number of simple transformations of the
first kind it will take to transform M into weak Popov form.

Definition: If M — N, the state drop S™ from M to N is defined by SMN =
SM _ gN,

The next result follows immediately from definition of state drop.

THEOREM 2.2: The number of simple transformations applied by Algorithm
WeakPopovForm s at most M.

In fact S™ can also be defined with m replaced by r = rank(M) and Theorem 2.2
then still holds. Since the proof is more involved, and we do not need this result
in what follows, we restrict ourselves to the current definition.

3. The rank profile

In this section we show how Algorithm WeakPopovForm can be adjusted to
compute the rank profile of a matrix A € Flz]"*™. Recall that the column rank
profile of A is the lexicographically smallest list of row indices [iy, 13, ..., 1, such
that these rows of A are linearly independent, where r is the rank of A. The
column rank profile is thus named because it describes the echelon structure of
the column echelon form of A. The row rank profile is defined analogously, and
is equal to the column rank profile of the transpose.

The rank profile over F[z] can be recovered with high probability by com-
puting the rank profile modulo a small degree and randomly chosen irreducible

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 7

algorithm RankProfile
input: M € Flz]"™*™.
output: the column rank profile of M.
r:=0;
A := the 0 x m matrix;
for : to n do
Augment A with row ¢ of M;
A := WeakPopovForm(.A);
if rank(A) = r + 1 then
r:=r+1;
Iy =1
fi
od;
return [iy,4z,...,1,]

Figure 3: Algorithm RankProfile

polynomial. This Monte Carlo algorithm requires about O(nmr?=% + nmd) field
operations. The cost estimate might increase by a poly—-logarithmic factor in the
case of small fields.

Algorithm RankProfile, shown in Figure 3, computes the rank profile determin-
istically. We get the following as a corollary of Theorem 2.1.

THEOREM 3.1: Algorithm RankProfile s correct. The cost of the algorithm s
bounded by O(nmrd?*) field operations, where r is the rank of M and d is a bound
on the degree of M.

4. The determinant

In this section we show how Algorithm WeakPopovForm can be adjusted to
compute the determinant of a matrix A € F[z]"*"
degree bounded by nd, where d is a bound on the degree of A. The algorithm
we propose here computes det(A) with O(n3d?) field operations.

Using randomization and a completely different approach, Storjohann (2002)

. The determinant will have

gives a Las Vegas probabilistic algorithm that requires an expected number of
O(n’(logn)*d'*°) field operations. The cost estimate might increase by a poly—
logarithmic factor in the case of small fields. Also, the O((log n)?) factor is present
even in case § = 3.

Algorithm Ezxtended WeakPopovForm, shown in Figure 4, applies simple trans-
formations on M to obtain the weak Popov form N and applies the same trans-
formations on the vector V, obtaining W. To estimate the cost of Algorithm
Ezxtended WeakPopovForm we have to bound the degree of U.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 8

algorithm ExtendedWeakPopovForm
input: M € Fz]"™*™ V € Flz]".
output: [N | w] with A/ in weak Popov form, obtained by applying
simple transformations of the first kind on [M | 1%]
(A, U) := copy(M,V);
while A is not in weak Popov form do
Apply a simple transformation of the first kind on [A | U]
od;
(NvW) := copy(A,U);
return [N | 4% }

Figure 4: Algorithm Extended WeakPopouvForm

Definition: The degree sum D™ of M is defined by

DM = zn:Dl.M.
=1

LEMMA 4.1: If N s the matriz we get after applying a simple transformation
on M, then DN < DM,

Proof: This follows immediately from Lemma 2.2. a
Definition: If M — N, the degree drop DM is defined by DMV = DM _ DN,

LEMMA 4.2: Let v € Flz]" and assume that [M |v | = [N|w |. Ifc€ Z is
such that deg(v;) < DZM + ¢ for all i, then deg(w;) < DZN + ¢+ DMN for all i

Proof: Since degree drop is additive, we only have to prove the lemma when
applying one simple transformation. Suppose we apply the simple transformation
of row k on row [. For 1 # [we have deg(w;) = deg(v;) < DM +¢= DN + ¢ <
DN + ¢+ DM gince DMN > 0 by Lemma 4.1. Let j = IM and M = (m;).
Then

deg(wr) < max(deg(vr), deg(my ;) — deg(mg ;) 4 deg(v))
< max(DM + ¢, DM — DY + DY + ¢)
= DlM + c.
Since DM’N:DIM—DIN we have DlM—I—c:DlN—I—c—I—DM’N. O

THEOREM 4.1: The cost of Algorithm ExtendedWeakPopovForm s bounded by
O((m+n)dS™MN) field operations, where d is a bound on the degree of M and V.

