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Abstra
t

A simple algorithm for latti
e redu
tion of polynomial matri
es is de-

s
ribed and analysed. The algorithm is adapted and applied to various

tasks, in
luding rank pro�le and determinant 
omputation, transforma-

tion to Hermite and Popov 
anoni
al form, polynomial linear system solv-

ing and short ve
tor 
omputation.

1. Introdu
tion

Let A be a matrix over F [x℄, F a �eld. By applying a sequen
e of elementary

row operations we 
an transform A to a matrix R whi
h is in weak Popov form.

An example is given in Figure 1. We defer until Se
tion 2 to de�ne the form

A

2

4

4x

2

+ 3x+ 5 4x

2

+ 3x+ 4 6x

2

+ 1

3x+ 6 3x+ 5 3 + x

6x

2

+ 4x+ 2 6x

2

2x

2

+ x

3

5

�!

R

2

4

1 6x+ 3 6

0 0 0

2 5 3

3

5

Figure 1: Transformation of a 3� 3 rank 2 matrix to weak Popov form, F =Z=(7).

pre
isely. For now, we note two key properties of the weak Popov form:

� the number of nonzero rows of R is equal to the rank of A, and

� the sum of the degrees of the nonzero rows of R is minimal among all

�
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matri
es whi
h 
an be obtained from A by applying elementary row trans-

formations.

Thus, transformation to weak Popov form is essentially latti
e redu
tion for

polynomial matri
es. The weak Popov form is a simpli�ed, non{
anoni
al version

of the well known Popov 
anoni
al form from linear 
ontrol theory.

This paper gives a simple algorithm for transforming an input matrix over

F [x℄ to weak Popov form. We adapt and apply the algorithm to get solutions to

various other problems involving polynomial matri
es, see Table 1.

x2 Transformation to weak Popov form.

x3 Computation of rank pro�le.

x4 Computation of determinant.

x5 Transformation of full 
olumn rank matrix to Hermite form.

x6 Polynomial linear system solving.

x7 Transformation to 
anoni
al Popov form.

Table 1: Some polynomial matrix 
omputations.

The algorithms we present are designed to handle eÆ
iently the 
ase of in-

put matri
es whi
h may be re
tangular and/or rank de�
ient. Consider the well

understood 
ase of matri
es over a �eld. Let A 2 F

n�m

have rank r. Problems

involvingA like linear system solving and rank pro�le 
omputation 
an be solved

with O(nmr) �eld operations using gaussian elimination. This paper gives anal-

ogous results for matri
es over F [x℄. Let A 2 F [x℄

n�m

have rank r and degree

bounded by d, where the degree of a polynomial matrix is de�ned as being the

maximum of the degree of its entries. We show that all the problems listed in

Table 1 
an be solved with O(nmrd

2

) �eld operations. Note that when r and d

appear in a big-O bounds they should be taken as upper bounds, that is, r > 0

and d > 0.

An algorithm to 
ompute a redu
ed basis very similar to the weak Popov

form has been given by von zur Gathen (1984) and applied to the problem of


omputing short ve
tors. In Se
tion 8 we indi
ate the relationship between the

Popov form and redu
ed basis as de�ned there. This results in a substantially

faster algorithm for the redu
ed basis and short ve
tors problem.

In Se
tion 9 we extend the notion of weak Popov form to the setting of dis
rete

valuation rings. Analogous results as in the polynomial setting hold. In Se
tion 10

we end the paper with a short summary, some remarks on implementation issues

and some suggestions for further resear
h.

Cost model

We assume we have primitives for polynomial arithmeti
 whi
h support the

following 
ost bounds. Let a; b 2 F [x℄ be nonzero. Then a+ b and a� b 
an be
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omputed with O(1+max(deg(a);deg(b))) �eld operations, ab 
an be 
omputed

with O((1 + deg a)(1 + deg b)) �eld operations, and if deg a � deg b, then the

unique q; r 2 F [x℄ with a = bq + r and deg r < deg b 
an be 
omputed with

O((1 + deg a� deg b)(1 + deg b)) �eld operations.

The algorithms in this paper are deterministi
. Allowing randomization, asymp-

toti
ally faster algorithms are known in some 
ases. For ea
h problem we mention

the 
urrently best known 
omplexity bound. Some of these randomized algo-

rithms allow use of asymptoti
ally fast matrix or polynomial multipli
ation. Let

� (2 < � � 3) be su
h that two n � n matri
es over a �eld 
an be multiplied

together with O(n

�

) �eld operations. Let � (0 < � � 1) be su
h that two degree

d polynomials 
an be multiplied together with O(d

1+�

) �eld operations.

2. The weak Popov form

A well known notion in systems theory is the Popov form (Popov (1969)) of

a re
tangular matrix with polynomial entries. A non{
anoni
al but still useful

version of the Popov form is the quasi Popov form (Kailath (1980)). In this

se
tion we de�ne the weak Popov form | a form with even less 
onditions than

the quasi Popov form.

Let F be a �eld and M = (m

i;j

) 2 F [x℄

n�m

. In what follows we use M to

de�ne general notions for matri
es. We use 
alligraphi
 
hara
ters to refer to

spe
i�
 variables used in the various algorithms.

De�nition: For 1 � i � n we de�ne the ith pivot index I

M

i

of M as follows: if

m

i;j

= 0 for 1 � j � m, then I

M

i

= 0; otherwise

1. deg(m

i;j

) � deg(m

i;I

M

i

) for 1 � j < I

M

i

;

2. deg(m

i;j

) < deg(m

i;I

M

i

) for I

M

i

< j � m.

When I

M

i

6= 0, the element m

i;I

M

i

is 
alled the ith pivot element of M and is

denoted by P

M

i

. The degree of P

M

i

is 
alled the ith pivot degree of M and is

denoted by D

M

i

. When I

M

i

= 0 we put D

M

i

= �1.

A pivot element is the rightmost element with maximal degree in its row.

De�nition: The 
arrier set C

M

of M is de�ned as C

M

= f1 � i � n j I

M

i

6= 0g.

De�nition: M is said to be in weak Popov form if the positive pivot indi
es of

M are all di�erent, i.e. if

k; l 2 C

M

; k 6= l ) I

M

k

6= I

M

l

:

By applying unimodular row-transformations, we want to transform a given ma-

trix to weak Popov form.We now de�ne a parti
ularly simple kind of unimodular

transformation.
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De�nition: If k 2 C

M

, l 6= k and deg(m

l;I

M

k

) � D

M

k

, there are unique 
 2 F and

e 2 N su
h that

deg(m

l;I

M

k

� 
x

e

P

M

k

) < deg(m

l;I

M

k

):

In that 
ase we 
all subtra
ting 
x

e

times row k from row l the simple transfor-

mation of row k on row l. If I

M

l

= I

M

k

, the transformation is 
alled of the �rst

kind, otherwise it is 
alled of the se
ond kind.

Sometimes we want to apply a simple transformation on M and simultaneously

apply the same transformation on a ve
tor or matrix A. We then say that we

apply the transformation on

�

M A

�

. Note that we only 
onsider M when we

determine the pivot element of a row.

De�nition: When

�

N B

�

is the result after applying a number of simple trans-

formations on

�

M A

�

, we write

�

M A

�

!

�

N B

�

. Note that in that


ase

�

N B

�

is left equivalent to

�

M A

�

, i.e.

�

N B

�

= U

�

M A

�

where U is unimodular and even det(U) = 1.

Example 1: Let

M =

�

1 x

2

x

3x x+ 2x

3

x

3

�

; A =

�

x

4

x

2

�

and

N =

�

1 x

2

x

x x x

3

� 2x

2

�

; B =

�

x

4

x

2

� 2x

5

�

:

Then I

M

1

= 2 and by applying the simple transformation of the �rst row on the

se
ond row of

�

M A

�

, we see that

�

M A

�

!

