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Abstract

A randomized algorithm is given for solving a system of linear equations over a
principal ideal domain. The algorithm returns a solution vector which has mini-
mal denominator. A certificate of minimality is also computed. A given system has
a diophantine solution precisely when the minimal denominator is one. Cost esti-
mates are given for systems over the ring of integers and ring of polynomials with
coeflicients from a field.
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1 Introduction

Finding a particular solution to a system of linear equations is a classical
mathematical problem. In the literature we typically find separate treatments
for two versions of the problem. The first version — rational system solving
— can be stated as follows: given an integer matrix A € Z"*™ and vector
b € 2™, find a rational vector x € Q™*! that satisfies Az = b. The second
version — diophantine system solving — asks for an integer vector z that
satisfies Ax = b. There are three possibilities:
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e The system has no rational solution.
e The system has a rational solution but no diophantine solution.
e The system has a diophantine solution.

In this paper we propose a generalization that encompasses all of these situ-
ations. Suppose that Ax = b admits a rational solution. If d is the smallest
positive integer such that dz is integral, and d is minimal among all solutions
to the system, then we call x a solution with minimal denominator. We give
a randomized algorithm that takes as input an A € Z"*™ and b € Z"*! and
returns as output one of the following:

(1) (y,z), where

o yc Q! with Ay = b,

o 2 c Q" with zA € ZY*™, and

e zb and y have the same denominator.
(2) (“no solution”, ¢), where

o g€ QY with g4 =(0,...,0) € Q"™ and ¢b # 0.

We call this certified linear system solving. In the first case, the conditions on
y and z certify that y is a solution with minimal denominator. In particular,
y is a diophantine solution precisely when the denominator of y is one. In the
second case, the existence of such a ¢ certifies that the system has no rational
solution. This idea for certifying inconsistency is due to Giesbrecht, Lobo and

Saunders (1998).

The main result of this paper is a fast algorithm for certified solving. A com-
plete statement of complexity results, including interaction with fast matrix
multiplication, is given in Sections 7.1 and 7.2. Here, we state the results
assuming the standard (cubic) algorithm for matrix multiplication.

We show that certified solving of a linear system over Z can be accomplished
using an expected number of O(nmr B(d + logm)) bit operations, where r is
the rank of A and d is a bound on the bitlength of entries in A and b. Actually,
we show that this complexity bound holds even if entries in b are substantially
larger than entries in A. It suffices that d bound both log || A|| and (log ||6||)/r,
where ||A|| and ||b|| denote the maximum magnitude of entries in A and b.
The function B is a cost function for certain operations with integers and
polynomials, see below. The best methods have B(¢) = O(¢(log t)* log log t).

We obtain an analogous result for an input system over K[z], K afield. Let A €
K[x]™™ and b € K[2]"*! be given. Certified solving of a linear system over
K[z] can be accomplished using an expected number of O(nmr B(d+logyx 1))
field operations from K, where d is a bound for both ||A|| and ||b||/r, and || A||
and ||b|| denote the maximum degree of entries in A and b. If K is an infinite
field, then log, r = 0.



Our algorithms are based on an idea of Giesbrecht (1997). The idea is to
construct a diophantine solution of Az = b by combining a small number of
rational solutions of the same system. Giesbrecht computes different ratio-
nal solutions by solving the leading nonsingular subsystem of UALx = Ub,
for randomly chosen upper- and lower-triangular toeplitz matrices U and L.
Giesbrecht, Lobo and Saunders (1998) extend the algorithm to certify the
nonexistence of a diophantine solution, should this be the case. The studies
in Giesbrecht (1997) and Giesbrecht et al. (1998) focus on the case of sparse
or structured linear systems, with an emphasis also on algorithms which ad-
mit a good coarse grain parallelization. If we incorporate the best sequential
methods for rational system solving (see Section 5) then the cost of the algo-
rithms there becomes O(nm?d?) x (logm +log d)°(Y) bit operations, assuming
m > n. The extra logarithmic factors (logm 4 log d)°™") are due to the rate
of convergence and because the proof of convergence requires entries in the
toeplitz conditioners to be chosen from a ring extension.

The main technical contributions of the current paper are as follows. First, the
idea of certification is extended to verify correctness of a minimal denominator
solution. Second, we perform a thorough study of the effectiveness of dense
preconditioners, showing how they can be used to avoid the need for extension
rings and at the same time improve the rate of convergence to an expected
constant number of iterations. The convergence analysis is over a general prin-
cipal ideal domain and is thus applicable in different settings. Third, we give
a complete cost analysis for systems over Z and K[z]. Part of the effort is to
show how to incorporate fast arithmetic and matrix multiplication.

We now give a more detailed outline of the rest of the paper.

Sections 2, 3 and 4 study the certified solving problem over an abstract prin-
cipal ideal domain. Section 2 presents the Algorithm MinimalSolution for con-
structing a solution with minimal denominator together with certificate (y, z)
for a full row rank system Az = b. Each iteration of the algorithm con-
structs a new rational solution by solving the leading nonsingular subsystem
of APx = b, where P has entries chosen uniformly and randomly from a sub-
set of the ring. Section 3 gives sundry results about the rank properties of
random matrices. This section is self-contained and may be of independant
interest. Section 4 uses the results of the previous section to estimate the
performance of Algorithm MinimalSolution. The main result is that we can
expect convergence in a constant number of iterations by choosing entries in
the preconditioning matrices P from a large enough (but still relatively very
small) subset of the ring.

Sections 5, 6 and 7 study the certified solving problem over Z and K[x]. These
sections are concerned with efficiency over Z (expected number of required bit



operations) and over K[z]| (expected number of required field operations from
K). The algorithms we present work by reducing to the problem of solving a
square nonsingular system. Our approach is to bound separately the expected
cost of the reduction and the expected number of nonsingular systems that
need to be solved. Section 5 gives a brief survey of the currently best known
complexity results for solving a nonsingular system over Z and F[z]. Section 6
adapts Algorithm MinimalSolution from Section 2 to solve a full row rank
system over Z or F[z]. The algorithm from Section 2 needs to be modified
slightly to avoid expression swell. Finally, Section 7 gives the Algorithm Cer-
tifiedSolver for solving a possibly non full row rank and inconsistent system

over Z and K{z].

Cost estimates are given in terms of the subadditive functions M, B and MM.

We assume that B(n) = O(n?) or B(n) = O(M(n)logn) where M is a multi-
plication time for K'[z| and Z (von zur Gathen and Gerhard, 1999, Definition
8.26). Then the extended ged involving two polynomials from K[x] of degree at
most n, or two integers of bitlength at most n, can be computed with O(B(n))
field operations or bit operations, respectively. The best known methods al-
low M(n) = O(n(logn)(loglogn)). We assume that M(ab) < M(a)M(b) for
a,b € Z~1. Let MM be such that two n X n matrices over a ring can can be
multiplied in O(MM(n)) ring operations. In this paper we will assume that
n?*t = O(MM(n)) for some positive 7.

For a matrix or vector A over Z, we denote by ||A|| the maximum magnitude
of entries in A. For A over K[z], we denote by ||A|| the maximum degree of
entries. Let Lz(n,a,3) denote the problem of computing A~'b € Q"*! for a
given nonsingular A € Z"*" and b € Z"*! with ||A]| < «, ||b]| < 8. Similarly,
let Lx[z)(n, v, B) denote the problem of computing A7'b € K (x)"*! for a given
nonsingular A € K[z]"*" and b € K[z]™" with ||A|| < a, [[b]| < 8.

2 Certified solving of a consistent system

Let R be a principal ideal domain and F' its quotient field. Let A € R™"*™ and
b € R™! be given. Assume throughout this section that the system Ax = b is
consistent. This section gives an algorithm to compute a pair (y, z) such that:

o yc F™X! with Ay = b.
o z € I with zA ¢ RV,
e zb and y have the same denominator.