Proof: By Theorem 2.2 at most S™* simple transformations are applied. By
Corollary 2.1 the degree of A is always bounded by d. Since deg(V;) < DM+d+1
for all i and always DM~ < n(d+1), it follows from Lemma 4.2 that the degree
of U is always bounded by d+ (d+1)4+n(d+1) = O(nd). From this the theorem
follows. O

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 9

algorithm Determinant
input: 7 € Flz]™".
output: det(7).
T = copy(T);
det :=1;
for : from n —1 by —1 to 1 do
M := first ¢ columns of T;
V := last column of T;
[N | w] := ExtendedWeakPopovForm(M, V);
Let k be such that the kth row of N is zero;
T := N with row k deleted;
t := kth entry of W;
det := (—=1)* i+ ¢ det
od;
return 7:171 det

Figure 5: Algorithm Determinant

Let T € F[z]"™*". Write T = | M | V'], where M consists of the first n — 1 rows
of T and V is the last column of T'. Apply Algorithm Ezxtended WeakPopovForm
on the pair (M,V) yielding [N | W] Since N is in weak Popov form and
rank(N) = rank(M) < n — 1, it follows from Corollary 2.2 that N will contain
at least one zero row. So up to a row permutation we have

*
t Y

where T € Flz]=UX(*=1) and t € F[z]. Thus, up to sign we have det(T) =
det(T)t. This leads to Algorithm Determinant shown in Figure 5. Figure 6 is
(up to row permutation) a pictorial representation of the flow of Algorithm
Determinant. Here, the dark gray areas represent M and A, the middle gray
areas represent V and W, the light gray areas are ignored during the computation
and the white areas represent zero entries. The determinant of the matrix is (up

to sign) the product of the black entries.

T

(v =

THEOREM 4.2: The cost of Algorithm Determinant is bounded O(n®d*) field
operations, where d is a bound on the degree of T .

Proof: By Corollary 2.1 the degrees of 7, M,V and A are always bounded by d.
Let M,,_1, M, _s,..., M be the consecutive values of M and NV,,_1, N, _s,..., NV}
the consecutive values of A during the course of the algorithm. By Theorem 4.1
the cost is then bounded by

n—1
O (nd Z SM“N’) :
=1

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 10

SMn—l 7Nn—1

/

SMn—2 7Nn—2

/

SMn—?) 7Nn—3

/

Figure 6: Flow of Algorithm Determinant

If i ¢ I, then D' = DN M1 = [V for all ¢ and thus SMi-1 = SV If &
is such that I,/Cv" = 1, then DlM“1 = D;\/",[l/\/t"_1 = IINi for | # k, D,?/ti_l < DQ/"
and I,?Ai_l < I,/Cv" and thus SMi—1 < §Vi. So

n—1 n—1
D gMN = gMuon N (A Moy g < gMn,
=1 =2
Since SMr-t = O(n?d), the theorem follows. 0

5. The Hermite form

Let A over F[x] have full column rank. The Hermite form H of A is the unique
upper triangular matrix which is left equivalent to A, has diagonal entries monic,
and off diagonal entries of degree less than the diagonal entry in the same col-
umn, see MacDuffee (1956) or Newman (1972). In this section we show how
Algorithm Determinant can be adjusted to compute the Hermite form of a non-
singular input matrix A € F[x]™*™. The cost of the algorithm is O(m?3d?) field

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 11

operations, where d is a bound on the degree of A. The algorithm extends im-
mediately to rectangular input matrices of full column rank by first computing
the weak Popov form and restricting to the nonzero rows.

Different approaches to computing the Hermite form have been given. Domich
et al. (1987) work modulo the determinant of the input matrix to avoid inter-
mediate expression swell. Labhalla et al. (1996) transform the original problem
over F[x] to that of triangularizing a larger matrix matrix over F. Villard (1996)
deduces the Hermite form from the Popov form, computed via a matrix gcd us-
ing a block Hankel construction, see Section 7. The O(m?3d*) field operations
algorithm we give here, based on lattice reduction, is the first with a complexity

bound that is cubic in the matrix dimension. For comparison, the approach of
Domich et al. (1987) has cost O(m?(md)'*¢) field operations.

In Algorithm Determinant we ignored the last columns of the matrix when apply-
ing transformations, see Figure 6. That algorithm recovered the diagonal entries
of the Hermite form but not the off-diagonal entries. If instead we apply all
transformations to the whole matrix, we would be left with a triangularization.
One could finally use the diagonal entries to lower the degree of the off-diagonal
entries, yielding a matrix in Hermite form. The problem with this approach is
that the degrees of the off-diagonal entries may become too high, thus leading
to a bad complexity. In order to avoid these high degrees we will apply, during
the course of the algorithm, extra elementary transformations.

Figure 7 gives a description of Algorithm HermiteForm to transform a full
column rank matrix into Hermite form. The details of steps (1), (2) and (3)
will be explained shortly. Figure 8 is a pictorial representation of Algorithm
HermiteForm. Here the dark gray columns represent M, the middle gray columns
represent V and the light gray columns represent A.

Figure 9 represents (up to row permutation) the actions of one iteration during
the inner while loop. Here D, = DM and for j > i, d; is the degree of the bullet
entry in column j. The idea is to let [M | V A] always have the following

property.

PROPERTY 1: Forj > i+1 and s < j the degree of entry (s,7) Of[M | YV A]
s at most Dy + d;.

So Property 1 ensures that the degrees of the entries in the light gray area are not
too big. Note that for s > ¢+ 1 we have D, = —1 and thus when [M | V A]
has Property 1, then for i + 1 < s < j the degree of entry (s, 7) is less than d;.
This means that the lower triangular part of A is in Hermite form, and at the
end of Algorithm HermaiteForm [y A] 1s in Hermite form.