�

N B

�

.

AlgorithmWeakPopovForm, shown in Figure 2, transforms a matrix by applying

simple transformations of the �rst kind. The algorithm is based on the following

trivial lemma.

Lemma 2.1: M is not in weak Popov form if and only if we 
an apply a simple

transformation of the �rst kind on M , that is, not all nonzero pivot indi
es of

M are di�erent.

We remark that the 
opying of matri
es is done only in order to be able to

reason about the algorithm. Corre
tness of the algorithms output follows from

Lemma 2.1. That the algorithm always terminates will follow as a 
orollary of

our 
ost analysis.

The next lemma notes how the pivot indi
es and pivot degrees may 
hange

when we apply a simple transformation.

Lemma 2.2: Let N be the matrix we get after applying the simple transformation

of row k on row l of M . If the simple transformation is of the �rst kind, then

either D

N

l

< D

M

l

or (D

N

l

= D

M

l

and I

N

l

< I

M

l

). If the simple transformation is

of the se
ond kind, then I

N

l

= I

M

l

and D

N

l

= D

M

l

.
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algorithm WeakPopovForm

input: M 2 F [x℄

n�m

.

output: N in weak Popov form, obtained by applying simple transfor-

mations of the �rst kind on M.

A := 
opy(M);

while A is not in weak Popov form do

Apply a simple transformation of the �rst kind on A

od;

N := 
opy(A);

return N

Figure 2: Algorithm WeakPopovForm

Now we bound the 
ost of Algorithm WeakPopovForm. For this, the following


orollary of Lemma 2.2 is important.

Corollary 2.1: If d is a bound on the degree of M, then the degree of A is

always bounded by d.

Now we des
ribe the possible values that a pair (D

A

l

; I

A

l

) 
an assume during the


ourse of Algorithm WeakPopovForm.

De�nition: The set I

M

= fI

M

i

j i 2 C

M

g of nonzero pivot indi
es of M is 
alled

the index set of M .

The next two lemmas follow from Lemma 2.2 and the de�nitions of a simple

transformation of the �rst and se
ond kind.

Lemma 2.3: If N is the matrix we get after applying a simple transformation

on M , then I

M

� I

N

.

Lemma 2.4: For 1 � l � n, the values that the pair (D

A

l

; I

A

l

) 
an assume

during the 
ourse of Algorithm WeakPopovForm are all in the set fD

N

l

;D

N

l

+

1; : : : ;D

M

l

g � (I

N

[ f0g).

Lemma 2.5: If the pivot indi
es of all rows of M are positive and di�erent, then

the rows of M are independent over F (x).

Proof: Let N be the matrix we get by multiplying, for 1 � i � n, row i by x

�D

M

i

.

Then N = N

0

+

^

N , where

^

N 2 x

�1

F [x

�1

℄

n�m

and N

0

2 F

n�m

has independent

rows. Consider F (x) � F ((x

�1

)). It is 
lear that the rows of N are independent

over F ((x

�1

)) and thus are also independent over F (x). 2

Corollary 2.2: rank(M) � #I

M

.

Theorem 2.1: AlgorithmWeakPopovForm is 
orre
t. The 
ost of the algorithm

is bounded by O(nmrd

2

) �eld operations, where r is the rank of M and d is a

bound on the degree of M.
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Proof: From Lemma 2.4 it follows that, during the 
ourse of the algorithm, the

pair (D

A

l

; I

A

l

) 
an assume at most (D

M

l

+2)(#I

N

+1) values. Sin
e rank(N ) =

rank(M), it follows from Corollary 2.2 that #I

N

= r. By Lemma 2.2, every

simple transformation of the �rst kind de
reases, for one l, the pair (D

A

l

; I

A

l

)

in the lexi
ographi
 order. It follows that the number of simple transformations

applied during the 
ourse of the algorithm is O(nrd). By Corollary 2.1 the 
ost

of one simple transformation is bounded by O(md) �eld operations. 2

To be able to 
ompute the amortized 
ost of some algorithms we have to

spe
ify in more detail the number of simple transformations applied by Algorithm

WeakPopovForm.

De�nition: The state S

M

of M is de�ned by

S

M

=

X

i2C

M

(D

M

i

m+ I

M

i

):

Lemma 2.6: S

M

� 0. Moreover, when N is the matrix we get after applying a

simple transformation of the �rst kind on M , then S

N

< S

M

.

So the state of M is a bound on the number of simple transformations of the

�rst kind it will take to transform M into weak Popov form.

De�nition: If M ! N , the state drop S

M;N

from M to N is de�ned by S

M;N

=

S

M

� S

N

.

The next result follows immediately from de�nition of state drop.

Theorem 2.2: The number of simple transformations applied by Algorithm

WeakPopovForm is at most S

M;N

.

In fa
t S

M


an also be de�ned withm repla
ed by r = rank(M) and Theorem 2.2

then still holds. Sin
e the proof is more involved, and we do not need this result

in what follows, we restri
t ourselves to the 
urrent de�nition.

3. The rank pro�le

In this se
tion we show how Algorithm WeakPopovForm 
an be adjusted to


ompute the rank pro�le of a matrix A 2 F [x℄

n�m

. Re
all that the 
olumn rank

pro�le of A is the lexi
ographi
ally smallest list of row indi
es [i

1

; i

2

; : : : ; i

r

℄ su
h

that these rows of A are linearly independent, where r is the rank of A. The


olumn rank pro�le is thus named be
ause it des
ribes the e
helon stru
ture of

the 
olumn e
helon form of A. The row rank pro�le is de�ned analogously, and

is equal to the 
olumn rank pro�le of the transpose.

The rank pro�le over F [x℄ 
an be re
overed with high probability by 
om-

puting the rank pro�le modulo a small degree and randomly 
hosen irredu
ible
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algorithm RankPro�le

input: M 2 F [x℄

n�m

.

output: the 
olumn rank pro�le of M.

r := 0;

A := the 0 �m matrix;

for i to n do

Augment A with row i of M;

A := WeakPopovForm(A);

if rank(A) = r + 1 then

r := r + 1;

i

r

:= i

�

od;

return [i

1

; i

2

; : : : ; i

r

℄

Figure 3: Algorithm RankPro�le

polynomial. This Monte Carlo algorithm requires about O(nmr

��2

+ nmd) �eld

operations. The 
ost estimate might in
rease by a poly{logarithmi
 fa
tor in the


ase of small �elds.

Algorithm RankPro�le, shown in Figure 3, 
omputes the rank pro�le determin-

isti
ally. We get the following as a 
orollary of Theorem 2.1.

Theorem 3.1: Algorithm RankPro�le is 
orre
t. The 
ost of the algorithm is

bounded by O(nmrd

2

) �eld operations, where r is the rank ofM and d is a bound

on the degree of M.

4. The determinant

In this se
tion we show how Algorithm WeakPopovForm 
an be adjusted to


ompute the determinant of a matrix A 2 F [x℄

n�n

. The determinant will have

degree bounded by nd, where d is a bound on the degree of A. The algorithm

we propose here 
omputes det(A) with O(n

3

d

2

) �eld operations.

Using randomization and a 
ompletely di�erent approa
h, Storjohann (2002)

gives a Las Vegas probabilisti
 algorithm that requires an expe
ted number of

O(n

�

(log n)

2

d

1+�

) �eld operations. The 
ost estimate might in
rease by a poly{

logarithmi
 fa
tor in the 
ase of small �elds. Also, theO((log n)

2

) fa
tor is present

even in 
ase � = 3.

Algorithm ExtendedWeakPopovForm, shown in Figure 4, applies simple trans-

formations onM to obtain the weak Popov form N and applies the same trans-

formations on the ve
tor V, obtaining W. To estimate the 
ost of Algorithm

ExtendedWeakPopovForm we have to bound the degree of U .



