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Abstra
t

A randomized algorithm is given for solving a system of linear equations over a

prin
ipal ideal domain. The algorithm returns a solution ve
tor whi
h has mini-

mal denominator. A 
erti�
ate of minimality is also 
omputed. A given system has

a diophantine solution pre
isely when the minimal denominator is one. Cost esti-

mates are given for systems over the ring of integers and ring of polynomials with


oeÆ
ients from a �eld.
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1 Introdu
tion

Finding a parti
ular solution to a system of linear equations is a 
lassi
al

mathemati
al problem. In the literature we typi
ally �nd separate treatments

for two versions of the problem. The �rst version | rational system solving

| 
an be stated as follows: given an integer matrix A 2 Z

n�m

and ve
tor

b 2 Z

n�1

, �nd a rational ve
tor x 2 Q

m�1

that satis�es Ax = b. The se
ond

version | diophantine system solving | asks for an integer ve
tor x that

satis�es Ax = b. There are three possibilities:

?
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� The system has no rational solution.

� The system has a rational solution but no diophantine solution.

� The system has a diophantine solution.

In this paper we propose a generalization that en
ompasses all of these situ-

ations. Suppose that Ax = b admits a rational solution. If d is the smallest

positive integer su
h that dx is integral, and d is minimal among all solutions

to the system, then we 
all x a solution with minimal denominator. We give

a randomized algorithm that takes as input an A 2 Z

n�m

and b 2 Z

n�1

and

returns as output one of the following:

(1) (y; z), where

� y 2 Q

m�1

with Ay = b,

� z 2 Q

1�n

with zA 2Z

1�m

, and

� zb and y have the same denominator.

(2) (\no solution", q), where

� q 2 Q

1�n

with qA = (0; : : : ; 0) 2 Q

1�m

and qb 6= 0.

We 
all this 
erti�ed linear system solving. In the �rst 
ase, the 
onditions on

y and z 
ertify that y is a solution with minimal denominator. In parti
ular,

y is a diophantine solution pre
isely when the denominator of y is one. In the

se
ond 
ase, the existen
e of su
h a q 
erti�es that the system has no rational

solution. This idea for 
ertifying in
onsisten
y is due to Giesbre
ht, Lobo and

Saunders (1998).

The main result of this paper is a fast algorithm for 
erti�ed solving. A 
om-

plete statement of 
omplexity results, in
luding intera
tion with fast matrix

multipli
ation, is given in Se
tions 7.1 and 7.2. Here, we state the results

assuming the standard (
ubi
) algorithm for matrix multipli
ation.

We show that 
erti�ed solving of a linear system over Z
an be a

omplished

using an expe
ted number of O(nmr B(d + logm)) bit operations, where r is

the rank of A and d is a bound on the bitlength of entries in A and b. A
tually,

we show that this 
omplexity bound holds even if entries in b are substantially

larger than entries in A. It suÆ
es that d bound both log jjAjj and (log jjbjj)=r,

where jjAjj and jjbjj denote the maximum magnitude of entries in A and b.

The fun
tion B is a 
ost fun
tion for 
ertain operations with integers and

polynomials, see below. The best methods have B(t) = O(t(log t)

2

log log t).

We obtain an analogous result for an input system overK[x℄,K a �eld. LetA 2

K[x℄

n�m

and b 2 K[x℄

n�1

be given. Certi�ed solving of a linear system over

K[x℄ 
an be a

omplished using an expe
ted number of O(nmr B(d+log

#K

r))

�eld operations fromK, where d is a bound for both jjAjj and jjbjj=r, and jjAjj

and jjbjj denote the maximum degree of entries in A and b. If K is an in�nite

�eld, then log

#K

r = 0.
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Our algorithms are based on an idea of Giesbre
ht (1997). The idea is to


onstru
t a diophantine solution of Ax = b by 
ombining a small number of

rational solutions of the same system. Giesbre
ht 
omputes di�erent ratio-

nal solutions by solving the leading nonsingular subsystem of UALx = Ub,

for randomly 
hosen upper- and lower-triangular toeplitz matri
es U and L.