From these conditions it will follow that y is a solution with minimal denom-
inator. To define precisely what is meant by “denominator” and “minimal



denominator” we need to fix some notation about principal ideal domains.
For v,w € F we say that v and w are associates (notation: v ~ w) if there is
a unit u in R such that v = ww. We assume that for every equivalence class
of associate elements we have a unique representative and that this represen-
tative is 1 for the class of units in R. In this way we get a unique generator
d(I) € R for every ideal I of R and this allows us to use the term “greatest
common divisor” and “least common multiple” without ambiguity.

Definition 1 Let « € F™. It is easy to see that the set of all v € R such
that ve € R™ is an ideal I of R. We denote d(I) by d(x) and call it the

denominator of x. By n(x) we denote d(x)x € R™ and call it the numerator

of x.

A vector y € F™*! such that Ay = b is called a rational solution of the linear
system Az = b. If in addition d(y) = 1, then y is a diophantine solution of the
system.

Definition 2 Let I be the ideal of R generated by the set of denominators of
all rational solutions of Ax =b. We denote d(I) by d(A,b).

d(A,b) is the minimal denominator that a rational solution of Ax = b can have
in the sense that d(A,b) divides d(y) for any rational solution y of Ax = b.
Clearly, if Az = b has a diophantine solution, then d(A,b) = 1.

The next lemma shows how we can take a linear combination of two rational
solutions y; and y, to produce a new rational solution y with potentially
smaller denominator. This idea is due to Giesbrecht (1997).

Lemma 3 Let yy,y, € F™ be rational solutions of Ax = b. Let d,sy,s3 € R
be such that d = ged(d(y1),d(y2)) = s1d(y1) + s2d(y2). Then

s1d(y1)yr + s2d(y2)y2
d

s a rational solution of Ax =b.

Note that d(y) divides ged(d(y1),d(y2)). From Lemma 3 it follows that a so-
lution with minimal denominator does exist.

Definition 4 A rational solution y of Ax = b with d(y) = d(A,b) is called a
solution with minimal denominator.

To get different rational solutions of Az = b, we apply the following result for
different random choices of P.

Lemma 5 Let P € R™*". If y is a rational solution of APx = b, then Py s
a rational solution of Ax = b.



By taking linear combinations of several rational solutions as in Lemma 3 we
hope to get a sequence of solutions with decreasing and, eventually, minimal
denominator. The certification of minimality is based on the next lemma.

Lemma 6 Suppose Ax = b has a rational solution and let = € F1X" such that

zA € RY™™. Then d(zb) divides d(A,D).

PROOF. Let y be a rational solution of Ax = b with minimal denominator.
Then d(A,b)(zb) = d(A,b)zAy = (zA)(d(A,b)y) and (zA)(d(A,b)y) is over R
since zA and d(A,b)y are over R. O

Lemma 6 states that z certifies the factor d(zb) of d(A,b). The next lemma
shows how we can take a linear combination of two certifying vectors z; and 29
in order to get a new vector z certifying a potentially larger factor of d(A,b).

Lemma 7 Let zy,z, € F'*" such that 21 A, 2, A € R™™. Write 21b = ny/d;
and z3b = ng/dy where ged(ng,dy) = ged(ng,dy) = 1. Let g = ged(dy, dz),
[ =lem(dy,dy), €, 81,82 € R such that

d d d d
e = ged (nl—z,nz—l) = 31n1—2 + Sznz—l.
g g g

Then z 1= 5121 + S92y satisfies zA € R™™ and d(zb) = 1.

PROOF. A = (8121 + SZZZ)A = Sl(ZlA) + SZ(ZZA) c RIXm and

b= s ny T N2 _ synidy + sgnad; N sinyds + sengd; — ¢/l
1d1 2Glz did, gl '

Let p € R be prime. If p divides d; but not dy, then p does not divide nyd,
and thus p does not divide e. Similarly, if p divides dy but not d;, then p does
not divide e. If p divides both d; and d;, then p does not divide n; and ns,.
Since also ged(di/g,ds/g) = 1, p does not divide e. So ged(e,l) = 1 and thus
dle/l)=1. O

To get another z € F1X" such that z4A € R'*™, we apply the following lemma
for different random choices of P and gq.

Lemma 8 Let P € R™*" and ¢ € R*™*"™. If = € F'*" is such that z(AP) = q,
then (d(zA)z)A € RY*™.

Algorithm MinimalSolution is shown in Figure 1. For the input, we assume
we have a system Bz = ¢ of full row rank together with a particular rational



algorithm MinimalSolution(B, ¢, yo)

input: B ¢ R**™, ¢ c R and y, € F™*!, with B of rank s and By, = c.
comment: The solution yy should be from a nonsingular subsystem of Bx = c.
output: (y,z), with y € F™*! 2 € F'** By = ¢ and d(y) = d(z¢).

U := finite subset of R;

Y = Yo,
z:=(0,...,0) € F'**,
do

Choose P € U™ and ¢ € U* randomly and uniformly;
if BP is nonsingular then

v:=(BP) ¢

y := Pu;

y := as in Lemma 3 with (y1,y2) = (v, 9);
u=q(BP)7h

z:=d(uB)u;

z:= as in Lemma 7 with (z1, z2) = (z, 2);

fi
until d(y) = d(z¢);

return (y,z)

Fig. 1. Algorithm MinimalSolution

solution yg. The general case of a non full row rank system will be reduced
to this situation in Section 7. The algorithm takes linear combinations of
rational solutions in order to get rational solutions with nonincreasing (and
hopefully decreasing) denominator. At the same time linear combinations of
certifying vectors are computed in order to get vectors certifying nondecreasing
(and hopefully increasing) factors of d(B,c). The loop is iterated until the
denominator and certified factor found so far coincide.

The next result follows from the previous lemmas in this section.
Proposition 9 Algorithm MinimalSolution is correct.

By “correct” we mean that any output produced by the algorithm will be as
specified. The next two sections show that we can expect the algorithm to
terminate, even if U is chosen to be {0,1}.

3 Rank properties of random matrices

We state the results in this section in a general setting so that they can be
used in several situations. The coefficients in the matrices we consider are from



a field K. We also use a finite set U and a map ¢:U — K. In this way we
cover several possible applications of our results, e.g.

(1) U C K, ¢ the inclusion map.
(2) R a principal ideal domain, U a finite subset of R, K = R/pR, where p
is a prime in R and ¢ the projection map.

The map ¢ is assumed to be a nonconstant map.

Definition 10 Let K be a field and A a matriz over K. By rowSpan(A) we
denote the vector space over K generated by the rows of A. By colSpan(A) we
denote the vector space generated by the columns.

The proof of the next result uses counting arguments similar to the analysis

in Wiedemann (1986).

Proposition 11 Let K be a field, A € K"™™ B € K™™ and v € K'*™,
Let t = rank(A) and s = rank [A B]. Let U be a finite set and ¢:U — K

a map. Let g be the mazimum number of elements in the preimage of any
element of K under ¢. Then

(a) if v ¢ rowSpan(A), then

#{u € [txme | [U qb(u)] ErowSpan([A B])}:().

(b) if v € rowSpan(A), then

#{u c U™ | |:U qb(u)] € rowSpan <[A B])} < (%.é(])s—tgmr(s—t)7

with equality when the preimages of all elements of K have the same size.