Mulders and Storjohann: On Latti
e Redu
tion for Polynomial Matri
es 8

algorithm ExtendedWeakPopovForm

input: M 2 F [x℄

n�m

;V 2 F [x℄

n

.

output:

�

N W

�

with N in weak Popov form, obtained by applying

simple transformations of the �rst kind on

�

M V

�

.

(A;U) := 
opy(M;V);

while A is not in weak Popov form do

Apply a simple transformation of the �rst kind on

�

A U

�

od;

(N ;W) := 
opy(A;U);

return

�

N W

�

Figure 4: Algorithm ExtendedWeakPopovForm

De�nition: The degree sum D

M

of M is de�ned by

D

M

=

n

X

i=1

D

M

i

:

Lemma 4.1: If N is the matrix we get after applying a simple transformation

on M , then D

N

� D

M

.

Proof: This follows immediately from Lemma 2.2. 2

De�nition: If M ! N , the degree drop D

M;N

is de�ned by D

M;N

= D

M

�D

N

.

Lemma 4.2: Let v 2 F [x℄

n

and assume that

�

M v

�

!

�

N w

�

. If 
 2Zis

su
h that deg(v

i

) � D

M

i

+ 
 for all i, then deg(w

i

) � D

N

i

+ 
+D

M;N

for all i.

Proof: Sin
e degree drop is additive, we only have to prove the lemma when

applying one simple transformation. Suppose we apply the simple transformation

of row k on row l. For i 6= l we have deg(w

i

) = deg(v

i

) � D

M

i

+ 
 = D

N

i

+ 
 �

D

N

i

+ 
 +D

M;N

, sin
e D

M;N

� 0 by Lemma 4.1. Let j = I

M

k

and M = (m

i;j

).

Then

deg(w

l

) � max(deg(v

l

);deg(m

l;j

)� deg(m

k;j

) + deg(v

k

))

� max(D

M

l

+ 
;D

M

l

�D

M

k

+D

M

k

+ 
)

= D

M

l

+ 
:

Sin
e D

M;N

= D

M

l

�D

N

l

we have D

M

l

+ 
 = D

N

l

+ 
+D

M;N

. 2

Theorem 4.1: The 
ost of Algorithm ExtendedWeakPopovForm is bounded by

O((m+n)dS

M;N

) �eld operations, where d is a bound on the degree ofM and V.

Proof: By Theorem 2.2 at most S

M;N

simple transformations are applied. By

Corollary 2.1 the degree of A is always bounded by d. Sin
e deg(V

i

) � D

M

i

+d+1

for all i and always D

M;A

� n(d+1), it follows from Lemma 4.2 that the degree

of U is always bounded by d+(d+1)+n(d+1) = O(nd). From this the theorem

follows. 2
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algorithm Determinant

input: T 2 F [x℄

n�n

.

output: det(T ).

�

T := 
opy(T );

det := 1;

for i from n � 1 by �1 to 1 do

M := �rst i 
olumns of

�

T ;

V := last 
olumn of

�

T ;

�

N W

�

:= ExtendedWeakPopovForm(M;V);

Let k be su
h that the kth row of N is zero;

�

T := N with row k deleted;

t := kth entry of W;

det := (�1)

k+i+1

t det

od;

return

�

T

1;1

det

Figure 5: Algorithm Determinant

Let T 2 F [x℄

n�n

. Write T =

�

M V

�

, where M 
onsists of the �rst n� 1 rows

of T and V is the last 
olumn of T . Apply Algorithm ExtendedWeakPopovForm

on the pair (M;V ) yielding

�

N W

�

. Sin
e N is in weak Popov form and

rank(N) = rank(M) � n � 1, it follows from Corollary 2.2 that N will 
ontain

at least one zero row. So up to a row permutation we have

�

N W

�

=

�

�

T �

0 t

�

;

where

�

T 2 F [x℄

(n�1)�(n�1)

and t 2 F [x℄. Thus, up to sign we have det(T ) =

det(

�

T ) t. This leads to Algorithm Determinant shown in Figure 5. Figure 6 is

(up to row permutation) a pi
torial representation of the 
ow of Algorithm

Determinant. Here, the dark gray areas represent M and N , the middle gray

areas represent V andW, the light gray areas are ignored during the 
omputation

and the white areas represent zero entries. The determinant of the matrix is (up

to sign) the produ
t of the bla
k entries.

Theorem 4.2: The 
ost of Algorithm Determinant is bounded O(n

3

d

2

) �eld

operations, where d is a bound on the degree of T .

Proof: By Corollary 2.1 the degrees of

�

T ;M;V and N are always bounded by d.

LetM

n�1

;M

n�2

; : : : ;M

1

be the 
onse
utive values ofM andN

n�1

;N

n�2

; : : : ;N

1

the 
onse
utive values of N during the 
ourse of the algorithm. By Theorem 4.1

the 
ost is then bounded by

O

 

nd

n�1

X

i=1

S

M

i

;N

i

!

:
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M

n�1

S

M

n�1

;N

n�1

=

N

n�1

M

n�2

S

M

n�2

;N

n�2

=

N

n�2

M

n�3

S

M

n�3

;N

n�3

=

N

n�3

Figure 6: Flow of Algorithm Determinant

If i =2 I

N

i

, then D

M

i�1

l

= D

N

i

l

; I

M

i�1

l

= I

N

i

l

for all i and thus S

M

i�1

= S

N

i

. If k

is su
h that I

N

i

k

= i, then D

M

i�1

l

= D

N

i

l

; I

M

i�1

l

= I

N

i

l

for l 6= k, D

M

i�1

k

� D

N

i

k

and I

M

i�1

k

< I

N

i

k

and thus S

M

i�1

< S

N

i

. So

n�1

X

i=1

S

M

i

;N

i

= S

M

n�1

�

n�1

X

i=2

�

S

N

i

� S

M

i�1

�

� S

N

1

� S

M

n�1

:

Sin
e S

M

n�1

= O(n

2

d), the theorem follows. 2

5. The Hermite form

Let A over F [x℄ have full 
olumn rank. The Hermite form H of A is the unique

upper triangular matrix whi
h is left equivalent to A, has diagonal entries moni
,

and o� diagonal entries of degree less than the diagonal entry in the same 
ol-

umn, see Ma
Du�ee (1956) or Newman (1972). In this se
tion we show how

Algorithm Determinant 
an be adjusted to 
ompute the Hermite form of a non-

singular input matrix A 2 F [x℄

m�m

. The 
ost of the algorithm is O(m

3

d

2

) �eld
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operations, where d is a bound on the degree of A. The algorithm extends im-

mediately to re
tangular input matri
es of full 
olumn rank by �rst 
omputing

the weak Popov form and restri
ting to the nonzero rows.

Di�erent approa
hes to 
omputing the Hermite form have been given. Domi
h

et al. (1987) work modulo the determinant of the input matrix to avoid inter-

mediate expression swell. Labhalla et al. (1996) transform the original problem

over F [x℄ to that of triangularizing a larger matrix matrix over F . Villard (1996)

dedu
es the Hermite form from the Popov form, 
omputed via a matrix g
d us-

ing a blo
k Hankel 
onstru
tion, see Se
tion 7. The O(m

3

d

2

) �eld operations

algorithm we give here, based on latti
e redu
tion, is the �rst with a 
omplexity

bound that is 
ubi
 in the matrix dimension. For 
omparison, the approa
h of

Domi
h et al. (1987) has 
ost O(m

3

(md)

1+�

) �eld operations.