Giesbre
ht, Lobo and Saunders (1998) extend the algorithm to 
ertify the

nonexisten
e of a diophantine solution, should this be the 
ase. The studies

in Giesbre
ht (1997) and Giesbre
ht et al. (1998) fo
us on the 
ase of sparse

or stru
tured linear systems, with an emphasis also on algorithms whi
h ad-

mit a good 
oarse grain parallelization. If we in
orporate the best sequential

methods for rational system solving (see Se
tion 5) then the 
ost of the algo-

rithms there be
omes O(nm

2

d

2

)� (logm+log d)

O(1)

bit operations, assuming

m � n. The extra logarithmi
 fa
tors (logm + log d)

O(1)

are due to the rate

of 
onvergen
e and be
ause the proof of 
onvergen
e requires entries in the

toeplitz 
onditioners to be 
hosen from a ring extension.

The main te
hni
al 
ontributions of the 
urrent paper are as follows. First, the

idea of 
erti�
ation is extended to verify 
orre
tness of a minimal denominator

solution. Se
ond, we perform a thorough study of the e�e
tiveness of dense

pre
onditioners, showing how they 
an be used to avoid the need for extension

rings and at the same time improve the rate of 
onvergen
e to an expe
ted


onstant number of iterations. The 
onvergen
e analysis is over a general prin-


ipal ideal domain and is thus appli
able in di�erent settings. Third, we give

a 
omplete 
ost analysis for systems over Zand K[x℄. Part of the e�ort is to

show how to in
orporate fast arithmeti
 and matrix multipli
ation.

We now give a more detailed outline of the rest of the paper.

Se
tions 2, 3 and 4 study the 
erti�ed solving problem over an abstra
t prin-


ipal ideal domain. Se
tion 2 presents the AlgorithmMinimalSolution for 
on-

stru
ting a solution with minimal denominator together with 
erti�
ate (y; z)

for a full row rank system Ax = b. Ea
h iteration of the algorithm 
on-

stru
ts a new rational solution by solving the leading nonsingular subsystem

of APx = b, where P has entries 
hosen uniformly and randomly from a sub-

set of the ring. Se
tion 3 gives sundry results about the rank properties of

random matri
es. This se
tion is self-
ontained and may be of independant

interest. Se
tion 4 uses the results of the previous se
tion to estimate the

performan
e of Algorithm MinimalSolution. The main result is that we 
an

expe
t 
onvergen
e in a 
onstant number of iterations by 
hoosing entries in

the pre
onditioning matri
es P from a large enough (but still relatively very

small) subset of the ring.

Se
tions 5, 6 and 7 study the 
erti�ed solving problem overZand K[x℄. These

se
tions are 
on
erned with eÆ
ien
y overZ(expe
ted number of required bit
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operations) and over K[x℄ (expe
ted number of required �eld operations from

K). The algorithms we present work by redu
ing to the problem of solving a

square nonsingular system. Our approa
h is to bound separately the expe
ted


ost of the redu
tion and the expe
ted number of nonsingular systems that

need to be solved. Se
tion 5 gives a brief survey of the 
urrently best known


omplexity results for solving a nonsingular system overZand F [x℄. Se
tion 6

adapts Algorithm MinimalSolution from Se
tion 2 to solve a full row rank

system over Zor F [x℄. The algorithm from Se
tion 2 needs to be modi�ed

slightly to avoid expression swell. Finally, Se
tion 7 gives the Algorithm Cer-

ti�edSolver for solving a possibly non full row rank and in
onsistent system

over Zand K[x℄.

Cost estimates are given in terms of the subadditive fun
tions M, B and MM.

We assume that B(n) = O(n

2

) or B(n) = O(M(n) log n) where M is a multi-

pli
ation time for K[x℄ and Z(von zur Gathen and Gerhard, 1999, De�nition

8.26). Then the extended g
d involving two polynomials fromK[x℄ of degree at

most n, or two integers of bitlength at most n, 
an be 
omputed with O(B(n))

�eld operations or bit operations, respe
tively. The best known methods al-

low M(n) = O(n(log n)(log log n)). We assume that M(ab) � M(a)M(b) for

a; b 2 Z

>1

. Let MM be su
h that two n � n matri
es over a ring 
an 
an be

multiplied in O(MM(n)) ring operations. In this paper we will assume that

n

2+


= O(MM(n)) for some positive 
.