Suppose & = [M |V A] has property 1 and let F = [N|W B] be the
matrix we get after applying on [M | Yy A] the simple transformation of the
first kind from row k on row [. Let D; = D{v. For 5 > 1+1 we have by Lemma 4.2
deg(Fij) < Dy +d; + DMV = Dy +d;. Soif Dy = Dy, [N |W B] still has
property 1 and nothing has to be done in step (1). If however D; < Dy, the

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 12

algorithm HermiteForm
input: 7 € F[x]"™™ with full column rank.
output: H in Hermite form, left equivalent to 7.
T :=WeakPopovForm(7);
M := first n — 1 columns of T;
V := last column of T;
A := empty matrix;
for : from n —1 by —1 to 1 do
while M is not in weak Popov form do
Apply a simple transformation of the first kind on
[M|V A},sayfromrowk
on row [;
(1) Use e—entries to lower degrees of entries in [th row of A
od;
(2) Use d—entry to lower degrees in V;
Let [such that [M = 3;
M = first ¢ — 1 columns of [MYV A];
VY := 1th column of [MV A];
A := last n — ¢ columns of [MV A];
(3) Use e entries to lower degrees of entries in Ith row of A
od;
H = [YV A] with rows permuted to make it upper triangular;
Multiply rows of ‘H with constants to make diagonal entries monic;
return H

Figure 7: Algorithm HermiteForm

entries in the Ith row of [N | W B] may violate Property 1 and we have to
restore the property in step (1). Let g be the quotient of Fj ;42 by .7:,'+27,'+2:1;Dl+1,
i.e. deg(Frivs — qFiyoirex?) < Dy + deg(Fira.42). Then deg(q) < D; — Dy.
Let G be the result of subtracting ¢ times row ¢ + 2 from row [in F. Then
the (1,7 + 2) entry of G has degree at most D; + deg(G;y2i42) and thus satisfies

Property 1. Moreover, for j > ¢ + 2

deg(G,;) max(deg(Fi;), deg(q) + deg(Fita,;))

<
< Di+d;

since deg(Fi ;) < D; + d;, deg(q) < Dy and deg(Fiya,;) < d; — 1. Subtracting in
a similar way in sequence multiples of rows ¢ + 3,...,n from row [, we restore
Property 1 for row [in step (1).

Now we describe step (2). Figure 10 represents (up to row permutation) the
situation just after the while loop has completed. Before we enlarge A with
column V, we make sure that the entries in V satisfy Property 1, i.e. make
deg(Vi) < Dy +d;q1. Step (2) takes care of this. We could apply row transforma-

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices

Dy,

—1
—1

/
/
/

Figure 8: Flow of Algorithm HermiteForm

E F
MV A N W B
£ S

)y

: -1 D

Figure 9: One iteration during while loop

13

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 14

E
MV A
S
D,
_1
1 .
1 .

Figure 10: Snapshot after while loop

tions like in step (1), using the &— and e—entries, for this. However, this would
be too costly.

Let s be the maximum degree excess in column V, that is, for 1 <! < ¢ we have
deg(V;) < Dy+d;y1+s. Let Q° be the (i+1)th row of £. Foru =1,...,slet Q“ be
the row vector we get by multiplying Q“~! by x and, like in step (1), reducing all
entries from left to right using rows ¢ +2,...,n of £. Then deg(Q},) = diy1 +u
and deg(Q%) < d; for j > i+ 1. Now we can add appropriate monomial multiples
of the Q" to rows 1,...,¢ to make the entries of V satisfy Property 1. Notice
that this does not destroy Property 1 for the entries in A.

Finally, we describe step (3). When the last column of M is deleted before we
enter the while loop again, D' may decrease and thus the entries in the /th row
may violate Property 1. In step (3) we then apply the same procedure as in step
(1) to make sure that the entries in row [satisfy the property again.

THEOREM 5.1: The cost of Algorithm HermiteForm is bounded by O(nm?d?)
field operations, where d is a bound on the degree of T .

Proof: By Theorem 2.1 computing 7 can be accomplished in the allotted time.

By Corollary 2.1 the degree M is bounded by d. By Lemma 4.2 the entries in
V have degree bounded by O(md). The sum of the degrees of the entries in one
row of A is at most E;‘n:lq_z(d + d;). Since the product of all e—entries divides
the determinant of 7 we have E;‘H:H—l(d + d;) = O(md).

As in the proof of Theorem 4.2 we see that the number of simple transfor-
mations applied is bounded by S7 = O(m?2d). One simple transformation costs
O(md) and thus the cost of all simple transformations is O(m3d?).

Adding a multiple of a row like in step (1) costs O((D; — D;)md) and thus
performing step (1) once takes O((D; — D;)m?d). Since the total degree drop, i.e.
the sum of all D; — D; is at most md, the total cost of all steps (1) is O(m>d?).

The cost of performing step (2) once is bounded by O(sm?d). By Lemma 4.2
s is bounded by the sum of d and the degree drop during the last invocation of
the while loop. So the sum of all s during the algorithm is O(md) and thus the

total cost of all steps (2) is O(m3d?).

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 15

As in step (1), the cost of step (3) is bounded by O(m?*d?) and making the
diagonal entries monic can be accomplished with O(m?d). O

Triangular factorization

Algorithm Hermite Form can be used to obtain a triangular factorization of a full
column rank A € F[z]"*™ that is, compute the Hermite form H of A together
with a unimodular matrix V' such that A = V H. Proceed as follows.