In AlgorithmDeterminant we ignored the last 
olumns of the matrix when apply-

ing transformations, see Figure 6. That algorithm re
overed the diagonal entries

of the Hermite form but not the o�{diagonal entries. If instead we apply all

transformations to the whole matrix, we would be left with a triangularization.

One 
ould �nally use the diagonal entries to lower the degree of the o�{diagonal

entries, yielding a matrix in Hermite form. The problem with this approa
h is

that the degrees of the o�{diagonal entries may be
ome too high, thus leading

to a bad 
omplexity. In order to avoid these high degrees we will apply, during

the 
ourse of the algorithm, extra elementary transformations.

Figure 7 gives a des
ription of Algorithm HermiteForm to transform a full


olumn rank matrix into Hermite form. The details of steps (1), (2) and (3)

will be explained shortly. Figure 8 is a pi
torial representation of Algorithm

HermiteForm. Here the dark gray 
olumns representM, the middle gray 
olumns

represent V and the light gray 
olumns represent A.

Figure 9 represents (up to row permutation) the a
tions of one iteration during

the inner while loop. Here D

s

= D

M

s

and for j > i, d

j

is the degree of the bullet

entry in 
olumn j. The idea is to let

�

M V A

�

always have the following

property.

Property 1: For j > i+1 and s < j the degree of entry (s; j) of

�

M V A

�

is at most D

s

+ d

j

.

So Property 1 ensures that the degrees of the entries in the light gray area are not

too big. Note that for s > i+ 1 we have D

s

= �1 and thus when

�

M V A

�

has Property 1, then for i+ 1 < s < j the degree of entry (s; j) is less than d

j

.

This means that the lower triangular part of A is in Hermite form, and at the

end of Algorithm HermiteForm

�

V A

�

is in Hermite form.

Suppose E =

�

M V A

�

has property 1 and let F =

�

N W B

�

be the

matrix we get after applying on

�

M V A

�

the simple transformation of the

�rst kind from row k on row l. Let

�

D

l

= D

N

l

. For j > i+1 we have by Lemma 4.2

deg(F

l;j

) �

�

D

l

+ d

j

+D

M;N

= D

l

+ d

j

. So if

�

D

l

= D

l

,

�

N W B

�

still has

property 1 and nothing has to be done in step (1). If however

�

D

l

< D

l

, the
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algorithm HermiteForm

input: T 2 F [x℄

n�m

with full 
olumn rank.

output: H in Hermite form, left equivalent to T .

�

T :=WeakPopovForm(T );

M := �rst n� 1 
olumns of

�

T ;

V := last 
olumn of

�

T ;

A := empty matrix;

for i from n � 1 by �1 to 1 do

while M is not in weak Popov form do

Apply a simple transformation of the �rst kind on

�

M V A

�

, say from row k

on row l;

(1) Use �{entries to lower degrees of entries in lth row of A

od;

(2) Use |{entry to lower degrees in V;

Let l su
h that I

M

l

= i;

M := �rst i� 1 
olumns of

�

M V A

�

;

V := ith 
olumn of

�

M V A

�

;

A := last n� i 
olumns of

�

M V A

�

;

(3) Use � entries to lower degrees of entries in lth row of A

od;

H :=

�

V A

�

with rows permuted to make it upper triangular;

Multiply rows of H with 
onstants to make diagonal entries moni
;

return H

Figure 7: Algorithm HermiteForm

entries in the lth row of

�

N W B

�

may violate Property 1 and we have to

restore the property in step (1). Let q be the quotient of F

l;i+2

by F

i+2;i+2

x

�

D

l

+1

,

i.e. deg(F

l;i+2

� qF

i+2;i+2

x

�

D

l

+1

) �

�

D

l

+ deg(F

i+2;i+2

). Then deg(q) < D

l

�

�

D

l

.

Let G be the result of subtra
ting q times row i + 2 from row l in F . Then

the (l; i+ 2) entry of G has degree at most

�

D

l

+ deg(G

i+2;i+2

) and thus satis�es

Property 1. Moreover, for j > i+ 2

deg(G

l;j

) � max(deg(F

l;j

);deg(q) + deg(F

i+2;j

))

� D

l

+ d

j

sin
e deg(F

l;j

) � D

l

+ d

j

, deg(q) < D

l

and deg(F

i+2;j

) � d

j

� 1. Subtra
ting in

a similar way in sequen
e multiples of rows i + 3; : : : ; n from row l, we restore

Property 1 for row l in step (1).

Now we des
ribe step (2). Figure 10 represents (up to row permutation) the

situation just after the while loop has 
ompleted. Before we enlarge A with


olumn V, we make sure that the entries in V satisfy Property 1, i.e. make

deg(V

l

) � D

l

+d

i+1

. Step (2) takes 
are of this. We 
ould apply row transforma-
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|

� �

|

�

�

�

�

|

Figure 8: Flow of Algorithm HermiteForm

�

�

D

k

D

l

�1

�1

d

n

�

1

d

n

M V A

E

�

�

�

D

l

�1

�1

d

n

�

1

d

n

N W B

F

Figure 9: One iteration during while loop
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�

�

|

D

l

�1

�1

�1

d

n

�

2

d

n

�

1

d

n

M V A

E

Figure 10: Snapshot after while loop

tions like in step (1), using the |{ and �{entries, for this. However, this would

be too 
ostly.

Let s be the maximumdegree ex
ess in 
olumn V, that is, for 1 � l � i we have

deg(V

i

) � D

l

+d

i+1

+s. LetQ

0

be the (i+1)th row of E. For u = 1; : : : ; s letQ

u

be

the row ve
tor we get by multiplyingQ

u�1

by x and, like in step (1), redu
ing all

entries from left to right using rows i+2; : : : ; n of E. Then deg(Q

u

i+1

) = d

i+1

+u

and deg(Q

u

j

) < d

j

for j > i+1. Now we 
an add appropriate monomial multiples

of the Q

u

to rows 1; : : : ; i to make the entries of V satisfy Property 1. Noti
e

that this does not destroy Property 1 for the entries in A.

Finally, we des
ribe step (3). When the last 
olumn of M is deleted before we

enter the while loop again, D

M

l

may de
rease and thus the entries in the lth row

may violate Property 1. In step (3) we then apply the same pro
edure as in step

(1) to make sure that the entries in row l satisfy the property again.

Theorem 5.1: The 
ost of Algorithm HermiteForm is bounded by O(nm

2

d

2

)

�eld operations, where d is a bound on the degree of T .

Proof: By Theorem 2.1 
omputing

�

T 
an be a

omplished in the allotted time.

By Corollary 2.1 the degreeM is bounded by d. By Lemma 4.2 the entries in

V have degree bounded by O(md). The sum of the degrees of the entries in one

row of A is at most

P

m

j=i+2

(d + d

j

). Sin
e the produ
t of all �{entries divides

the determinant of

�

T we have

P

m

j=i+1

(d+ d

j

) = O(md).

As in the proof of Theorem 4.2 we see that the number of simple transfor-

mations applied is bounded by S

�

T

= O(m

2

d). One simple transformation 
osts

O(md) and thus the 
ost of all simple transformations is O(m

3

d

2

).

Adding a multiple of a row like in step (1) 
osts O((D

l

�

�

D

l

)md) and thus

performing step (1) on
e takes O((D

l

�

�

D

l

)m

2

d). Sin
e the total degree drop, i.e.

the sum of all D

l

�

�

D

l

is at most md, the total 
ost of all steps (1) is O(m

3

d

2

).