PROOF. The only nontrivial statement of the proposition is (b). Deleting a
row from [A B] that is in the row span of the other rows of | A B | does not
change any essential data in the proposition. Neither does any elementary row

operation on [A B]. So we may assume that [A B] has full row rank, i.e.
s = n, and that [A B] is in reduced row echelon form. Let (j1,...,jn) be the

rank profile of [A B]. Then j; < my, jyx1 > myq, the first nonzero entry in

row ¢ 1s on the j;’th position and the j;’th column is the 0 column, except for



a 1 in the ¢’th row. A possible configuration for [A B] could look as follows:

_1*0**0**0*0*
001 %%0%*%x0x%0x%
0000071 *%x0x%0 =%
0000000]01 0 =
_00000000001*_

Suppose v € rowSpan(A). For u € U2 we then have:

v o(w)] € rowspan (| 4 B])

if and only if

forall y € {1,...,ma} \ {Jeg1 — m1, ..., Jn — m1 }:
¢(u;) equals the jth coordinate of

(U]iv <oy Uges ¢(ujt+l_ml )7 SRR qb(ujn—rm ))B

So, in order that [U gb(u)] € rowSpan <[A B]), u; € U can be anything

for j € {Ji41 — m1,...,jn — m1} and they uniquely determine ¢(u;) for j €
{1,...,ma} \ {Jix1 — m1,..., Jn — m1}. From this (b) follows easily. O

We remark that, on the one hand, there exist examples where the bound in part
(b) of Proposition 11 is sharp. On the other hand, the bound is very pessimistic
in many cases. This is because for some choices of the u; with j € {ji41 —
Mi,...,Jn —mi} there may exist k € {1,....ma} \ {Jix1 — m1,.. ., jn — m1}
such that there are less than ¢ different (or even no) u € U with ¢(u) equal
to the kth coordinate of (v, ..., v5, ¢(Uj = )s- -+ P(Uj,—m, ))B.

Corollary 12 When we choose in Proposition 11 the entries in u uniformly

from U, then the probability that [U qb(u)] ¢ rowSpan <[A B]) 8

{ 1, if v ¢ rowSpan(A);

o1 ()

+5 , if v € rowSpan(A4),

with equality when the preimage of all elements from K have the same size.



We now successively augment rows to a matrix in order to increase its rank.
Applying Corollary 12 a number of times gives us a bound for the probability
of success.

Lemma 13 Let K be a field. Let A€ K™*™ B K™M*X™ gnd C € K™*™,

Lett = rank(A), s = rank [A B] and r = rank . Let U be a finite set and

C

o:U — K a map. Let g be the mazimum number of elements in the preimage
of any element from K under ¢. Let P be the probability that

A B
C o(D)

rank = s+ ng,

when the entries of D € U™*™2 qgre chosen uniformly from U. Then

m2—ﬁ—t) ( ( g )z)
P> 1— (-2},
1=mo—no+r—s+1 #U

with equality when the preimage of all elements from K have the same size.

PROOF. We choose the rows of D one after the other. Let C; be the first 2

B

rows of C and D; the first : rows of D. Let A; = and B; =

C; o(Dy)
B
Then rank = 8 + ny if and only if rank [Al» Bi] = 5 + ¢ for all
C ¢(D)
i, i.e. every row we add must increase the rank by one. Let ¢; = rank(A,)

and s; = rank [Al» Bi]. Suppose we have chosen D; such that s; = s + 1.
Let v;1y be the (7 + 1)’th row of C. We want to choose u € U'*™2 such that
A; B,
Vi1 A(u)

Let P; be the probability that [UH—l qb(u)] ¢ rowSpan <[Al Bl]> From
Corollary 12 we get

rank

= s+i+1,1i.e. such that [Ui+1 qb(u)] ¢ rowSpan <[Al Bl]>

{ P=1 if vi41 ¢ rowSpan(A4,);

mo—\85;—1; (1)
P.>1- (;—U) (=) if v;41 € rowSpan(4,),

with equality when the preimage of all elements from K have the same size.

10



Since

(a) tip1 =t + 1, if vi41 ¢ rowSpan(A4,);
(b) tit1 =t;, if v,y € rowSpan(A4,;),

we see that case a applies r —t times and that case b applies ny — (r —¢) times.

If we have chosen u such that [Ui+1 qb(u)] ¢ rowSpan <[Al B; ] >, then s;11 =

si + 1, and so if case (a) applies, then s; —¢; does not change and if case (b)
applies, then s; —t; is incremented. Since P = Py P, -- - P, and so—ty = s — 1,
the lemma now follows from (1). O

Definition 14 Let K be a field and A € K™™. We call the set {x € K™ |
Az = 0} the right kernel of A. N € K™% is called a right kernel for A if
colSpan(N) is the right kernel of A. In a similar way we define left kernel.

Lemma 15 Let K be a field, A € K™™ and B € K™%, Let N be a right
kernel for A. Then

rank(AB) = rank [N B] — rank(V).

PROOF. Note that for a matrix M, rank(M) = dim(colSpan(Af)). Since
colSpan(AB) = colSpan <A [N B]), we get:

dim(colSpan(AB)) = dim <colSpan <A [ ]))
R
|

N B
B])) — dim <colSpan <[N B]) N ColSpan(N)>
B])) — dim(colSpan(N)).

= dim

(cotspan (
— dim <COlSpan <

colSpan

Corollary 16 Let K be a field, Wy, € K™™' and W, € K"™™? such that

[Wl Wz] has full row rank, and M € K™*". Let be a right kernel

N,
for [Wl Wz]' Let vy = rank(Ny) and ry = rank [N1 M] Let U be a finite

set and o:U — K a map. Let g be the mazimum number of elements in the
preimage of any element from K under ¢. When the entries of P € U™*"

11



are chosen uniformly from U, then the probability that

M
¢(P)

n+r;—mg g @
I T )
i:r21_r[nl +1 (#U)

with equality when the preimage of all elements from K have the same size.

has rank n,

)

1s at least

PROOF. From Lemma 15 it follows that

M Ny M N
rank [Wl Wz] = rank — rank
¢(P) Ny ¢(P) N,
: M :
Using rank = my+my—n, the lemma now follows by applying Lemma 13
Ny

with A=N/ B=N,, C=M"and D=P. O

4 Performance of the Algorithm MzinimalSolution

We bound the expected number of iterations of the Algorithm MinimalSolu-
tion. This bound will depend on the size of the set U. If not explicitly stated
otherwise, all names represent the variables in the algorithm.

Definition 17 Let p € R be prime. For a € R we define ord,(a) as the
mazimum integer n such that p" divides a.

In general, ¢ in the algorithm will not be a solution of Bx = ¢ with minimal
denominator. However, if for a prime p € R we have ord,(d(y)) = ord,(d(B, ¢))
for at least one ¢, then the returned solution y will satisfy ord,(d(y)) =
ord,(d(B,¢)) (Lemma 3.) Similarly, £ will in general not certify all of d(B, c).
However, if for a prime p € R ord,(d(Z¢)) = ord,(d(B,¢)) for at least one
Z, then the returned certificate z will satisfy ord,(d(zc)) = ord,(d(B,c))
(Lemma 7.)

Recall that a square matrix V over R is said to be unimodular if V' is invert-
ible over R, that is, if V™' is over R. The unimodular matrices over R are
precisely those with determinant a unit from R. The following fact is used in
the subsequent lemma.

12



Fact 18 There exists a unimodular V€ R™*™ such that BV = H = [H1 0],

where Hy is s X s and nonsingular. Moreover, det Hy is an associate of the ged
of all s X s minors of B.

Lemma 19 Let o € R™ such that Ba = d(B,c)c, that is, a/d(B,c) is a
solution of Bx = ¢ with minimal denominator. Let V be as in Fact 18 and
W the first s rows of V~'. Let p € R be prime. Let P such that p| det(W P).
Then BP is nonsingular and ord,(d(y)) = ord,(d(B,¢)). If moreover q is such
that p|qdet(WP)(WP)'Wa, then ord,(d(3c)) = ord,(d(B,c)).

PROOF. Since B=HV™! and H = [H1 ()] we have

B = H,W. (2)

It follows that BP = H,W P is nonsingular since H; is nonsingular and WP
is nonsingular modulo p.

Substituting (2) into Ba/d(B,¢) = ¢ yields H; '¢ = Wa/d(B,¢). Then

j=P(BP) ¢

(H,WP) ¢

(WP)'H e
1

~ det(WP)d(B, c)

P
P

. P det(WP)(WP) 'Wa. (3)

From (3) we see that d(9)|(det(WP)d(B,c)) since Pdet(WP)(WP)"'Wa
is over R. It follows that ord,(d(y)) < ord,(d(B,c)) since by assumption
p[ det(WP). On the other hand, we must have ord,(d(B,¢c)) < ord,(d(y))
since ¢ is a rational solution of Bx = c. It follows that ord,(d(y)) = ord,(d(B, ¢)).