Compute the column rank profile of A and, if necessary, permute the rows
so that the first m rows are linearly independent. For simplicity, assume no
permutation of rows is required. Append to A the (n —m) X (n — m) identity
matrix to the right bottom, yielding the nonsingular matrix

0

Now compute the Hermite form H of A. Let H be the first m columns of H.
Finally, we are going to compute V = AH™!. To do this efficiently, let D, be

the n x n identity matrix except with ¢th diagonal entry equal to that of H.

Similarly, let E; be the n x n identity matrix except with off-diagonal entries

in the 7th column equal to those of H. Then H = D,E, --- DsEsD,E, D\ E;.
Compute V = AE['DYE;' D3t -+ EZ'DY evaluating from left to right.

THEOREM 5.2: Let A € F[x]™*™ have rank m and degree bounded by d. A trian-
gular factorization of A can be computed with O(n*d?) field operations. Moreover,
the degree of the unimodular transformation matriz is bounded by d.

Proof: Use the method described above. Determine the m independent rows of
A and compute H using Algorithms RankProfile and HermiteForm. Because H

is in Hermite form, we have the bounds deg(det(H)H ') < deg(det(H)) and

Dicjendeg(Ei) < 370 cic, deg(D;) = deg(det(H)) = O(md). The former shows

deg(V) < deg(A). Using this and the latter bound it follows that V' can be
computed as indicated with O(n?md?) field operations. O

6. Polynomial linear system solving

Let M € F[z]™™ and b € F[z]"*™ be given. This section shows how to solve
the polynomial linear system vM = b in the following general sense:

1. If the system does not have a rational solution, that is, if there does not
exist a v € F(2)"" such that vM = b, then report this.

2. If the system does have a rational solution, then find the minimal degree
monic ¢ € F[z] such that vM = ¢b has a polynomial solution, and

3. find a particular solution v € F[z]'*" for vM = eb.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 16

These problems have been well studied. Let r be the rank of M and d be a bound
on the degree of M. The complexity bounds we state allow the target vector b to
have degree as large as O(rd). Mulders and Storjohann (2000b) solve problem 1
with O((n + m)r?d'*¢) field operations. A rational solution vector, if one exists,
is computed in the same time. Problems 2 and 3 are more subtle. The fastest
methods are based on randomized preconditioning. The Las Vegas algorithm
of Mulders and Storjohann (2000a) solves all the problems using an expected
number of O((nmr9_2 + re(log r))(d+ log#F r)tte) field operations. If # = 3 the
log r factor can be avoided and the result becomes O(nmr(d 4 logyy r)'1) field
operations. Here we show how to solve the problems without randomization with
O(nmrd?) field operations.

Our solution will be divided into three phases. The first phase is to solve prob-
lems 1 and 2 above. The second phase is to reduce the system vM = eb to an
equivalent system vA = ¢ which has full column rank. The third phase is to
find a particular solution of vA = ¢. The first two phases use standard methods
together with the algorithms presented in previous sections. Similarly, the third
phase is easy to solve with O(n3d?) field operations, but this may be too expen-
sive for an input system that is overdetermined (i.e. n >> m) or is rank deficient.
Our main contribution here is to show how to solve the third phase with only

O(nr?*d?) field operations.

Phase 1: Computation of minimal denominator e. If the rank of M aug-
mented with b is greater than the rank of M alone, then the linear system vM = b
does not have a rational solution. We can perform this rank check and solve prob-
lem 2 simultaneously by doing the following. Use Algorithm WeakPopovForm to
compute the nonzero rows R € F[x]”*™ of a weak Popov form of M. Now use
Algorithm EztendedPopovForm to transform the matrix

{%H € Fla]rexme, W

If there does not exist a row in the transformed matrix which has first m entries
zero, then report that the system has no solution; otherwise, the monic associate
of the last entry in this row is the desired minimal denominator e.

Phase 2: Reduction to full column rank system vA = c¢. First use Algorithm
RankProfile to compute the row and column rank profiles of M in order to iden-
tify a nonsingular r X r submatrix. Now construct A from M as follows: permute
the rows and columns so that the principal r X r submatrix is nonsingular, then
remove the last m — r columns. Let ¢ € F[z]'*" be the corresponding subvector
of eb. Any solution of vA = ¢ will be, up to permutation of entries in v, also
a solution of vM = eb, and vice versa. Thus, we have reduced our problem to
finding a particular solution v € F[x]'*" to the system vA = ¢, where A is n X r
with principal r X r submatrix nonsingular.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 17

Phase 3: Particular solution of vA = ¢. Let k= [n/r] and decompose A as

where each A, is r X1 except for possibly Ay which has row dimension n—(k—1)r.
Consider transforming the following augmented matrix to Hermite form:

1|—c 1 Vgt Uk
Al Hl *
A = H,)

Ay

I

H;,

Note that the block above Hj is necessarily zero (as shown) because —c is in the
lattice generated by the rows of A, that is, the system vA = ¢ has a polynomial
solution for v. Once the v, in (2) have been computed, solve the nonsingular
system vy Ay = c— vy Ay —v3A5—- - — v Ay for vy using the algorithm of Mulders
and Storjohann (2000b). Then v = [vy Uy Us
solution to the system vA = c.