The 
ost of performing step (2) on
e is bounded by O(sm

2

d). By Lemma 4.2

s is bounded by the sum of d and the degree drop during the last invo
ation of

the while loop. So the sum of all s during the algorithm is O(md) and thus the

total 
ost of all steps (2) is O(m

3

d

2

).
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As in step (1), the 
ost of step (3) is bounded by O(m

3

d

2

) and making the

diagonal entries moni
 
an be a

omplished with O(m

2

d). 2

Triangular fa
torization

Algorithm HermiteForm 
an be used to obtain a triangular fa
torization of a full


olumn rank A 2 F [x℄

n�m

, that is, 
ompute the Hermite form H of A together

with a unimodular matrix V su
h that A = V H. Pro
eed as follows.

Compute the 
olumn rank pro�le of A and, if ne
essary, permute the rows

so that the �rst m rows are linearly independent. For simpli
ity, assume no

permutation of rows is required. Append to A the (n �m) � (n �m) identity

matrix to the right bottom, yielding the nonsingular matrix

�

A =

�

A

0

I

�

2 F [x℄

n�n

:

Now 
ompute the Hermite form

�

H of

�

A. Let H be the �rst m 
olumns of

�

H .

Finally, we are going to 
ompute V =

�

A

�

H

�1

. To do this eÆ
iently, let D

i

be

the n � n identity matrix ex
ept with ith diagonal entry equal to that of

�

H.

Similarly, let E

i

be the n � n identity matrix ex
ept with o�-diagonal entries

in the ith 
olumn equal to those of

�

H . Then

�

H = D

n

E

n

� � �D

3

E

3

D

2

E

2

D

1

E

1

.

Compute V =

�

AE

�1

1

D

�1

1

E

�1

2

D

�1

3

� � �E

�1

n

D

�1

n

, evaluating from left to right.

Theorem 5.2: Let A 2 F [x℄

n�m

have rank m and degree bounded by d. A trian-

gular fa
torization of A 
an be 
omputed with O(n

3

d

2

) �eld operations. Moreover,

the degree of the unimodular transformation matrix is bounded by d.

Proof: Use the method des
ribed above. Determine the m independent rows of

A and 
ompute

�

H using Algorithms RankPro�le and HermiteForm. Be
ause

�

H

is in Hermite form, we have the bounds deg(det(

�

H)

�

H

�1

) � deg(det(

�

H)) and

P

1�j�n

deg(E

i

) �

P

1�j�n

deg(D

i

) = deg(det(

�

H)) = O(md). The former shows

deg(V ) � deg(

�

A). Using this and the latter bound it follows that V 
an be


omputed as indi
ated with O(n

2

md

2

) �eld operations. 2

6. Polynomial linear system solving

Let M 2 F [x℄

n�m

and b 2 F [x℄

1�m

be given. This se
tion shows how to solve

the polynomial linear system vM = b in the following general sense:

1. If the system does not have a rational solution, that is, if there does not

exist a v 2 F (x)

1�n

su
h that vM = b, then report this.

2. If the system does have a rational solution, then �nd the minimal degree

moni
 e 2 F [x℄ su
h that vM = eb has a polynomial solution, and

3. �nd a parti
ular solution v 2 F [x℄

1�n

for vM = eb.
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These problems have been well studied. Let r be the rank ofM and d be a bound

on the degree ofM . The 
omplexity bounds we state allow the target ve
tor b to

have degree as large as O(rd). Mulders and Storjohann (2000b) solve problem 1

with O((n+m)r

2

d

1+�

) �eld operations. A rational solution ve
tor, if one exists,

is 
omputed in the same time. Problems 2 and 3 are more subtle. The fastest

methods are based on randomized pre
onditioning. The Las Vegas algorithm

of Mulders and Storjohann (2000a) solves all the problems using an expe
ted

number of O((nmr

��2

+ r

�

(log r))(d+ log

#F

r)

1+�

) �eld operations. If � = 3 the

log r fa
tor 
an be avoided and the result be
omes O(nmr(d+ log

#F

r)

1+�

) �eld

operations. Here we show how to solve the problems without randomization with

O(nmrd

2

) �eld operations.

Our solution will be divided into three phases. The �rst phase is to solve prob-

lems 1 and 2 above. The se
ond phase is to redu
e the system vM = eb to an

equivalent system vA = 
 whi
h has full 
olumn rank. The third phase is to

�nd a parti
ular solution of vA = 
. The �rst two phases use standard methods

together with the algorithms presented in previous se
tions. Similarly, the third

phase is easy to solve with O(n

3

d

2

) �eld operations, but this may be too expen-

sive for an input system that is overdetermined (i.e. n� m) or is rank de�
ient.

Our main 
ontribution here is to show how to solve the third phase with only

O(nr

2

d

2

) �eld operations.

Phase 1: Computation of minimal denominator e. If the rank of M aug-

mented with b is greater than the rank ofM alone, then the linear system vM = b

does not have a rational solution. We 
an perform this rank 
he
k and solve prob-

lem 2 simultaneously by doing the following. Use AlgorithmWeakPopovForm to


ompute the nonzero rows R 2 F [x℄

r�m

of a weak Popov form of M . Now use

Algorithm ExtendedPopovForm to transform the matrix

�

R

b 1

�

2 F [x℄

(r+1)�(m+1)

: (1)

If there does not exist a row in the transformed matrix whi
h has �rst m entries

zero, then report that the system has no solution; otherwise, the moni
 asso
iate

of the last entry in this row is the desired minimal denominator e.

Phase 2: Redu
tion to full 
olumn rank system vA = 
. First use Algorithm

RankPro�le to 
ompute the row and 
olumn rank pro�les of M in order to iden-

tify a nonsingular r�r submatrix. Now 
onstru
t A fromM as follows: permute

the rows and 
olumns so that the prin
ipal r� r submatrix is nonsingular, then

remove the last m� r 
olumns. Let 
 2 F [x℄

1�r

be the 
orresponding subve
tor

of eb. Any solution of vA = 
 will be, up to permutation of entries in v, also

a solution of vM = eb, and vi
e versa. Thus, we have redu
ed our problem to

�nding a parti
ular solution v 2 F [x℄

1�n

to the system vA = 
, where A is n� r

with prin
ipal r � r submatrix nonsingular.
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Phase 3: Parti
ular solution of vA = 
. Let k = dn=re and de
ompose A as

A =

2

6

6

6

4

A

1

A

2

.

.

.

A

k

3

7

7

7

5

where ea
hA

�

is r�r ex
ept for possiblyA

k

whi
h has row dimension n�(k�1)r.

Consider transforming the following augmented matrix to Hermite form:

2

6

6

6

6

6

4

1 �


A

1

A

2

I

.

.

.

.

.

.

A

k

I

3

7

7

7

7

7

5

�!

2

6

6

6

6

6

4

1 v

2

� � � v

k

H

1

� � � � �

H

2

� � � �

.

.

.

.

.

.

H

k

3

7

7

7

7

7

5

: (2)

Note that the blo
k above H

1

is ne
essarily zero (as shown) be
ause �
 is in the

latti
e generated by the rows of A, that is, the system vA = 
 has a polynomial

solution for v. On
e the v

�

in (2) have been 
omputed, solve the nonsingular

system v

1

A

1

= 
�v

2

A

2

�v

3

A

3

�� � ��v

k

A

k

for v

1

using the algorithm of Mulders

and Storjohann (2000b). Then v =

�

v

1

v

2

v

3

� � � v

k

�

is easily seen to be a

solution to the system vA = 
.

We 
ould apply Algorithm HermiteForm to 
ompute the v

�

in (2) but this

would 
ost O(n

3

d

2

) �eld operations. By pipelining the 
omputation we 
an avoid


omputation of the o�-diagonal blo
ks � and redu
e the 
ost to O(nr

2

d

2

). Pro-


eed as follows.