For a matrix or ve
tor A over Z, we denote by jjAjj the maximummagnitude

of entries in A. For A over K[x℄, we denote by jjAjj the maximum degree of

entries. Let L

Z

(n; �; �) denote the problem of 
omputing A

�1

b 2 Q

n�1

for a

given nonsingular A 2Z

n�n

and b 2Z

n�1

with jjAjj � �, jjbjj � �. Similarly,

let L

K[x℄

(n; �; �) denote the problem of 
omputingA

�1

b 2 K(x)

n�1

for a given

nonsingular A 2 K[x℄

n�n

and b 2 K[x℄

n�1

with jjAjj � �, jjbjj � �.

2 Certi�ed solving of a 
onsistent system

Let R be a prin
ipal ideal domain and F its quotient �eld. Let A 2 R

n�m

and

b 2 R

n�1

be given. Assume throughout this se
tion that the system Ax = b is


onsistent. This se
tion gives an algorithm to 
ompute a pair (y; z) su
h that:

� y 2 F

m�1

with Ay = b.

� z 2 F

1�n

with zA 2 R

1�m

.

� zb and y have the same denominator.

From these 
onditions it will follow that y is a solution with minimal denom-

inator. To de�ne pre
isely what is meant by \denominator" and \minimal
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denominator" we need to �x some notation about prin
ipal ideal domains.

For v;w 2 F we say that v and w are asso
iates (notation: v � w) if there is

a unit u in R su
h that v = uw. We assume that for every equivalen
e 
lass

of asso
iate elements we have a unique representative and that this represen-

tative is 1 for the 
lass of units in R. In this way we get a unique generator

d(I) 2 R for every ideal I of R and this allows us to use the term \greatest


ommon divisor" and \least 
ommon multiple" without ambiguity.

De�nition 1 Let x 2 F

m

. It is easy to see that the set of all v 2 R su
h

that vx 2 R

m

is an ideal I of R. We denote d(I) by d(x) and 
all it the

denominator of x. By n(x) we denote d(x)x 2 R

m

and 
all it the numerator

of x.

A ve
tor y 2 F

m�1

su
h that Ay = b is 
alled a rational solution of the linear

system Ax = b. If in addition d(y) = 1, then y is a diophantine solution of the

system.

De�nition 2 Let I be the ideal of R generated by the set of denominators of

all rational solutions of Ax = b. We denote d(I) by d(A; b).

d(A; b) is theminimal denominator that a rational solution of Ax = b 
an have

in the sense that d(A; b) divides d(y) for any rational solution y of Ax = b.

Clearly, if Ax = b has a diophantine solution, then d(A; b) = 1.

The next lemma shows how we 
an take a linear 
ombination of two rational

solutions y

1

and y

2

to produ
e a new rational solution y with potentially

smaller denominator. This idea is due to Giesbre
ht (1997).

Lemma 3 Let y

1

; y

2

2 F

m

be rational solutions of Ax = b. Let d; s

1

; s

2

2 R

be su
h that d = g
d(d(y

1

); d(y

2

)) = s

1

d(y

1

) + s

2

d(y

2

). Then

y :=

s

1

d(y

1

)y

1

+ s

2

d(y

2

)y

2

d

is a rational solution of Ax = b.

Note that d(y) divides g
d(d(y

1

); d(y

2

)). From Lemma 3 it follows that a so-

lution with minimal denominator does exist.

De�nition 4 A rational solution y of Ax = b with d(y) = d(A; b) is 
alled a

solution with minimal denominator.

To get di�erent rational solutions of Ax = b, we apply the following result for

di�erent random 
hoi
es of P .

Lemma 5 Let P 2 R

m�n

. If y is a rational solution of APx = b, then Py is

a rational solution of Ax = b.
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By taking linear 
ombinations of several rational solutions as in Lemma 3 we

hope to get a sequen
e of solutions with de
reasing and, eventually, minimal

denominator. The 
erti�
ation of minimality is based on the next lemma.

Lemma 6 Suppose Ax = b has a rational solution and let z 2 F

1�n

su
h that

zA 2 R

1�m

. Then d(zb) divides d(A; b).

PROOF. Let y be a rational solution of Ax = b with minimal denominator.