Since u = ¢(BP)™' = q(H{WP)™* = ¢(WP)'H; " we have

ze=d(uB)uc
=d(uB)q(WP) 'H"HWa/d(B,c)

:daov;ﬂBmﬂme&MWPxWPyWVw (4)

Since V' is unimodular we have d(uB) = d(uBV) = d(uH) = d(uH;). Since
p/ det(WP), p|d(uHy) would imply that p|d(uH(WP)) = d(uBP) = d(q) =
1; a contradiction, so p[d(uH;) = d(uB). Since p[qdet(WP)(WP)"'Wa we
see from (4) that ord,(d(Zc)) > ord,(d(B,c). Since always ord,(d(zc)) <
ord,(d(B, ¢) it follows that ord,(d(Zc)) = ord,(d(B,¢). O

13



Definition 20 The pair (P,q) is a good pair with respect to the prime p if

(1) BP is nonsingular;
(2) ord,(d(y)) = ordy(d(B, c));
(3) ord,(d(zZc)) = ord,(d(B,¢)).

So if we choose in the Algorithm MinimalSolution a good pair (P, q) with

respect to the prime p, y and z will satisfy from that moment on ord,(d(y)) =
ord,(d(zc)).

Lemma 21 Let p € R be prime, ¢: U — R/pR the projection map and g
the mazimum number of elements in the preimage of any element from R/pR
under ¢. Then the probability that in a particular iteration of the loop in
Algorithm MinimalSolution a good pair (P, q) with respect to p is chosen is at

T e @)

PROOF. Let V,WW and « be as in Lemma 19. If p[d(B, ¢) and p/| det(W P)
we have for all ¢ € U'** that ord,(d(2c)) = ord,(d(B,c)) = 0. So in that
case it follows from Lemma 19 that in order for (P, ¢) to be a good pair with
respect to p it suffices that p| det(W P).

Since V7! is also over R and unimodular, it is clear that W modulo p has
rank s. Applying Corollary 16 with K’ = R/pR, m; = 0 and W, = W, we see
that the probability that p| det(W P) is at least

(- (%))

Let @ = g/#U. Then

—1+4 Z(_l)k-u (x(k-|—1)(3k-|—2)/2 + x(k-|—1)(3k-|—4)/2)
k=0
>1—a—a’

The second last identity follows from (Hardy and Wright, 1979, Theorem 358).
The last inequality uses the observation that for odd k, the sum of the kth
and (k + 1)th term in the sum is positive. The lemma follows when p[d(B,c).

Now assume that p|d(B, c¢) and p[ det(W P). Suppose p|W . Since the columns
of W span all of R* we then have (Wa)/p = W for some 8 € R™ and

14



thus B = HHWp = HiWa/p = Ba/p = (d(B,c¢)/p)e, contradicting the
minimality of d(B,¢). So p|/Wa and thus p| det(W P)(W P)~'Wa. Applying
16 with K = R/pR, my = 0, W, = (det(WP)(WP)'Wa)' and P = ¢', we
see that the probability that pfqdet(WP)(WP) 'Wa is at least 1 — g/#U.

The lemma follows from Lemma 19. O

We want the numbers of elements in the preimage of all elements from R/pR
under ¢: U — R/pR to differ as little as possible.

Definition 22 Let U C R finite and p € R prime. We say that U is evenly
distributed with respect to p, if

(1) #(R/pR) < oo: for all w € R

Em
#(R/pR)

(2) #(R/pR) = oo: for all w € R

| <#teevivzu mmoam <| 20

#(R/pR)

#{uelU|lu=w (modp)} <1.

Corollary 23 Let p € R be prime and U evenly distributed with respect to p.
Then the probability that (P, q) is not a good pair with respect to p is at most

T if #U =2 or (#U > 25 and #(R/pR) = 2);
0 if #U < #(R/pR);

s i #HRIPR)#U:

g + g7 if #(R/pR) [#U.

PROOF. Since (1 —z)(1 —x —2?) =1 — 2x + 2* it follows from Lemma 21
that the wanted probability is at most 2¢g/#U — (g/#U)*> < 2g/#U. The

lemma now follows by noting that

1 i 4U < #(R/pR);
9= s0mm i #(R/pR)AU;
||+ L #(R/pR) [#U.

One can give sharper bounds for the probability bounded in Corollary 23.
However, the bounds in Corollary 23 are easy to use and suffice for our pur-
poses, so we will not give a more detailed analysis of the probability.
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Proposition 24 Let S be a finite set of primes of R. Let U C R be evenly
distributed with respect to all primes in S. For t € Zsy and t = oo let S, =
{p € S| #(R/pR) = t}. Then the probability that after N iterations of the
loop in Algorithm MinimalSolution there is still a prime p € S such that no
good pair (P, q) with respect to p was chosen is at most

45 (2)" if #U = 2,
#52 (19_0)N + Zt>#U #5¢ (#_ZU)N + Zt|#U,t>2 #5 (%)N

> if 4U > 25.
+ X ppUa<i<pr #HSt (% + #LU)

PROOF. The wanted probability is at most the sum over all primes p € .S of
the probability that no good pair with respect to p was chosen. The probability
that NV independent experiments, each with a probability of failure less than
f, all fail is less than fV. The lemma now follows from Corollary 23. O

We now apply Proposition 24 when R = Z and R = K|[z]. In both cases we
will consider U to be a minimal possible set (i.e. U ={0,1}) and U of bigger
size. Recall that for an integer matrix A we denote by |[|A|| the maximum
magnitude of an entry in A. For a polynomial matrix A we denote by || A|| the
maximum degree of an entry in A. The following well known bounds follow
from Cramer’s rule and Hadamard’s inequality (Horn and Johnson, 1985).

Fact 25 Let A € R™" be nonsingular, b € R andy € F™*! satisfy Ay = b.

o (BR=12)d(y) <n"P||A[" and [In(y)|| < n"/2||A[]"|B]].
o (B = K[z]) degd(y) < nl[A[| and [[n(y)|| < (n — )[|A[[ + [[b]].

We will frequently use the following.

Fact 26 The expected number of experiments one has to perform in order to
have success is at most the inverse of a lower bound for the probability that
any single experiment has success.

Corollary 27 (R =7) Taking U = {0,1}, the expected number of iterations
of Algorithm MinimalSolution is O(log s + log log || B||).

PROOF. Let S be the set of prime divisors of the denominator of yy. By
Proposition 24 the probability that after N iterations there is still a prime p €
S such that ord,(d(y)) # ord,(d(zc)) is at most #5(9/10)". From Fact 26 it
then follows that the expected number of iterations in order that ord,(d(y)) =
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ord,(d(zc)) for all p € S is at most

N

<1 g (%)N)

(3)

Taking N = [log(lo/g)(Q #S)W we see that (5) is at most 2N. By Fact 25,
#S < s((log, s)/2 + log, || B||) and the lemma follows. O

Corollary 28 (R = Z) TakingU = {0,1,..., M} where M = max(24, [log, s*/?||B||*]),
the expected number of iterations of Algorithm MinimalSolution is O(1).

PROOF. The proof is similar to the one of Corollary 27. Note that #U >
#S5 + 2 and #U > 25. Now, the probability that after N iterations there is
still a prime p € S such that ord,(d(y)) # ord,(d(zc)) is at most

9\N 2 21\"
SR

10 pesSp>2 \P #U

g\N #5279 9 \N
<(w) + X (z —U)

k=3 #

9\ N A 9 2\ N #5542 9 N
§<—> + <——|-—> + (——I— )

10 kz:; k25 k:zA;H ko #54+2

9 N A 2 2 N #5542 N
<() "Gz 2 ()

10 P k25 iy k

9 N A 9 9 N 00 N
<) G 2 ()

10 P k25 [ayra k

and then the expected number of iterations in order that ord,(d(y)) = ord,(d(zc))
for all p € S is at most N/(1 — p). Taking N = 10 and A = 10 we see that
this is less than 17. O

Corollary 29 (R = KJz]) Taking U = {0,1}, the expected number of itera-
tions that Algorithm MinimalSolution has to perform is O(log s + log || A]]).