Use AlgorithmWeakPopovForm to 
ompute a weak Popov form R

k

of A

1

. For

i = k� 1; k � 2; : : : ; 2 in su

ession, let R

i

be the nonzero rows of a weak Popov

form of

�

R

i+1

A

i+1

�

;


omputed using Algorithm WeakPopovForm. Now 
ompute v

i

for i = 2; 3; : : : ; k

in su

ession as follows: set 


i

= �
 + v

2

A

2

+ v

3

A

3

+ � � � + v

i�1

A

i�1

and use

Algorithm HermiteForm to e�e
t the following transformation:

2

4

1 


i

R

i

A

i

I

3

5

�!

2

4

1 v

i

� �

H

i

3

5

: (3)

This ends the des
ription of phase 3. We now show using indu
tion on i that the

Hermite form in (3) will be as shown, 
ompare with (2).

For some i (i = 2; 3; : : : ; k) assume that v

2

; v

3

; : : : ; v

i�1

have been 
orre
tly


omputed. Note that for i = 2 (the base 
ase) this assumption is va
uously true.
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Let w =

�

v

2

v

3

� � � v

i�1

�

. Write A using a 
onformal blo
k de
omposition

as

A =

2

6

6

4

A

1

X

A

i

Y

3

7

7

5

:

Now 
onsider the transformation to Hermite form shown in (2), but restri
ted

to the �rst ir+ 1 
olumns and using a sequen
e of unimodular transformations:

2

6

6

6

4

1 �


A

1

X I

A

i

I

Y

3

7

7

7

5

(a)

�!

2

6

6

6

4

1 �


R

i

X I

A

i

I

3

7

7

7

5

(b)

�!

2

6

6

6

4

1 


i

w

R

i

X I

A

i

I

3

7

7

7

5

(
)

�!

2

6

6

6

4

1 w v

i

� �

X I

H

i

3

7

7

7

5

(d)

�!

2

6

6

6

4

1 w v

i

H

1

� �

� �

H

i

3

7

7

7

5

:

Transformation (a) 
orresponds to the de�nition of R

i

and involves only rows


ontaining A

1

and Y . Indeed, R

i

is the nonzero rows of a weak Popov form of

A

1

augmented with Y . Transformation (b) adds w �

�

X I

�

to the �rst

row. Note that 


i

= �
 + wX. Transformation (
) is that shown in (3), and is

restri
ted to the rows 
ontaining R

i

and A

i

. The key point is that the �rst row is

already in 
orre
t form after transformation (
) 
ompletes. Thus, transformation

(d), whi
h 
ompletes the transformation to Hermite form, 
an be avoided.

Theorem 6.1: Let M 2 F [x℄

n�m

have rank r and degree bounded by d. Let

b 2 F [x℄

1�m

have degree bounded by O(rd). The 
ost of the algorithm des
ribed

above for solving the polynomial linear system vM = b is bounded by O(nmrd

2

)

�eld operations.

Proof: As indi
ated, almost all of the 
omputation is done by AlgorithmsWeakPopov-

Form, ExtendedPopovForm, RankPro�le and HermiteForm. There are a 
ouple

of pla
es where we need to take 
are that these algorithm run in the allotted

time.

The transformation using Algorithm ExtendedPopovForm shown in (1) needs

to be done in a spe
ial way be
ause we are allowing deg b = O(rd). Perform the

transformation in two phases. For the �rst phase, apply simple transformations

of the �rst kind involving the rows of R on the last row until either the last

row has degree � d or the transformed matrix is in weak Popov form. A similar

argument as used in the proof of Theorem 2.1 shows that the number of su
h

simple transformations is bounded by O(r deg(b)). To estimate the 
ost of the

�rst phase it remains to bound the 
ost of a single simple transformation of
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the �rst kind of a row with degree bounded by d on row with degree bounded

by O(deg(b)). Before beginning, store the 
oeÆ
ients of the polynomials in b in

m arrays of length 1 + deg(b). By modifying these arrays in{pla
e, ea
h simple

transformation 
an be a

omplished with O(md) instead of O(mdeg(b)) �eld

operations. Thus, the total 
ost for phase one is O(mrddeg(b)) �eld operations.

For the se
ond phase, use Algorithm ExtendedWeakPopovForm to 
omplete the

transformation.

Next we bound the degree of 
 and the 


�

. Note that e will be a divisor of an

r � r minor of R and hen
e deg(e) � rd. This shows that deg(
) � rd + deg b.

The degree of the Hermite form shown in (2) will be bounded by deg(det(A

1

)),

whi
h is � rd. Note that for i > 2, 


i


an be 
omputed as 


i�1

+ v

i�1

A

i�1

. Using

this, we see that all the 


�


an be 
omputed from the v

�

in the allotted time and

will have degree bounded by O(rd).

Now 
onsider the 
omputation of the v

�

using the transformation to Hermite

form shown in (3). Again, some 
are needs to be taken be
ause deg(


i

) may be

as large as O(rd). The transformation should be done in two phases. First, use

the te
hnique des
ribed above to apply simple transformations of the rows in R

i

to the �rst row to redu
e the degree of the �rst row to � d. Then 
omplete the

transformation using Algorithm HermiteForm.

For the �nal 
omputation of v

1

= A

�1

1

(�


k

� v

k

A

k

) use the algorithm of

Mulders and Storjohann (2000b). 2

7. The Popov form

In this se
tion, we show how we 
an transform a matrix that is in weak Popov

form into Popov form. Combined with AlgorithmWeakPopovForm this will yield

an algorithm to transform any matrix into Popov form.

In Kailath (1980) and Villard (1996) the Popov form of a matrix is 
omputed

via translation to problems over F with bigger dimensions. Consider the 
ase

of a nonsingular m � m input matrix with degree d. Villard (1996) redu
es

the problem to inverting a single m � m matrix over F [x℄ with degree d and


omputing the rank pro�les of two md�md matri
es over F . This approa
h also

yields a fast parallel algorithm. Using the best known sequential algorithms for

these problems the 
ost estimate be
omes about O(m

�+1

d+(md)

�

+m

2

(md)

1+�

)

�eld operations. The algorithmwe propose here has 
ostO(m

3

d

2

) �eld operations

for this 
ase.

De�nition: M is said to be in as
ending order if for i < l we have D

M

i

< D

M

l

or

(D

M

i

= D

M

l

6= �1 and I

M

i

< I

M

l

).

Note that whenM is in as
ending order, the zero rows ofM are on top, i.e. have

smallest row index.

De�nition (see also Kailath (1980)): M is said to be in Popov form if
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1. M is in weak Popov form;

2. M is in as
ending order;

3. P

M

i

is moni
 for i 2 C

M

;

4. deg(m

i;I

M

l

) < D

M

l

for l 2 C

M

and i 6= l.

When M is in weak Popov form we 
an transform M into as
ending order by

permuting the rows of M .

Assume that M already satis�es properties 1 and 2. We will make M satisfy

property 4 by applying simple transformations of the se
ond kind onM . In order

that a simple transformation does not 
an
el progress made before, we apply the

simple transformations in a parti
ular order.

Suppose that the �rst k � 1 rows of M already satisfy property 4, that is

deg(m

i;I

M

l

) < D

M

l

for l 2 C

M

, i 6= l and i; l < k.

If the kth row of M is the zero row, then the �rst k rows of M are all zero

rows and satisfy property 4.

Now suppose that the kth row of M is not the zero row. For i < k we then

have:

1. If D

M

i

= �1, then deg(m

i;I

M

k

) = �1 < D

M

k

.

2. If D

M

i

< D

M

k

, then deg(m

i;I

M

k

) � D

M

i

< D

M

k

.

3. If D

M

i

= D

M

k

, then I

M

i

< I

M

k

and thus deg(m

i;I

M

k

) < D

M

i

= D

M

k

.

So deg(m

i;I

M

k

) < D

M

k

for i < k and we only have to make the entries in row k

satisfy property 4.