We could apply Algorithm HermiteForm to compute the v, in (2) but this
would cost O(n3d?) field operations. By pipelining the computation we can avoid
computation of the off-diagonal blocks * and reduce the cost to O(nr?d*). Pro-
ceed as follows.

Vg,] is easily seen to be a

Use Algorithm WeakPopouForm to compute a weak Popov form Ry, of A;. For
1=k—1,k—2,...,2 in succession, let R; be the nonzero rows of a weak Popov

form of
]
Ay |

computed using Algorithm WeakPopovForm. Now compute v, for 1 = 2,3,... .k
in succession as follows: set ¢; = —c¢ + v9As + v345 + -+ + v;_14;_1 and use
Algorithm HermaiteForm to effect the following transformation:

This ends the description of phase 3. We now show using induction on ¢ that the
Hermite form in (3) will be as shown, compare with (2).

For some ¢ (i = 2,3,...,k) assume that vy, vs,...,v;_1 have been correctly
computed. Note that for 1 = 2 (the base case) this assumption is vacuously true.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 18

Let w = [Vg U3 ccc Uiq] Write A using a conformal block decomposition
as
Ay
X
A= A,
Y

Now consider the transformation to Hermite form shown in (2), but restricted
to the first ir + 1 columns and using a sequence of unimodular transformations:

L w o v; 1 | w v,
* * H, * =

X T ﬂ> * %

H; H;

Transformation (a) corresponds to the definition of R; and involves only rows
containing A; and Y. Indeed, R; is the nonzero rows of a weak Popov form of
A; augmented with V. Transformation (b) adds w x | |X I] to the first
row. Note that ¢; = —¢ + wX. Transformation (c) is that shown in (3), and is
restricted to the rows containing R; and A;. The key point is that the first row is
already in correct form after transformation (c¢) completes. Thus, transformation
(d), which completes the transformation to Hermite form, can be avoided.

THEOREM 6.1: Let M € F[z]*"™™ have rank r and degree bounded by d. Let
b € Flz]"*™ have degree bounded by O(rd). The cost of the algorithm described
above for solving the polynomial linear system vM = b is bounded by O(nmrd?)
field operations.

Proof: Asindicated, almost all of the computation is done by Algorithms WeakPopouv-
Form, EztendedPopovForm, RankProfile and HermiteForm. There are a couple

of places where we need to take care that these algorithm run in the allotted
time.

The transformation using Algorithm ExtendedPopovForm shown in (1) needs
to be done in a special way because we are allowing degb = O(rd). Perform the
transformation in two phases. For the first phase, apply simple transformations
of the first kind involving the rows of R on the last row until either the last
row has degree < d or the transformed matrix is in weak Popov form. A similar
argument as used in the proof of Theorem 2.1 shows that the number of such
simple transformations is bounded by O(r deg(b)). To estimate the cost of the
first phase it remains to bound the cost of a single simple transformation of

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 19

the first kind of a row with degree bounded by d on row with degree bounded
by O(deg(b)). Before beginning, store the coeflicients of the polynomials in b in
m arrays of length 1 + deg(b). By modifying these arrays in—place, each simple
transformation can be accomplished with O(md) instead of O(m deg(d)) field
operations. Thus, the total cost for phase one is O(mrd deg(b)) field operations.
For the second phase, use Algorithm FErtended WeakPopovForm to complete the
transformation.

Next we bound the degree of ¢ and the ¢,. Note that e will be a divisor of an
r X r minor of R and hence deg(e) < rd. This shows that deg(c) < rd + degb.
The degree of the Hermite form shown in (2) will be bounded by deg(det(A4,)),
which is < rd. Note that for ¢ > 2, ¢; can be computed as ¢;_; +v,_1A;_;. Using
this, we see that all the ¢, can be computed from the v, in the allotted time and
will have degree bounded by O(rd).

Now consider the computation of the v, using the transformation to Hermite
form shown in (3). Again, some care needs to be taken because deg(c;) may be
as large as O(rd). The transformation should be done in two phases. First, use
the technique described above to apply simple transformations of the rows in R;
to the first row to reduce the degree of the first row to < d. Then complete the
transformation using Algorithm HermiteForm.

For the final computation of v; = Al_l(—ck — v, Ar) use the algorithm of
Mulders and Storjohann (2000b). O

7. The Popov form

In this section, we show how we can transform a matrix that is in weak Popov
form into Popov form. Combined with Algorithm WeakPopovForm this will yield
an algorithm to transform any matrix into Popov form.

In Kailath (1980) and Villard (1996) the Popov form of a matrix is computed
via translation to problems over F with bigger dimensions. Consider the case
of a nonsingular m x m input matrix with degree d. Villard (1996) reduces
the problem to inverting a single m X m matrix over F[z] with degree d and
computing the rank profiles of two md x md matrices over F. This approach also
yields a fast parallel algorithm. Using the best known sequential algorithms for
these problems the cost estimate becomes about O(m9+1d—|— (md)9 +m?(md)*+e)
field operations. The algorithm we propose here has cost O(m?d?) field operations
for this case.

Definition: M is said to be in ascending order if for 7 < [we have DM < DM or
(DM = DM £ —1 and IM < IM).