PROOF. Similar to the proof of Corollary 27. Now #S5 < s||A||.

Corollary 30 (R = Kz]) If K is not finite, take t = 0 and U C K to be
of size max(25,3s||B||); if K is finite, let t be such that (#K)" > 3s||B|| and

17



take U = {f € K[x]| deg(f) < t}. Then the expected number of iterations of
Algorithm MinimalSolution s O(1).

PROOF. Suppose K is not finite. Then #U > 3(#5) and the probability
that after one iteration there is still a prime p € S such that ord,(d(y)) #
ord,(d(zc)) is at most #S5(2/#U) < 2/3. Thus the expected number of itera-
tions in order that ord,(d(y)) = ord,(d(zc¢)) for all p € S is at most 3.

Now suppose that K is finite. There are at most s||B||/(t + 1) primes in
S of degree > t and at most (#K)* primes of degree k. If #K > 2 the
probability that after N iterations there is still a prime p € S such that
ord,(d(y)) # ord,(d(zc)) is at most

- ((#21 ) é#h ((#z)k)N
)
SERSHE

and the expected number of iterations in order that ord,(d(y)) = ord,(d(zc))
for all p € S is at most N/(1 — p). Taking N = 8 this is at most 10.

If #K = 2 there are at most two primes p such that #(R/pR) = 2 and we get

(5) L) S ()
(2) () ()
o (2)+ () 52(3)"

The expected number of iterations in order that ord,(d(y)) = ord,(d(zc)) for
all p € S is at most N/(1 — p). Taking N = 15 this is at most 26. O

p

IA

5 Rational system solving over Z and K|[x]

Let Av = b be a nonsingular system of linear equations over R, where R = Z
or R = K[z]. The most efficient algorithms for computing v = A~'b are based
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on p-adic lifting as described by Moenck and Carter (1979), see also Dixon
(1982). The method usually requires knowing a p € R such that p is relatively
prime to det A (notation: p L det A), and p is not a unit of R.

First consider the case R = Z. The complexity analysis of p-adic lifting by
Dixon (1982), and by Mulders and Storjohann (1999, Theorem 20), assumes
standard integer arithmetic. The incorporation of fast arithmetic is straight-
forward, but we are not aware of a careful presentation in the literature. We
offer a treatment here, indicating only the required modifications to the algo-
rithm as described in (Mulders and Storjohann, 1999).

We are given as input an A € Z"*" and a b € Z™*!. Suppose we are also given
a p € Zsq such that p L det A and logp = O(logn + log ). Such a p can be
chosen at random, as in our algorithms in Sections 6 and 7.

Suppose ||A|| < « and |[b]| < 8. Then numerators and denominators in A~'b
are bounded in magnitude by n™?a"~'f and n™/?a", respectively. We will
incorporate fast integer multiplication by using the modulus ¢ = p* instead
of p, where k is chosen minimal such that ¢" > 2|n™/2a"~'3]|n"/?a"|. Then
log g = O(log a + logn) and exactly n steps of ¢g-adic lifting are required to
compute the g-adic expansion A716 = 2o+ 2z1g+ ... + 2_1¢"}
2, € Z™" with ||z.]| < q.

mod ¢", each

B :=mod(A™, q);
¢ := the g-adic expansion of b;
comment: Keep ¢ represented as: ¢ = ¢o + ¢19 + czq2 + -
for : from 0 to n — 1 do
zi := mod(Be¢;, q);
c:=c— Azq
od;

?

The inverse B can be computed with O(n* M(log ¢)+n? B(log q)) bit operations
by working over Z /(q), see for example Storjohann (2000, page 55). The reason
for the n?B(log q) term is that O(n?) ged-type operations may be required
since ¢ is not necessarily a prime. After stage 1 of the loop, A7 = zo + z1¢ +
. -+Ziqi+A_1c, where ¢ is divisible by qi. It follows that ¢ = b—A(zo+z1¢+- - -+
2q"), which shows that log ¢ = O(nlog ¢) throughout. The key to performing
the lifting efficiently is to keep ¢ in g-adic representation. The initial expansion
of a single entry of b can be accomplished with O(B(nlog ¢)) bit operations
using radix conversion (von zur Gathen and Gerhard, 1999, Section 9.2). A
cost bound of O(n? M(log q)) bit operations for a single iteration of the loop is
now easily obtained. After the code fragment finishes, compute z := 2o+ 219+
o+ z,_1¢"! by applying radix conversion to each entry. Finally, Wang and
Pan (2003) prove that rational reconstruction can be applied to an entry of z
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at a cost of O(B(nlogq)) bit operations. Note that O(B(nlog ¢)) is bounded
by O(n?B(log q)) using the simplification B(nlog q) = O(B(n) B(log ¢)), and
then B(n) = O(n?).

This variation of p-adic lifting described above supports the running time
bounds in Proposition 31. Part 1 of the proposition, the analysis in terms of
a and 3, was already given by Mulders and Storjohann (1999, Theorem 20).

Proposition 31 (Cost of Lz(n,a,3)) Let nonsingular A € Z™*" and b €
2" be given, ||A]] < o, ||b]| < 8. Then A7 € Q™! can be computed with

(1) O(n*(log a + logn)? + n(log 3)?) bit operations using standard integer
arithmetic, assuming we are given a p € Z~y1 such that p L det A and
logp = O(log a + logn).

(2) O(n®B(log a+logn)) bit operations, assuming log 3 = O(nlog o) and we
are given a p € Zsy such that p L det A and logp = O(log o + logn).

Now consider the case R = K[z]. The construction of algorithms over A[z]
is considerably easier than over Z because the degree norm for polynomials
is non-Archimedian (we don’t have a problem with carries). Some improved
results are available. The first result of Proposition 32 is obtained using an al-
gorithm by Mulders and Storjohann (2000, Theorem 3). That algorithm allows
performing the lifting with the modulus =, even when = divides det A. The
second result, incorporating matrix multiplication into the lifting algorithm,
is due to Storjohann (2003, Corollary 16).

Proposition 32 (Cost of Li(,(n,a,3)) Let nonsingular A € K[z]™" and
b € K[z]™*! be given, ||A]] < «, ||b]| < B. Then A7'b € K(x)™' can be

computed with

(1) O(n* M(a) + n?8/aM(a) + nB(na + 3)) field operations.

(2) O(MM(n){log n) M{a+ deg p) + MM(n) B(a + deg p) + 1 B(n(a + deg ))
field operations, assuming B = O(na) and we are given a nonconstant
p € K[x] such that p L det A.

Note that the bound in part 1 of Proposition 32 simplifies to O(rn*M(a) +
n B(na)) field operations if 5 = O(nea). The bound in part 2 simplifies to
O(MM(n)(log n)B(a+deg p)) field operations under the additional assumption
that B(t) = O(MM(¢)/t). This assumption on B(¢) stipulates that if fast matrix
multiplication techniques are used, then fast polynomial arithmetic should be
used also.
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6 Certified solving of a consistent system over Z and K|[z]

We give a modification of Algorithm MinimalSolution that is suited to the
case when R = Z or R = K[xz]. We first explain the required modifications,
present the algorithm, and then estimate the complexity in each of these cases.

To avoid expression swell, we need to change how the various rational solutions
and certificates are combined. We use the following two lemmas. Correctness
of the first lemma is easy. The proof of the second lemma is similar to that of
Lemma 7.

Let A € R™™ and b € R™*L.

Lemma 33 Let yo,y1,y2 € F™! be rational solutions of Ar =b. Let a € R
be such that ged(d(yo), d(y1) + ad(y2)) = ged(d(yo), d(y1), d(y2)). Then

d(y1)y1 + ad(y2)ys
d(y1) + ad(yz)

is a rational solution of Ax = b and ged(d(yo), d(y)) divides ged(d(yo), d(y1), d(yz)).