Let Æ

M

= max

i<k;i2C

M
(deg(m

k;I

M

i

)�D

M

i

). If Æ

M

< 0, then the �rst k rows ofM

satisfy property 4. Otherwise let l < k; l 2 C

M

su
h that Æ

M

= deg(m

k;I

M

l

)�D

M

l

and N = (n

i;j

) the matrix we get when we apply the simple transformation (of

the se
ond kind) of row l on row k. By Lemma 2.2 D

M

k

and I

M

k

do not 
hange

and thus N still satis�es properties 1 and 2 and still deg(n

i;I

N

k

) < D

N

k

for i < k.

Let Æ

N

= max

i<k;i2C

N (deg(n

k;I

N

i

) � D

N

i

). If Æ

N

< 0, the �rst k rows of N

satisfy property 4. Otherwise, let �

M

= #fi < k j Æ

M

= deg(m

k;I

M

i

)�D

M

i

g and

�

N

= #fi < k j Æ

N

= deg(n

k;I

N

i

)�D

N

i

g. We now show that (Æ

N

; �

N

) < (Æ

M

; �

M

)

in the lexi
ographi
 order. For this we only have to show that Æ

N

� Æ

M

and if

Æ

N

= Æ

M

, then �

N

< �

M

.

For i < k su
h that i 6= l and i 2 C

N

let j = I

N

i

= I

M

i

and note that

D

N

i

= D

M

i

. Then

deg(n

k;j

)�D

N

i

� max(deg(m

k;j

)�D

N

i

; Æ

M

+ deg(m

l;j

)�D

N

i

):

Sin
e the �rst k�1 rows ofM already satisfy property 4 we have deg(m

l;j

)�D

N

i

<

0. So if deg(m

k;j

)�D

M

i

< Æ

M

, then deg(n

k;j

)�D

N

i

< Æ

M

; if deg(m

k;j

)�D

M

i

= Æ

M

,

then deg(n

k;j

)�D

N

i

= Æ

M

. Moreover, deg(n

k;I

N

l

)�D

N

l

< deg(m

k;I

N

l

)�D

N

l

= Æ

M

,

sin
e we applied the simple transformation of row l on row k. We see that either

(Æ

N

= Æ

M

and �

N

= �

M

� 1) or Æ

N

< Æ

M

.
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algorithm PopovForm

input: M 2 F [x℄

n�m

.

output: N in Popov form, left equivalent to M.

A := WeakPopovForm(M);

Permute rows of A su
h that A is in as
ending order;

for k to n do

if kth row is not the zero row then

do

Let Æ = max

i<k;i2C

A(deg(m

k;I

A

i

)�D

A

i

);

if Æ < 0 then

break

�;

Let l < k; l 2 C

A

su
h that deg(m

k;I

A

l

)�D

A

l

= Æ;

Apply simple transformation of row l on row k

od

�

od;

Multiply nonzero rows of A with 
onstant to make pivots moni
;

N :=
opy(A);

return N

Figure 11: Algorithm PopovForm

Figure 11 des
ribes an algorithm to 
ompute the Popov form of a matrix based

on our previous observations.

Theorem 7.1: Algorithm PopovForm is 
orre
t. The 
ost of Algorithm PopovFrom

is bounded by O(nmrd

2

) �eld operations, where r is the rank of M and d is a

bound on the degree M.

Proof: Sin
e always Æ

M

� d and �

M

< r it follows from the previous observa-

tions that in the loop at most O(rd) simple transformations are applied on ea
h

nonzero row. So the total number of simple transformations applied in the loop

is O(r

2

d). From Lemma 2.2 it follows that the degree of A is always bounded

by d. Thus the 
ost of the loop is O(r

2

md

2

). The theorem now follows from

Theorem 2.1. 2

8. Redu
ed basis

In von zur Gathen (1984) the notion of redu
ed basis is introdu
ed. For a poly-

nomial matrixM = (m

i;j

) 2 F [x℄

n�m

of rank r this boils down to the following.

De�nition: M is said to be redu
ed if

1. Rows r + 1; : : : ; n are zero rows;
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2. For 1 � i � r we have deg(m

i;k

) < deg(m

i;i

) for 1 � k < i and deg(m

i;k

) �

deg(m

i;i

) for i � k � m;

3. deg(m

i;i

) � deg(m

j;j

) for 1 � i � j � r.

In von zur Gathen (1984) and von zur Gathen and Gerhard (1999, Exer
ise 16.12)

an algorithm is des
ribed to transform a full row rank matrix, up to 
olumn

permutation, into a redu
ed matrix by a unimodular row transformation. The


omplexity of this algorithm turns out to be O(mn

3

d

2+�

) �eld operations.

Now suppose M is already in Popov form. If deg(P

M

k

) � deg(P

M

l

) for k 6= l,

then deg(m

l;I

M

k

) < deg(P

M

k

) � deg(P

M

l

). From this we see that by permuting

the rows and 
olumns of M su
h that the pivots of M end up on the diagonal

with in
reasing degree from top to bottom, we get a redu
ed matrix. So we 
an

transform any matrix in redu
ed form by �rst 
omputing its Popov form and

then permuting its rows and 
olumns. The 
ost of this is O(nmrd

2

) by Theo-

rem 7.1, whi
h is one order of magnitude better than the algorithm des
ribed

by von zur Gathen (1984).

Redu
ed basis are used by von zur Gathen (1984) to 
ompute short ve
tors in

modules. In the polynomial 
ase the weak Popov form already suÆ
es for that.

Lemma 8.1: IfM is in weak Popov form and l is su
h that deg(P

M

l

) = min

1�i�n

(deg(P

M

i

)),

then all ve
tors in the F [x℄{module generated by the rows of M have degree at

least deg(P

M

l

).

Proof: Let r

i

2 F [x℄

1�m

denote the ith row ofM = (m

i;j

) and let d

i

2 F [x℄ su
h

that r =

P

n

i=1

d

i

r

i

6= 0. Let k su
h that deg(d

k

P

M

k

) is maximal and I

M

k

maximal,

i.e. for i 6= k either deg(d

i

P

M

i

) < deg(d

k

P

M

k

) or (deg(d

i

P

M

i

) = deg(d

k

P

M

k

) and

I

M

i

< I

M

k

. Then for i 6= k we have

1. if deg(d

i

P

M

i

) < deg(d

k

P

M

k

), then deg(d

i

m

i;I

M

k

) � deg(d

i

P

M

i

) < deg(d

k

P

M

k

);

2. if deg(d

i

P

M

i

) = deg(d

k

P

M

k

) and I

M

i

< I

M

k

, then deg(d

i

m

i;I

M

k

) < deg(d

i

P

M

i

) =

deg(d

k

P

M

k

).

It follows that deg(r

I

M

k

) = deg(d

k

P

M

k

) � deg(P

M

l

) 2

9. Dis
rete valuation rings

In this se
tion we extend the notion of weak Popov form to the setting of dis
rete

valuation rings.

De�nition: (Atiyah and Ma
Donald (1969)) Let K be a �eld. A dis
rete valua-

tion on K is a mapping v of K

�

onto Zsu
h that

1. v(ab) = v(a) + v(b);

2. v(a+ b) � min(v(a); v(b)).
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Let R be the ring 
onsisting of 0 and all a 2 K

�

su
h that v(a) � 0. Then R is


alled a dis
rete valuation ring. R is a lo
al ring and its maximal ideal I is the

set of all a 2 K su
h that v(a) > 0. Let u 2 R su
h that v(u) = 1. Then I = (u),

the ideal of R generated by u. The set R

�

of units of R is the set of all a 2 K su
h

that v(a) = 0. Let S � R

�

[f0g su
h that the 
anoni
al proje
tion map S ! R=I

is a bije
tion. For a; b 2 R with v(a) � v(b), we have v(u

v(b)�v(a)

a=b) = 0, so

there exists a unique 
 2 S n f0g su
h that u

v(b)�v(a)

a=b� 
 2 I, and thus

v(a� 
u

v(a)�v(b)

b) > v(a): (4)

Example 2: Let F be a �eld. The set F [[x℄℄ of formal power series in x is a

dis
rete valuation ring. For a 2 F [[x℄℄, v(a) is the maximum n 2 N su
h that x

n

divides a. For S we 
an take F in this 
ase.