Then d(A; b)(zb) = d(A; b)zAy = (zA)(d(A; b)y) and (zA)(d(A; b)y) is over R

sin
e zA and d(A; b)y are over R. 2

Lemma 6 states that z 
erti�es the fa
tor d(zb) of d(A; b). The next lemma

shows how we 
an take a linear 
ombination of two 
ertifying ve
tors z

1

and z

2

in order to get a new ve
tor z 
ertifying a potentially larger fa
tor of d(A; b).

Lemma 7 Let z

1

; z

2

2 F

1�n

su
h that z

1

A; z

2

A 2 R

1�m

. Write z

1

b = n

1

=d

1

and z

2

b = n

2

=d

2

where g
d(n

1

; d

1

) = g
d(n

2

; d

2

) = 1. Let g = g
d(d

1

; d

2

),

l = l
m(d

1

; d

2

), e; s

1

; s

2

2 R su
h that

e = g
d

 

n

1

d

2

g

; n

2

d

1

g

!

= s

1

n

1

d

2

g

+ s

2

n

2

d

1

g

:

Then z := s

1

z

1

+ s

2

z

2

satis�es zA 2 R

1�m

and d(zb) = l.

PROOF. zA = (s

1

z

1

+ s

2

z

2

)A = s

1

(z

1

A) + s

2

(z

2

A) 2 R

1�m

and

zb = s

1

n

1

d

1

+ s

2

n

2

d

2

=

s

1

n

1

d

2

+ s

2

n

2

d

1

d

1

d

2

�

s

1

n

1

d

2

+ s

2

n

2

d

1

gl

= e=l:

Let p 2 R be prime. If p divides d

1

but not d

2

, then p does not divide n

1

d

2

and thus p does not divide e. Similarly, if p divides d

2

but not d

1

, then p does

not divide e. If p divides both d

1

and d

2

, then p does not divide n

1

and n

2

.

Sin
e also g
d(d

1

=g; d

2

=g) = 1, p does not divide e. So g
d(e; l) = 1 and thus

d(e=l) = l. 2

To get another z 2 F

1�n

su
h that zA 2 R

1�m

, we apply the following lemma

for di�erent random 
hoi
es of P and q.

Lemma 8 Let P 2 R

m�n

and q 2 R

1�n

. If z 2 F

1�n

is su
h that z(AP ) = q,

then (d(zA)z)A 2 R

1�m

.

Algorithm MinimalSolution is shown in Figure 1. For the input, we assume

we have a system Bx = 
 of full row rank together with a parti
ular rational

6



algorithm MinimalSolution(B; 
; y

0

)

input: B 2 R

s�m

, 
 2 R

s�1

and y

0

2 F

m�1

, with B of rank s and By

0

= 
.


omment: The solution y

0

should be from a nonsingular subsystem of Bx = 
.

output: (y; z), with y 2 F

m�1

, z 2 F

1�s

, By = 
 and d(y) = d(z
).

U := �nite subset of R;

y := y

0

;

z := (0; : : : ; 0) 2 F

1�s

;

do

Choose P 2 U

m�s

and q 2 U

1�s

randomly and uniformly;

if BP is nonsingular then

v := (BP )

�1


;

ŷ := Pv;

y := as in Lemma 3 with (y

1

; y

2

) = (y; ŷ);

u := q(BP )

�1

;

ẑ := d(uB)u;

z := as in Lemma 7 with (z

1

; z

2

) = (z; ẑ);

�

until d(y) = d(z
);

return (y; z)

Fig. 1. Algorithm MinimalSolution

solution y

0

. The general 
ase of a non full row rank system will be redu
ed

to this situation in Se
tion 7. The algorithm takes linear 
ombinations of

rational solutions in order to get rational solutions with nonin
reasing (and

hopefully de
reasing) denominator. At the same time linear 
ombinations of


ertifying ve
tors are 
omputed in order to get ve
tors 
ertifying nonde
reasing

(and hopefully in
reasing) fa
tors of d(B; 
). The loop is iterated until the

denominator and 
erti�ed fa
tor found so far 
oin
ide.

The next result follows from the previous lemmas in this se
tion.

Proposition 9 Algorithm MinimalSolution is 
orre
t.

By \
orre
t" we mean that any output produ
ed by the algorithm will be as

spe
i�ed. The next two se
tions show that we 
an expe
t the algorithm to

terminate, even if U is 
hosen to be f0; 1g.