Note that when M is in ascending order, the zero rows of M are on top, i.e. have
smallest row index.

Definition (see also Kailath (1980)): M is said to be in Popov form if

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 20

1. M is in weak Popov form;
2. M is in ascending order;
3. PM is monic for 1 € CM;

4. deg(m;) < DM for 1 € CM and i # 1.

When M is in weak Popov form we can transform M into ascending order by
permuting the rows of M.

Agssume that M already satisfies properties 1 and 2. We will make M satisfy
property 4 by applying simple transformations of the second kind on M. In order
that a simple transformation does not cancel progress made before, we apply the
simple transformations in a particular order.

Suppose that the first £ — 1 rows of M already satisfy property 4, that is
deg(m;) < DM for le CM i # land i,l < k.

If the kth row of M is the zero row, then the first k rows of M are all zero
rows and satisfy property 4.

Now suppose that the kth row of M is not the zero row. For ¢« < k we then
have:

1. If DM = —1, then deg(m; ppr) = —o0 < DM,
2. If DM < DM then deg(m;) < DM < DY,
3. If DM = DM then IM < I and thus deg(m;) < DM = DM,

So deg(m“éw) < DM for i < k and we only have to make the entries in row k
satisty property 4.

Let 6M = maXi<k,iecM(deg(mk,zgw)—D,M)- If M < 0, then the first k rows of M
satisfy property 4. Otherwise let [< k,1 € CM such that §M = deg(kalM) — DM
and N = (n; ;) the matrix we get when we apply the simple transformation (of
the second kind) of row [on row k. By Lemma 2.2 DM and IM do not change
and thus N still satisfies properties 1 and 2 and still deg(ni71év) < DY for i < k.

Let 6V = maxi<k7iecN(deg(nk7Ilgv) — DN). If 6V < 0, the first k rows of N
satisfy property 4. Otherwise, let vM = #{i < k| §M = deg(kalM) — DM} and
N =i < k| N = deg(nlegv)—DlN}. We now show that (67, v) < (6M M)
in the lexicographic order. For this we only have to show that 6V < é¥ and if
SN =M then N < M,

For i < k such that i # [and i € CV let j = IN = IM and note that
DN = DM Then

deg(ng ;) — DZN < max(deg(my ;) — DlN, sM 4 deg(my ;) — DlN)

Since the first k—1 rows of M already satisfy property 4 we have deg(m; ;)—DY <
0. So if deg(my ;)—DM < 6™ then deg(ny ;)— DY < §M;if deg(my ;)— DM = §M,
then deg(ny ;) — DY = 6. Moreover, deg(nleN)—DlN < deg(kalN)—DlN = §M,
since we applied the simple transformation of row [on row k. We see that either
(0N = M and N =M — 1) or §V < &M,

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 21

algorithm PopovForm

input: M € Flz]"™*™.

output: A in Popov form, left equivalent to M.
A := WeakPopovForm(M);

Permute rows of A such that A is in ascending order;

for k£ to n do
if £th row is not the zero row then
do
Let § = max;y jec (deg(my 4) — DFY);
if 6 <0 then l
break
fi;
Let | < k,l € C* such that deg(my, ;1) — D =4,
Apply simple transformation of row [on row k
od
fi
od;
Multiply nonzero rows of A with constant to make pivots monic;
N :=copy(A);
return A

Figure 11: Algorithm PopovForm

Figure 11 describes an algorithm to compute the Popov form of a matrix based
on our previous observations.

THEOREM 7.1: Algorithm PopovForm s correct. The cost of Algorithm PopovFrom
is bounded by O(nmrd?*) field operations, where r is the rank of M and d is a
bound on the degree M.

Proof: Since always ¢ < d and v™ < r it follows from the previous observa-
tions that in the loop at most O(rd) simple transformations are applied on each
nonzero row. So the total number of simple transformations applied in the loop
is O(r?d). From Lemma 2.2 it follows that the degree of A is always bounded
by d. Thus the cost of the loop is O(r?md?). The theorem now follows from
Theorem 2.1. O

8. Reduced basis
In von zur Gathen (1984) the notion of reduced basis is introduced. For a poly-

nxm

nomial matrix M = (m, ;) € F[z] of rank r this boils down to the following.

Definition: M is said to be reduced if

1. Rows r 4+ 1,...,n are zero rows;

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 22

2. For 1 <i <r we have deg(m; ;) < deg(m,;) for 1 <k < i and deg(m, ;) <
deg(m; ;) for i < k < m;

3. deg(m;;) < deg(m;;) for 1 <i<j<r.

In von zur Gathen (1984) and von zur Gathen and Gerhard (1999, Exercise 16.12)
an algorithm is described to transform a full row rank matrix, up to column
permutation, into a reduced matrix by a unimodular row transformation. The
complexity of this algorithm turns out to be O(mn®d**<) field operations.

Now suppose M is already in Popov form. If deg(P}) < deg(PM) for k # 1,
then deg(my) < deg(PM) < deg(PM). From this we see that by permuting
the rows and columns of M such that the pivots of M end up on the diagonal
with increasing degree from top to bottom, we get a reduced matrix. So we can
transform any matrix in reduced form by first computing its Popov form and
then permuting its rows and columns. The cost of this is O(nmrd?) by Theo-
rem 7.1, which is one order of magnitude better than the algorithm described
by von zur Gathen (1984).