LetM = (m

i;j

) 2 R

n�m

. As an analogue to Se
tion 2 we de�ne the pivot element

P

M

i

of row i of M as the rightmost element with minimum valuation in its row,

the pivot index I

M

i

as the index of P

M

i

, i.e. P

M

i

= m

i;I

M

i

, and the pivot valuation

D

M

i

as v(P

M

i

). Again, M is said to be in weak Popov form if all (nonzero)

indi
es are di�erent. If v(m

l;I

M

k

) � v(P

M

k

), let 
 2 S n f0g su
h that v(m

l;I

M

k

�


u

v(m

l;I

M

k

)�v(P

M

k

)

P

M

k

) > v(m

l;I

M

k

). Then we 
all subtra
ting 
u

v(m

l;I

M

k

)�v(P

M

k

)

times

row k from row l the simple transformation of row k on row l. The analogue of

Lemma 2.2 holds also.

Lemma 9.1: Let N be the matrix we get after applying the simple transformation

of row k on row l of M . Then I

N

i

= I

M

i

;D

N

i

= D

M

i

for i 6= l and D

N

l

� D

M

l

.

If the transformation is of the �rst kind, then either D

N

l

> D

M

l

or (D

N

l

= D

M

l

and I

N

l

< I

M

l

). If the transformation is of the se
ond kind, then I

N

l

= I

M

l

and

D

N

l

= D

M

l

.

Now we 
an apply AlgorithmWeakPopovForm to transformM into weak Popov

form. However, the algorithm may run forever as the following example shows.

Example 3: For

M =

�

x

1�x

1

�

=

�

x+ x

2

+ x

3

+ � � �

1

�

2 F [[x℄℄

2�1

Algorithm WeakPopovForm will keep on subtra
ting x

i

fromM

1;1

for in
reasing

i and thus run forever. However, it is possible to transformM into weak Popov

form by a unimodular transformation, sin
e

�

1 1

�x 1 � x

� �

1

x+ x

2

+ x

3

+ � � �

�

=

�

1 + x+ x

2

+ � � �

0

�

:

Noti
e that the unimodular transformation matrix is even over F [x℄. Indeed,

Algorithm WeakPopovForm only 
omputes transformations over F [x℄.
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Lemma 2.3 and Corollary 2.2 are still valid in the dis
rete valuations ring setting

and thus the number of di�erent values that a pivot index 
an assume during

the 
ourse of AlgorithmWeakPopovForm is bounded by the rank of the matrix.

The following lemma shows that the algorithm still works whenM has full row

rank.

Theorem 9.1: SupposeM has full row rank. Let d be the valuation of the deter-

minant of some nonsingular n�n submatrix ofM. Then AlgorithmWeakPopov-

Form is 
orre
t and applies at most dn+ n(n� 1) simple transformations of the

�rst kind.

Proof: Sin
e the index of a row 
an assume at most n di�erent values, Lemma 9.1

implies that the valuation of row l, that is min

1�j�m

(v(M

l;j

)), must have in-


reased after applying n simple transformations of the �rst kind on row l and

so when s

l

simple transformations of the �rst kind are applied on row l the

valuation of that row must have in
reased by at least bs

l

=n
.

Let G be a nonsingular submatrix of M and d = v(det(G)). Suppose that Al-

gorithmWeakPopovForm applies more than dn+n(n�1) simple transformations

of the �rst kind and suppose G is transformed into H after applying the �rst

dn + n(n � 1) + 1 simple transformations. Then v(det(H)) �

P

n

i=1

bs

i

=n
 > d,


ontradi
ting det(H) = det(G).

So Algorithm WeakPopovForm does stop and is thus 
orre
t by Lemma 2.1.

2

As in the polynomial 
ase, the weak Popov form in the 
urrent setting 
an be

used to determine a ve
tor with minimal valuation in the R{module generated

by the rows of a matrix.

The analogue of Popov form would insists that v(m

i;I

M

l

) > D

M

l

for i 6= l. It

is in general not possible to transform a matrix into Popov form by only using

unimodular transformations.

Example 4: Let

M =

�

1 x

x

2

x

2

�

:

Then M is nonsingular and in weak Popov form. Suppose

U =

�

a b


 d

�

2 F [[x℄℄

2�2

is unimodular and N = UM is in weak Popov form. We may assume (eventually

swit
h rows) that v(a) = 0. Then v(N

1;1

) = 0, v(N

1;2

) = 1 and v(N

2;2

) � 1. So

I

N

1

= 1 and thus I

N

2

must be 2. Sin
e v(N

1;2

) � v(N

2;2

), N 
annot be in Popov

form.
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10. Con
lusions

We have introdu
ed the weak Popov form of a polynomial matrix and des
ribed

a simple algorithm to 
ompute the form. The algorithm transforms a matrix

by applying elementary row operations in su
h a way that the degrees of rows

never in
rease. This leads to a 
omplexity of O(nmrd

2

) �eld operations for trans-

forming an input matrix A 2 F [x℄

n�m

of rank r with entries of degree bounded

by d. The algorithm is 
entral to various other algorithms: for rank pro�le, de-

terminant, Hermite form, Popov form, linear system solution and short ve
tor


omputation.

The analysis in this paper only 
ounts �eld operations and thus gives a good

estimate of the 
ost when F is a �nite �eld. The hidden 
onstants in the big-O

bounds are not expli
itly 
omputed but estimates 
an be derived without too

mu
h diÆ
ulty. Sin
e these 
onstants are small, the algorithms will perform well

in pra
ti
e, also for modest sized input matri
es. Some 
omparative experiments

with implementations of various algorithms in Aldor (Watt et al. (1994)) 
on�rm

this.

For the problem of 
omputing the Hermite form we did not obtain a 
omplexity

bound that was 
ubi
 in the matrix dimension for the 
ase of an input matrix

that does not have full 
olumn rank. The problem of 
omputing the form in this


ase is at least as diÆ
ult as 
omputing a unimodular transformation matrix U

to a
hieve the form. For example, let A 2 F [x℄

n�n

be nonsingular with degree

bounded by d. Consider transforming the n � 2n matrix

�

A I

�

, whi
h is

obviously not of full 
olumn rank, to Hermite form

�

H U

�

. The triangular

fa
torization of A is given by A = V H, where V = U

�1

. Note that V will have

degree bounded by d but U will have degree bounded by (n�1)d. We have shown

how to 
ompute V and H with O(n

3

d

2

) �eld operations. Can U be 
omputed in

the same time?

The performan
e of the algorithms for other 
oeÆ
ient �elds F , e.g. F =

Q (or Z), is another issue. In this 
ase, intermediate expression swell on the


oeÆ
ient level is introdu
ed, leading to a severe breakdown of the algorithms

performan
e. Combining the algorithms with homomorphi
 imaging s
hemes

may be the solution to this problem. Another idea may be to introdu
e fra
tion

free te
hniques, as is done by Be
kermann et al. (1999, 2002). Further resear
h

needs to be done in this area.

We also extended the notion of weak Popov form to the setting of dis
rete

valuation rings. Su
h an extension does not seem possible for the notion of Popov

form. Another remaining question is how to transform in the dis
rete valuation

ring setting a non full row rank matrix into weak Popov form. The algorithm

presented in Se
tion 9 may run forever on su
h a matrix.
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