3 Rank properties of random matri
es

We state the results in this se
tion in a general setting so that they 
an be

used in several situations. The 
oeÆ
ients in the matri
es we 
onsider are from

7



a �eld K. We also use a �nite set U and a map �:U ! K. In this way we


over several possible appli
ations of our results, e.g.

(1) U � K, � the in
lusion map.

(2) R a prin
ipal ideal domain, U a �nite subset of R, K = R=pR, where p

is a prime in R and � the proje
tion map.

The map � is assumed to be a non
onstant map.

De�nition 10 Let K be a �eld and A a matrix over K. By rowSpan(A) we

denote the ve
tor spa
e over K generated by the rows of A. By 
olSpan(A) we

denote the ve
tor spa
e generated by the 
olumns.

The proof of the next result uses 
ounting arguments similar to the analysis

in Wiedemann (1986).

Proposition 11 Let K be a �eld, A 2 K

n�m

1

; B 2 K

n�m

2

and v 2 K

1�m

1

.

Let t = rank(A) and s = rank

�

A B

�

. Let U be a �nite set and �:U ! K

a map. Let g be the maximum number of elements in the preimage of any

element of K under �. Then

(a) if v =2 rowSpan(A), then

#fu 2 U

1�m

2

j

�

v �(u)

�

2 rowSpan

��

A B

��

g = 0:

(b) if v 2 rowSpan(A), then

#fu 2 U

1�m

2

j

�

v �(u)

�

2 rowSpan

��

A B

��

g � (#U)

s�t

g

m

2

�(s�t)

;

with equality when the preimages of all elements of K have the same size.

PROOF. The only nontrivial statement of the proposition is (b). Deleting a

row from

�

A B

�

that is in the row span of the other rows of

�

A B

�

does not


hange any essential data in the proposition. Neither does any elementary row

operation on

�

A B

�

. So we may assume that

�

A B

�

has full row rank, i.e.

s = n, and that

�

A B

�

is in redu
ed row e
helon form. Let (j

1

; : : : ; j

n

) be the

rank pro�le of

�

A B

�

. Then j

t

� m

1

, j

t+1

> m

1

, the �rst nonzero entry in

row i is on the j

i

'th position and the j

i

'th 
olumn is the 0 
olumn, ex
ept for

8



a 1 in the i'th row. A possible 
on�guration for

�

A B

�


ould look as follows:

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 � 0 � � 0 � � 0 � 0 �

0 0 1 � � 0 � � 0 � 0 �

0 0 0 0 0 1 � � 0 � 0 �

0 0 0 0 0 0 0 0 1 � 0 �

0 0 0 0 0 0 0 0 0 0 1 �

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Suppose v 2 rowSpan(A). For u 2 U

1�m

2

we then have:

�

v �(u)

�

2 rowSpan

��

A B

��

if and only if

for all j 2 f1; : : : ;m

2

g n fj

t+1

�m

1

; : : : ; j

n

�m

1

g:

�(u

j

) equals the jth 
oordinate of

(v

j

1

; : : : ; v

j

t

; �(u

j

t+1

�m

1

); : : : ; �(u

j

n

�m

1

))B:

So, in order that

�

v �(u)

�

2 rowSpan

��

A B

��

, u

j

2 U 
an be anything

for j 2 fj

t+1

�m

1

; : : : ; j

n

� m

1

g and they uniquely determine �(u

j

) for j 2

f1; : : : ;m

2

g n fj

t+1

�m

1

; : : : ; j

n

�m

1

g. From this (b) follows easily. 2

We remark that, on the one hand, there exist examples where the bound in part

(b) of Proposition 11 is sharp. On the other hand, the bound is very pessimisti


in many 
ases. This is be
ause for some 
hoi
es of the u

j

with j 2 fj

t+1

�

m

1

; : : : ; j

n

�m

1

g there may exist k 2 f1; : : : ;m

2

g n fj

t+1

�m

1

; : : : ; j

n

�m

1

g

su
h that there are less than g di�erent (or even no) u 2 U with �(u) equal

to the kth 
oordinate of (v

j

1

; : : : ; v

j

t

; �(u

j

t+1

�m

1

); : : : ; �(u

j

n

�m

1

))B.