Lemma 34 Let 21,2y € F'*" such that 21 A, 2, A € R'™™. Write 210 = ny/d,
and z3b = ng/dy, where ged(ng,dy) = ged(ng,dy) = 1. Let g = ged(dy, dz)
and | = lem(dy, dy). Then ged(nidy/g,nadi/g,l) = 1. Let a € R be such that
ged(nydy /g + anydy /g,1) = 1. Then z := z; + azy satisfies zA € R'™™ and
d(zb) = 1.

Figure 2 gives a detailed description of the modified algorithm. In order to
keep y and z small, we only combine them with new solutions or certificates
when this will lead to some progress in the computation, i.e. d(y) gets smaller
or d(zc) gets bigger.

For T' we will choose a set of primes such that for nonsingular BP, BP mod p
is singular over R/(p) for at most half of the primes p € T. When p is well
chosen, one iteration of Algorithm SpectalMinimalSolution is similar to one
iteration of Algorithm MinimalSolution. The next result now follows from
Fact 26 and the previous lemmas in this section.

Proposition 35 Algorithm SpecialMinimalSolution s correct. The expected
number of iterations of the algorithm is at most two times the expected number
of iterations of Algorithm MinimalSolution.
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algorithm SpecialMinimalSolution(B, ¢, yo)

input: B € R**™ ¢ € R" and y, € R™*!, with B of rank s and Byo = c.
comment: The solution y, should be from a nonsingular subsystem of Bx = .
output: (y,z), with y € R™*!, 2 € R"** By = c and d(y) = d(zc).

U := finite subset of R;

T := SetOfPrimes(B, U);

Y = Yo,
z:=(0,...,0) € R***;
do

Choose P € U™** and p € T randomly and uniformly:;
if BP mod p is nonsingular then
v:=(BP) ¢
y := Pu;
if ged(d(yo), d(y), d(9)) # ged(d(yo), d(y)) then
y := as in Lemma 33 with (yo,y1,92) = (yo,y,9)

fi;

Choose ¢ € U'* randomly and uniformly;
u=q(BP)7h

z:=d(uB)u;

if lem(d(ze),d(2¢)) # d(zc) then
z:= as in Lemma 34 with (z1,22) = (2, 2)
fi
fi
until ged(d(yo), d(y)) = d(zc);
y := as in Lemma 3 with (y1,v2) = (v, yo);
return (y,z)

Fig. 2. Algorithm Special MinimalSolution

6.1 Complezity when R =7

Most of our effort is to bound the bitlengths of numbers occurring dur-
ing the algorithm. When the elements in U are bounded in magnitude by
M, then ||BP|| < mM]||B|| and det BP is bounded in magnitude by N =
(s'*mM||B||)*. Let | = 6+[loglog N and choose T to be a set of 2[[(log, N1/(I—
1)] primes between 2'~! and 2'. Giesbrecht (1993, Theorem 1.8, based on
bounds by Rosser and Schoenfeld (1962)) shows that there are at least this
many primes in this range and notes that the construction of 7' can be ac-
complished with O(log N logloglog N) bit operations using the sieve of Eras-
tosthenese, see (Knuth, 1981, Section 4.5.4).

In what follows we will either take U = {0, 1} or take U = {0,1,..., M}, where
M = max(24, [log,(s*/?||B||*)]). It follows that primes in T have bitlength
bounded by O(log s + loglogm + loglog || B||); we use this bound implicitly
in what follows. By Fact 25, the following bitlength bounds hold throughout
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execution of the algorithm:

n(Yo) O(s(log s + log || B|) + log |c[[)
d(yo) O(s(log s +log || B|))
d(v),d(§), d(u),n(u),n(2) O(s(logm + log || B|]))
n(v), n(g) O(s(logm +log || B||) + log [|c[)

Let V, H and H; be as in Fact 18. Since 2B € R**™ we also have 2 [H1 ()] =

2BV € R"™™ and thus d(2)| det(H;). In the same way we find d(z)|det(H,).
Since ged(d(yo), d(y)) and d(z¢) are always bounded by d(yo) it follows that
y and z will be modified at most O(s(log s + log || B]|)) times. The @ of Lem-
mas 33 and 34 will be computed to have magnitude bounded by d(yo) and
lem(d(z),d(2)) respectively. This gives the following length bounds holding
throughout execution of the algorithm:

d(z),d(z) O(s(log s +log || B]]))
n(y)  O(s(logm +log || Bl|) + log ||c[])
d(y),n(2) O(s(logm +log || B|]))

We get the following lemmas.

Lemma 36 (R =7Z) Let (y,z) be output from Algorithm SpecialMinimalSo-
lution. Then d(y) and d(z) have bitlength bounded by O(s(log ||B|| + log s)).
Entries of n(y) and n(z) have bitlength bounded by O(s(log ||B|| + logm) +
log||e]|) and O(s(log ||B|| + logm)) respectively.

Lemma 37 (R = Z) Assume that log||U|| = O(logs + loglog ||B||). The
cost of one iteration of the loop in Algorithm SpecialMinimalSolution, except
for the computation of v and u, is bounded by O(m(MM(s)/s) M(d + logm) +
mB(s(d 4+ logm))) bit operations, where d is a bound for both log||B|| and

(log |lef[)/s-

PROOF. Integers throughout are bounded in length by O(s(d+logm)) bits.
For most of the steps (eg. computing denominators, geds, lems, vector arith-
metic, computation of BP etc.) the lemma now follows from standard com-
plexity considerations.

For the computation of ¢ in Lemmas 33 and 34 we can use an algorithm de-

scribed in (Mulders and Storjohann, 1999) when B(n) = O(n?) and in (Stor-
johann and Mulders, 1998) when B(n) = O(M(n)logn).
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For the computation of Pv, proceed as follows.

(1) Divide the entries in n(v) in chunks of length [(log, ||n(v)||)/s] bits and
consider v as an s x O(s) matrix V. Note that log||V]|| = O(d + log m).
(2) Compute d(v)Pv from PV by shifts and additions.

This shows that Pv can be computed in the allotted time. The computation
of uB is accomplished similarly. O

The next result follows immediately from Lemma 37, Proposition 35 and

Corollaries 27 and 28.
Proposition 38 (R = Z) Let d be a bound for both log || B|| and (log ||c|])/s.

o Taking U ={0,1,..., M} with M = max(24, [log, s*/%||B||*]), the expected
cost of Algorithm SpecialMinimalSolution is O(m(MM(s)/s) M(d+log m)+
mB(s(d +1logm))) bit operations, plus the cost of solving an expected O(1)
instances of Lz(s,mM||B||, max(M, ||c|])).

o Taking U = {0,1}, the expected cost is O((m(MM(s)/s)M(d + logm) +
mB(s(d 4+ logm))) - (logs + loglog ||B||)) bit operations, plus the cost of
solving an expected O(log s + loglog || B||) instances of Lz(s,||B]l, ||c|]).

6.2 Complezity when R = K|[x]

When the elements in U have degree bounded by ¢, the entries in BP have
degree bounded by || B||+t and thus the degree of any minor of BP is bounded
by N :=s(||B||+t). Choose T in step (1) differently depending on the size of
K.

(Case 1: #K > 2N) Take for T a set of 2N polynomials of the form X — a,
with « € K.

(Case 2: #K <2N) Let ¢ = #K and let | € Z be minimal such that
¢ —q(¢’* —=1)/(qg—1) > 2N. Then | = O(log, N). From Lidl and Nieder-
reiter (1983, Exercise 3.27) it follows that there are > 2N/l monic irre-
ducible polynomials of degree | over K. Thus, we can take for T the set
of all monic irreducible polynomials of degree [. The explicit construction
of T is not actually required. A random irreducible polynomial of degree [
(chosen randomly and uniformly from the set of all such polynomials) can
be constructed with an expected number of O(I?) field operations, see for
example Shoup (1994).