Reduced basis are used by von zur Gathen (1984) to compute short vectors in
modules. In the polynomial case the weak Popov form already suffices for that.

LEMMA 8.1: If M is in weak Popov form and [is such that deg(PM) = min; <;<,(deg(PM)),
then all vectors in the F|x]|-module generated by the rows of M have degree at
least deg(PM).

Proof: Let r' € F[z]'*™ denote the ith row of M = (m; ;) and let d; € F[z] such
that r = > d;r' # 0. Let k such that deg(dy P}) is maximal and [} maximal,
i.e. for i # k either deg(d; PM) < deg(d,PM) or (deg(d;PM) = deg(dy PM) and
IM < M. Then for i # k we have

1. if deg(d; PM) < deg(dp PM), then deg(d;m;) < deg(d; PM) < deg(dp PM);
2. ifdeg(d;PM) = deg(dp PM) and IM < IM then deg(d;im; ;) < deg(d; PM) =
It follows that deg(rléw) = deg(diPM) > deg(PM) O

9. Discrete valuation rings

In this section we extend the notion of weak Popov form to the setting of discrete
valuation rings.

Definition: (Atiyah and MacDonald (1969)) Let K be a field. A discrete valua-
tion on K is a mapping v of K™ onto Z such that

L. v(ab) = v(a)+ v(b);
2. v(a+b) > min(v(a),v(b)).

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 23

Let R be the ring consisting of 0 and all « € K™* such that v(a) > 0. Then R is
called a discrete valuation ring. R 1s a local ring and its maximal ideal 7 is the
set of all @ € K such that v(a) > 0. Let u € R such that v(u) = 1. Then 7 = (u),
the ideal of R generated by u. The set R* of units of R is the set of all @ € K such
that v(a) = 0. Let § C R*U{0} such that the canonical projection map S — R/Z
is a bijection. For a,b € R with v(a) > v(b), we have v(u*®~*@q/b) = 0, so
there exists a unique ¢ € S\ {0} such that «*®~*@q/b— ¢ € T, and thus

v(a — cu”(“)_”(b)b) > v(a). (4)

EXAMPLE 2: Let F be a field. The set F[[x]] of formal power series in x is a
discrete valuation ring. For a € F[[z]], v(a) is the mazimum n € N such that 2"
diwvides a. For S we can take F in this case.

Let M = (m, ;) € R™™. As an analogue to Section 2 we define the pivot element
PM of row i of M as the rightmost element with minimum valuation in its row,
the pivot index IM as the index of PM ie. PM = mi M, and the pivot valuation
DM as v(PM). Again, M is said to be in weak Popov form if all (nonzero)
indices are different. If v(m; jar) > v(PM), let ¢ € S\ {0} such that v(my =

uv(mlyjéw)_U(Plﬁw) (mlyléw)—U(Péw)

PMy > v(my). Then we call subtracting cu’ times

row k from row [the simple transformation of row k on row [. The analogue of
Lemma 2.2 holds also.

LEMMA 9.1: Let N be the matriz we get after applying the simple transformation
of row k on rowl of M. Then IN = IM DN = DM fori # 1 and DY > DM.
If the transformation is of the first kind, then either DY¥ > DM or (DN = DM
and IN < IM). If the transformation is of the second kind, then I = IM and
DN = pM.

Now we can apply Algorithm WeakPopovForm to transform M into weak Popov
form. However, the algorithm may run forever as the following example shows.

EXAMPLE 3: For

M:{%}: [x+x+1x+] -

Algorithm WeakPopovForm will keep on subtracting x' from M, for increasing
1 and thus run forever. However, it is possible to transform M into weak Popouv
form by a unimodular transformation, since

1 1 1 I+ttt
—x 1l—=z a4+ | 0)

Notice that the unimodular transformation matriz is even over F[z]. Indeed,
Algorithm WeakPopovForm only computes transformations over F[x].

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 24

Lemma 2.3 and Corollary 2.2 are still valid in the discrete valuations ring setting
and thus the number of different values that a pivot index can assume during
the course of Algorithm WeakPopouForm is bounded by the rank of the matrix.
The following lemma shows that the algorithm still works when M has full row
rank.

THEOREM 9.1: Suppose M has full row rank. Let d be the valuation of the deter-
minant of some nonsingular n xXn submatriz of M. Then Algorithm WeakPopov-
Form is correct and applies at most dn + n(n — 1) simple transformations of the

first kind.

Proof: Since the index of a row can assume at most n different values, Lemma 9.1
implies that the valuation of row [, that is min;<j<,, (v(M;;)), must have in-
creased after applying n simple transformations of the first kind on row [and
so when s; simple transformations of the first kind are applied on row [the
valuation of that row must have increased by at least |s;/n].

Let G be a nonsingular submatrix of M and d = v(det(G)). Suppose that Al-
gorithm WeakPopovForm applies more than dn+n(n—1) simple transformations
of the first kind and suppose G is transformed into H after applying the first
dn 4+ n(n — 1) 4+ 1 simple transformations. Then v(det(H)) > > = |si/n| > d,
contradicting det(H) = det(G).