Corollary 12 When we 
hoose in Proposition 11 the entries in u uniformly

from U , then the probability that

�

v �(u)

�

=2 rowSpan

��

A B

��

is

8

>

<

>

:

1; if v =2 rowSpan(A);

� 1�

�

g

#U

�

m

2

�(s�t)

; if v 2 rowSpan(A);

with equality when the preimage of all elements from K have the same size.
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We now su

essively augment rows to a matrix in order to in
rease its rank.

Applying Corollary 12 a number of times gives us a bound for the probability

of su

ess.

Lemma 13 Let K be a �eld. Let A 2 K

n

1

�m

1

; B 2 K

n

1

�m

2

and C 2 K

n

2

�m

1

.

Let t = rank(A); s = rank

�

A B

�

and r = rank

2

6

4

A

C

3

7

5

. Let U be a �nite set and

�:U ! K a map. Let g be the maximum number of elements in the preimage

of any element from K under �. Let P be the probability that

rank

2

6

4

A B

C �(D)

3

7

5
= s+ n

2

;

when the entries of D 2 U

n

2

�m

2

are 
hosen uniformly from U . Then

P �

m

2

�(s�t)

Y

i=m

2

�n

2

+r�s+1

0

�

1 �

 

g

#U

!

i

1

A

;

with equality when the preimage of all elements from K have the same size.

PROOF. We 
hoose the rows of D one after the other. Let C

i

be the �rst i

rows of C and D

i

the �rst i rows of D. Let A

i

=

2

6

4

A

C

i

3

7

5

and B

i

=

2

6

4

B

�(D

i

)

3

7

5

.

Then rank

2

6

4

A B

C �(D)

3

7

5

= s + n

2

if and only if rank

�

A

i

B

i

�

= s + i for all

i, i.e. every row we add must in
rease the rank by one. Let t

i

= rank(A

i

)

and s

i

= rank

�

A

i

B

i

�

. Suppose we have 
hosen D

i

su
h that s

i

= s + i.

Let v

i+1

be the (i+ 1)'th row of C. We want to 
hoose u 2 U

1�m

2

su
h that

rank

2

6

4

A

i

B

i

v

i+1

�(u)

3

7

5

= s+i+1, i.e. su
h that

�

v

i+1

�(u)

�

=2 rowSpan

��

A

i

B

i

��

.

Let P

i

be the probability that

�

v

i+1

�(u)

�

=2 rowSpan

��

A

i

B

i

��

. From

Corollary 12 we get

8

>

<

>

:

P

i

= 1 if v

i+1

=2 rowSpan(A

i

);

P

i

� 1�

�

g

#U

�

m

2

�(s

i

�t

i

)

if v

i+1

2 rowSpan(A

i

);

(1)

with equality when the preimage of all elements from K have the same size.
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Sin
e

(a) t

i+1

= t

i

+ 1, if v

i+1

=2 rowSpan(A

i

);

(b) t

i+1

= t

i

, if v

i+1

2 rowSpan(A

i

),

we see that 
ase a applies r� t times and that 
ase b applies n

2

� (r� t) times.

If we have 
hosen u su
h that

�

v

i+1

�(u)

�

=2 rowSpan

��

A

i

B

i

��

, then s

i+1

=

s

i

+ 1, and so if 
ase (a) applies, then s

i

� t

i

does not 
hange and if 
ase (b)

applies, then s

i

� t

i

is in
remented. Sin
e P = P

1

P

2

� � �P

n

2

and s

0

� t

0

= s� t,

the lemma now follows from (1). 2

De�nition 14 Let K be a �eld and A 2 K

n�m

. We 
all the set fx 2 K

m

j

Ax = 0g the right kernel of A. N 2 K

m�k

is 
alled a right kernel for A if


olSpan(N) is the right kernel of A. In a similar way we de�ne left kernel.