In what follows we will either take U = {0,1} or take U as in Corollary 30.
Then t = O(log, s + log, || B||) and it follows that the degree of a prime in
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T is bounded by O(log, s + log, || B||). Similar to the integer case, we get the
following degree bounds holding throughout the algorithm:

n(yo) O(sBI[ + [lel])
d(yo), d(2),d(z) O(s|Bl[)
d(u),d(y),d(v), n(v),n(2),d(y),n(z)  O(s([|B]] +1))
n(u),n(§), n(y) O(s(I[BI[ +1) + Il

We get the following lemmas.

Lemma 39 (R = K{z]) Let (y,z) be output from Algorithm SpecialMinimal-
Solution. Then d(y) and d(z) have degree bouded by O(s||B||). Let t be the
mazimum degree of entries in U. Then entries of n(y) and n(z) have degree

bounded by O(s(||B|| 4+ t) + ||c||) respectively.

Lemma 40 (R = Klz]) Lett be the mazimum degree of entries in U. The cost
of one iteration of the loop in Algorithm SpecialMinimalSolution, expect for
computation of v and u, is bounded by O(m (MM(s)/s) M(d+t)+mB(s(d+t)))
field operations, where d is a bound for both ||A|| and ||c||/s.

The proof of Lemma 40 is analogous to the proof of Lemma 37.

The next result follows immediately from Lemma 40, Proposition 35 and

Corollaries 29 and 30.
Proposition 41 (R = K[x]) Let d be a bound for both ||B|| and ||c||/s.

o Taking U as in Corollary 30, the expected cost of Algorithm SpecialMini-
malSolution is O(m(MM(s)/s) M(d+t)+mB(s(d+1t))) field operations, plus
the cost of solving O(1) instances of Lx1a(s,||B|| + t,max(t, ||c||)), where
t =0 if #K is infinite and t = [logyx(3s||B||)] otherwise.

o Taking U ={0,1}, the expected cost is bounded by O((m(MM(s)/s) M(d) +
mB(sd))-(log s+log ||Bl|)) field operations, plus the cost of solving O(log s+
log || BI[) instances of Lxp(s. Bl 1))

7 Certified solving over Z and K|z]

Let R =Z or R = K|[x]. This section presents an extension of Algorithm Spe-
ctalMinimalSolution that solves the certified linear system solving problem.
The algorithm that takes as input an A € R™*™, which may not be of full row
rank, together with a b € R™*! and returns as output one of the following:
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(1) (y,z), where

o y ¢ F™*! with Ay =0,

e z € FI*" with z4 € R™™, and

e zb and y have the same denominator.
(2) (“no solution”, ¢), where

e g€ FY with ¢A =(0,...,0) € F**™ and ¢b # 0.

The idea of certifying inconsistency as in 2. is due to Giesbrecht et al. (1998,
Theorem 2.1), who make the following observation.

Theorem 42 Let A € F™™ and b € F"*'. There is no x € F™*! such that
Ax = b if and only if there exists au € F™*" such thatuA = (0,...,0) € F>*™
and ub # 0.

Algorithm CertifiedSolver is shown in Figure 3. The algorithm is an easy
extension of Algorithm SpecialMinimalSolution. Let r = rank[A] and 7 =
rank[A|b]. Then r < r < r41 and the system Az = b is inconsistent precisely
when r = r+41. This test for inconsistency is performed in step 2 by computing
the rank over R/(p) for a randomly chosen prime p. The set T will be chosen
so that for at least half the primes p € T we have, in step 2, that s = rank[A].
After step 2 and throughout the algorithm we will always have s < s < s+ 1,
s <rand s <r. Now consider step 3. Assume, without loss of generality, that

P=1,and Q = I,.

In case s = s, Algorithm SpectalMinimalSolution is used to compute a minimal
denominator solution y to the full row rank subsystem [A;; | A12]x = b;. The
algorithm then checks if y is a solution to the entire system Az = b. Note that
if s = r and r = 7 then this check will not fail. If this check does fail, then
we know that s < r, so we increment s, adjust P as indicated and return to
step 3 with s = s+ 1. Note that if we are arriving at step 3 from step 4, then
the first s rows of P[AQ|b] have rank only s — 1 over R/(p), but rank s over
R, as required.

In case s = s + 1, the algorithm attempts to compute a certificate for incon-
sistency. By construction,

bl All A12 bl

All A12
o]
A21 A22

bz cC |®

where ¢ mod p is zero and e is nonzero when ¢ is zero. The algorithm then
checks if ¢ is zero over R, in which case the system is certified to be inconsistent.
Note that if s = r then this check will not fail.
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algorithm CertifiedSolver

input: A € R"™™ be R™*!

output: Either (y,z) with y € F™*' 2 € F'*" Ay = b, zA € R™™ and
d(y) = d(zA) OR (“no solution”, ¢) where ¢ € F'*" such that ¢4 = 0 and
gb # 0.

(1) T := SetOfPrimes(A);
(2) Choose p randomly and uniformly from T
s :=rank(A mod p);
5 := rank([A[b] mod p);
P, () := permutation matrices as indicated below;

(3) Write P[AQ|b] using a block decomposition as

P[AQ|b] = | Ay Aga|bs | s

where A;q is s X s with rank s, Ayy is (8 — s) X s and the first s rows of
the augmented system have rank s.
(4) if s = s then
comment: [A21 Ay
v = A7y
Yo := (v,0,...,0) € F™*L;
(y, z) := SpecialMinimalSolution([A11]|A1a], b1, Yo);
if [A31|A32]y 7£ b3 then
Let ¢ be such that ¢’th entry of [As;|Asz]y — bs is nonzero;
Interchange row s + 1 and s + 1 of P;
s:=s5+1;
goto (3)

bz] has dimension 0 x (m + 1).

fi;

z:=(2,0,...,0) € F**m
return (Qy,zP)

else
w = Ay ATl
if uA;s # Az then goto (2) fi;
q:=(u,—1,0,...,0) € Ftxm;
return (“no solution”, ¢P)

fi

Fig. 3. Algorithm CertifiedSolver
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Recall that T is chosen so that at most half the primes in T' cause repetition
of the algorithm. The next result now follows from Fact 26.

Proposition 43 Algorithm CertifiedSolver is correct. The algorithm repeats
step 2 an expected number of fewer than two times.

7.1 Complezity when R = 7

A maximal rank minor of A is bounded in dimension by m and hence in
magnitude by N = (m'/?||A||)™. As explained in §6.1, we can set [ = 6 +
[loglog N] and choose T to be a set of 2[[log, N|/(l — 1)] primes between
2!=! and 2. Then primes in T have length bounded by O(log m +loglog || A||)
bits.

Proposition 44 (R = Z) The expected cost of Algorithm CertifiedSolver is

bounded O(nm(MM(r)/r*)M(d + logm) + (n +m) B(r(d + log m))) bit opera-

tions, where r is the rank of A and d is bound for both log || A|| and (log||b||)/r,

plus the cost of solving an expected O(1) instances of Lz (r,mM||A||, max(M, ||A||, ||b]])),
where M = max(24, [log, r'/2||A||"]).

PROOF. The cost of computing [A | b] mod pis bounded by O(nm M(log || A||)+
nM(log ||B]|)). The ranks (s,s) over R/(p) are recovered by computing a
row echelon form of [A]|b] mod p. This costs O(nm (MM(r)/r?)M(log p) +
r B(log p)) bit operations using an algorithm of Storjohann and Mulders (1998),
see also (Storjohann, 2000, Chapter 2). At the same time we can recover per-
mutation matrices P and () such that the principal s x s submatrix of PAQ is
nonsingular modulo p and the first s rows of P[A[b] are linearly independant
over R/(p). This shows that step 2 can be accomplished in the allotted time.

Now consider step 4. Lemma 36 bounds log ||n(y)|| by O(r(log m +log||A||) +
log ||6]]). For the computation of [As;|Asz]y use the same technique as used to
compute Pv in the proof of Proposition 37. Compute uA;s in a similar way. Fi-
nally, the computation of v and w are instances of Lz(r, ||A]|, max(||A]|, ||b]])).