So Algorithm WeakPopovForm does stop and is thus correct by Lemma 2.1.
O

As in the polynomial case, the weak Popov form in the current setting can be
used to determine a vector with minimal valuation in the R—-module generated
by the rows of a matrix.

The analogue of Popov form would insists that v(m,»JlM) > DM for 1 # 1. Tt
is in general not possible to transform a matrix into Popov form by only using
unimodular transformations.

EXAMPLE 4: Let

Then M is nonsingular and in weak Popov form. Suppose

o= |0 | e P

is unimodular and N = UM is in weak Popov form. We may assume (eventually
switch rows) that v(a) = 0. Then v(N11) =0, v(Ni2) =1 and v(N22) > 1. So
IN =1 and thus I must be 2. Since v(Ny3) < v(Nyg), N cannot be in Popov
form.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 25

10. Conclusions

We have introduced the weak Popov form of a polynomial matrix and described
a simple algorithm to compute the form. The algorithm transforms a matrix
by applying elementary row operations in such a way that the degrees of rows
never increase. This leads to a complexity of O(nmrd?) field operations for trans-
forming an input matrix A € F[z]"™ of rank r with entries of degree bounded
by d. The algorithm is central to various other algorithms: for rank profile, de-
terminant, Hermite form, Popov form, linear system solution and short vector
computation.

The analysis in this paper only counts field operations and thus gives a good
estimate of the cost when F' is a finite field. The hidden constants in the big-O
bounds are not explicitly computed but estimates can be derived without too
much difficulty. Since these constants are small, the algorithms will perform well
in practice, also for modest sized input matrices. Some comparative experiments
with implementations of various algorithms in Aldor (Watt et al. (1994)) confirm
this.

For the problem of computing the Hermite form we did not obtain a complexity
bound that was cubic in the matrix dimension for the case of an input matrix
that does not have full column rank. The problem of computing the form in this
case 1s at least as difficult as computing a unimodular transformation matrix U
to achieve the form. For example, let A € F[z]"*" be nonsingular with degree
bounded by d. Consider transforming the n x 2n matrix [A | I], which is
obviously not of full column rank, to Hermite form [H | U] The triangular
factorization of A is given by A = VH, where V = U~!. Note that V will have
degree bounded by d but U will have degree bounded by (n—1)d. We have shown
how to compute V and H with O(n3d?) field operations. Can U be computed in
the same time?

The performance of the algorithms for other coefficient fields F, e.g. F =
Q (or Z), is another issue. In this case, intermediate expression swell on the
coefficient level is introduced, leading to a severe breakdown of the algorithms
performance. Combining the algorithms with homomorphic imaging schemes
may be the solution to this problem. Another idea may be to introduce fraction
free techniques, as is done by Beckermann et al. (1999, 2002). Further research
needs to be done in this area.

We also extended the notion of weak Popov form to the setting of discrete
valuation rings. Such an extension does not seem possible for the notion of Popov
form. Another remaining question is how to transform in the discrete valuation
ring setting a non full row rank matrix into weak Popov form. The algorithm
presented in Section 9 may run forever on such a matrix.

References

M. F. Atiyah and I. G. MacDonald. Introduction to Commutative Algebra.
Addison—Wesley, 1969.

Mulders and Storjohann: On Lattice Reduction for Polynomial Matrices 26

B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of polynomial
matrices. In S. Dooley, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC 99, pages 189-196. ACM Press, 1999.

B. Beckermann, G. Labahn, and G. Villard. Normal forms for general polynomial
matrices. Research Report 2002-1, ENS Lyon, France, 2002.

P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form com-
putation using modulo determinant arithmetic. Mathematics of Operations

Research, 12(1):50-59, 1987.

J. von zur Gathen. Hensel and Newton methods in valuation rings. Mathematics

of Computation, 42:637—661, 1984.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 1999.

T. Kailath. Linear Systems. Prentice Hall, 1980.
S. Labhalla, H. Lombardi, and R. Marlin. Algorithmes de calcul de la réduction

de Hermite d’une matrice a coefficients polynomiaux. Theoretical Computer

Science, 161:69—92, 1996.
C. C. MacDuftee. The Theory of Matrices. Chelsea, 1956.

T. Mulders and A. Storjohann. Certified dense linear system solving. Techreport
355, ETH Zurich, Department of Computer Science, 2000a. To appear in the
Journal of Symbolic Computation.

T. Mulders and A. Storjohann. Rational solutions of singular linear systems. In
C. Traverso, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computa-
tion: ISSAC 00, pages 242-249. ACM Press, 2000b.

M. Newman. Integral Matrices. Academic Press, 1972.

V. Popov. Some properties of control systems with irreducible matrix trans-
fer functions. In Lecture Notes in Mathematics, volume 144, pages 169-180.
Springer, 1969.

A. Storjohann. High-order lifting. In T. Mora, editor, Proc. Int’l. Symp. on
Symbolic and Algebraic Computation: ISSAC 02, pages 246-254. ACM Press,
2002.

G. Villard. Computing Popov and Hermite forms of polynomial matrices. In
Y. N. Lakshman, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Com-
putation: ISSAC 96, pages 250-258. ACM Press, 1996.

S. M. Watt et al. A First Report on the A¥ Compiler. In M. Giesbrecht, editor,
Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC "94, pages
25-31. ACM Press, 1994.