The result now follows from Proposition 38 and 43. O
Corollary 45 (R = Z) Let nonsingular A € Z™*™ and b € Z"*" be given.
The certified linear system solving problem with input (A,b) can be solved with

an expected number of O(nmr B(d+logm)) bit operations, where r is the rank

of A and d is a bound for both log ||A|| and (log ||b|])/r.
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PROOF. Let o = mM||A]| and 8 = max(M,||A]],]]0]]). Then loga =
O(logm + log ||A||) and log 8 = O(rloga). Each instance of L(r,a, ) can
be solved in the allotted time using the algorithm supporting part 2 of Propo-
sition 31. This requires knowing a p € 7Z for which the input system re-
mains nonsingular modulo p. Notice that, every time an instance of Lz (r, a, )
needs to be solved in Algorithm CertifiedSolver or SpecialMinimalSolution,
such a p has already been chosen and has bitlength bounded by logp =
O(log m + loglog || Al]]). This gives the estimate O(nmr B(d + logm) + (n +
m) B(r(d + logm))) for the expected number of required bit operations. The
bound given in the statement of the corollary is actually a simplification, ob-

tained using B(r(d 4 logm)) = O(B(r)B(d + log m)), then B(r) = O(r?). O

7.2 Complezity when R = K|[x]

Any minor of A has degree bounded by M := min(n,m)||A||. Choose T in
step (1) differently depending on the size of K.

(Case 1: #K > 2M) Choose T as explained in case 1 of §6.2 with N := M.

(Case 2a: #K < 2M and log - min(n,m) < [|A||) Choose T as explained
in case 2 of §6.2 with N := M.

(Case 2b: #K < 2M and log,; min(n,m) > |[A]|) Construct an irreducible
polynomial p of degree 2||A|| (see Shoup (1994)) and compute 7 to be the
rank of A mod p € (K[x]/(p))"*™. By Lemma 46 we have r < 7 < 2r where
r is the rank of A. Construct T as in case 2 of §6.2 with N := 7||A]|.

In all cases, primes in 7" have degree bounded by O(log s r + log,x || All).

Lemma 46 Let A € K[z|"™™ and p € K[z] be irreducible. Let 7 be the rank
of Amod p € (K[x]/(p))™*™. If degp > ||A]|, then the rank r of A over K|z]
satisfies ¥ < r < r/(1 — ||A]|/ degp).

PROOF. The rank modulo a prime can only decrease so the claim 7 < r is
clear. It remains to prove that r < 7/(1 — ||A||/ degp), which is equivalent
tor —r < r||Al|/degp. If r = r the claim is true, so assume r < r. Let
diag(sy, 82,...,8,,0,...,0) be the Smith form of A. Then Y ; degs, < r||A]|,
which is the maximum degree of any minor of A. Since p divides s;11, we have
deg sr41 > degp. Since sq|sq| - |s,, we have (r —7)degp < ¥, deg s; < r||A]l.
The result follows. O

The proof of the next result is analogous to that of Proposition 44.
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Proposition 47 (R = K[xz]) The expected cost of Algorithm CertifiedSolver
is bounded by O(nm(MM(r)/r?*)M(d 4+ t) + (n + m)B(r(d + t))) field oper-
ations, plus the cost of solving an expected O(1) instances of Liqy(r,||All +
t,max(t, ||b|])), where r is the rank of A, d is a bound for both ||A|| and ||b||/r,
and t = 0 if #K is infinite and t = [log - (3r||Al])] otherwise.

The proof of the next result is similar to that of Corollary 45, but now using
Proposition 32 to bound the cost of solving the instances of Lxy(r, *, *).

Corollary 48 (R = K|[z]) Let nonsingular A € K[z|"™" and b € K[z]™*!
be given. The certified linear system solving problem with input (A,b) can be
solved using an expected number of

(1) O(nmrB(d+1t)), or
(2) O(nm (MM(r)/r*)M(d+t) +MM(r)(logr) B(d+t) + (n+m)B(r(d+1)))

field operations, where r is the rank of A, d is a bound for both || Al|| and ||b||/r,
and t = 0 if #K is infinite and t = O(log - r) otherwise.

If we assume that B(r) = O(MM(r)/r), which stipulates that if fast ma-
trix multiplication techniques are used then fast polynomial arithmetic should
be used also, then the bound in part 2 of Corollary 48 can be simplified to

O(nm(MM(r)/r?)(logr)B(d + t)) field operations.

8 Shortest vector computation

We mention the notion of minimal factor. Let R be a principal ideal domain
and F' its fraction field. Let Az = b over R be consistent. The set of all f € F
for which Az = fb admits a diophantine solution is a fractional ideal of R in
F, that is an R—module I C F such that ¢ C R for some ¢ € R\{0} (see Lang
(1986)). As in Section 2, we get a unique generator f(A,b) for this fractional
ideal — the set equals f(A,b)R. We call f(A,b) the minimal factor of the
system Ax = b. The vector f(A,b)b is the shortest vector in the direction of
b that is contained in the R-lattice spanned by the columns of A. It is not
difficult to show that f(A,b) = d(A,b/g)/g, where g is the ged of entries in b
and d(A,b/g) is the minimal denominator of Ax = b/g. Thus, f(A,b) can be

computed easily using the algorithms in this paper.

References

J. D. Dixon. Exact solution of linear equations using p-adic expansions. Nu-

mer. Math., 40:137-141, 1982.

30



J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, Cambridge, 1999.

M. Giesbrecht. Nearly Optimal Algorithms for Canonical Matriz Forms. PhD
thesis, University of Toronto, 1993.

M. Giesbrecht. Efficient parallel solution of sparse systems of linear Diophan-
tine equations. In M. Hitz and E. Kaltofen, editors, Second Intl Symp. on
Parallel Symbolic Computation: PASCO 97, pages 1-10, New York, 1997.
ACM Press.

M. Giesbrecht, A. Lobo, and B. D. Saunders. Certifying inconsistency of
sparse linear systems. In O. Gloor, editor, Proc. Int’l. Symp. on Symbolic
and Algebraic Computation: ISSAC 98, pages 113—119, New York, 1998.
ACM Press.

G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, Oxford, 1979.

R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press,
Cambridge, 1985.

D. E. Knuth. The Art of Computer Programming, Vol.2, Seminumerical Al-
gorithms. Addison-Wesley, Reading MA, 2 edition, 1981.

S. Lang. Algebraic number theory. Springer-Verlag, New York, 1986.

R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, Reading MA,
1983.

R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact
solutions to systems of linear equations. In Edward W. Ng, editor, Proc.
EUROSAM™79, LNCS 72, pages 65—73, Heidelberg, 1979. Springer.

T. Mulders and A. Storjohann. Diophantine linear system solving. In S. Doo-
ley, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: IS-
SAC 99, pages 181—188, New York, 1999. ACM Press.

T. Mulders and A. Storjohann. Rational solutions of singular linear systems.
In C. Traverso, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Com-
putation: ISSAC 00, pages 242-249. ACM Press, New York, 2000.

J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of
prime numbers. Ill. J. Math., 6:64—94, 1962.

V. Shoup. Fast construction of irreducible polynomials over finite fields. Jour-
nal of Symbolic Computation, 17:371-391, 1994.

A. Storjohann. Algorithms for Matriz Canonical Forms. PhD thesis, Swiss
Federal Institute of Technology, ETH-Zurich, 2000.

A. Storjohann. High-order lifting and integrality certification. Journal of
Symbolic Computation, 36(3-4):613-648, 2003.

A. Storjohann and T. Mulders. Fast algorithms for linear algebra modulo N.
In G. Bilardi, G. F. Italiano, A. Pietracaprina, and G. Pucci, editors, Proc.
of Sizth Ann. Europ. Symp. on Algorithms: ESA’98, LNCS 1461, pages
139-150, 1998.

X. Wang and V. Y. Pan. Acceleration of euclidean algorithm and rational
number reconstruction. SIAM Journal of Computing, 32(2):548-556, 2003.

D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.

31



Inf. Theory, IT-32:54-62, 1986.

32