Lemma 15 Let K be a �eld, A 2 K

n�m

and B 2 K

m�k

. Let N be a right

kernel for A. Then

rank(AB) = rank

�

N B

�

� rank(N):

PROOF. Note that for a matrix M , rank(M) = dim(
olSpan(M)). Sin
e


olSpan(AB) = 
olSpan

�

A

�

N B

��

, we get:

dim(
olSpan(AB))= dim

�


olSpan

�

A

�

N B

���

=dim

�


olSpan

��

N B

���

� dim

�


olSpan

��

N B

��

\ 
olSpan(N)

�

=dim

�


olSpan

��

N B

���

� dim(
olSpan(N)):

2

Corollary 16 Let K be a �eld, W

1

2 K

n�m

1

and W

2

2 K

n�m

2

su
h that

�

W

1

W

2

�

has full row rank, and M 2 K

m

1

�n

. Let

2

6

4

N

1

N

2

3

7

5

be a right kernel

for

�

W

1

W

2

�

. Let r

1

= rank(N

1

) and r

2

= rank

�

N

1

M

�

. Let U be a �nite

set and �:U ! K a map. Let g be the maximum number of elements in the

preimage of any element from K under �. When the entries of P 2 U

m

2

�n

11



are 
hosen uniformly from U , then the probability that

�

W

1

W

2

�

2

6

4

M

�(P )

3

7

5

has rank n;

is at least

n+r

1

�m

1

Y

i=r

2

�m

1

+1

0

�

1�

 

g

#U

!

i

1

A

;

with equality when the preimage of all elements from K have the same size.

PROOF. From Lemma 15 it follows that

rank

0

B

�

�

W

1

W

2

�

2

6

4

M

�(P )

3

7

5

1

C

A

= rank

2

6

4

N

1

M

N

2

�(P )

3

7

5

� rank

2

6

4

N

1

N

2

3

7

5

:

Using rank

2

6

4

N

1

N

2

3

7

5

= m

1

+m

2

�n, the lemmanow follows by applying Lemma 13

with A = N

t

1

, B = N

t

2

, C =M

t

and D = P

t

. 2

4 Performan
e of the Algorithm MinimalSolution

We bound the expe
ted number of iterations of the Algorithm MinimalSolu-

tion. This bound will depend on the size of the set U . If not expli
itly stated

otherwise, all names represent the variables in the algorithm.

De�nition 17 Let p 2 R be prime. For a 2 R we de�ne ord

p

(a) as the

maximum integer n su
h that p

n

divides a.

In general, ŷ in the algorithm will not be a solution of Bx = 
 with minimal

denominator. However, if for a prime p 2 R we have ord

p

(d(ŷ)) = ord

p

(d(B; 
))

for at least one ŷ, then the returned solution y will satisfy ord

p

(d(y)) =

ord

p

(d(B; 
)) (Lemma 3.) Similarly, ẑ will in general not 
ertify all of d(B; 
).

However, if for a prime p 2 R ord

p

(d(ẑ
)) = ord

p

(d(B; 
)) for at least one

ẑ, then the returned 
erti�
ate z will satisfy ord

p

(d(z
)) = ord

p

(d(B; 
))

(Lemma 7.)

Re
all that a square matrix V over R is said to be unimodular if V is invert-

ible over R, that is, if V

�1

is over R. The unimodular matri
es over R are

pre
isely those with determinant a unit from R. The following fa
t is used in

the subsequent lemma.
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Fa
t 18 There exists a unimodular V 2 R

m�m

su
h that BV = H =

�

H

1

0

�

,

where H

1

is s�s and nonsingular. Moreover, detH

1

is an asso
iate of the g
d

of all s� s minors of B.

Lemma 19 Let � 2 R

m

su
h that B� = d(B; 
)
, that is, �=d(B; 
) is a

solution of Bx = 
 with minimal denominator. Let V be as in Fa
t 18 and

W the �rst s rows of V

�1

. Let p 2 R be prime. Let P su
h that p=j det(WP ).

Then BP is nonsingular and ord

p

(d(ŷ)) = ord

p

(d(B; 
)). If moreover q is su
h

that p=jq det(WP )(WP )

�1

W�, then ord

p

(d(ẑ
)) = ord

p

(d(B; 
)).

PROOF. Sin
e B = HV

�1

and H =

�

H

1

0

�

we have

B = H

1

W: (2)

It follows that BP = H

1

WP is nonsingular sin
e H

1

is nonsingular and WP

is nonsingular modulo p.

Substituting (2) into B�=d(B; 
) = 
 yields H

�1

1


 = W�=d(B; 
). Then

ŷ=P (BP )

�1




=P (H

1

WP )

�1




=P (WP )

�1

H

�1

1




=

1

det(WP )d(B; 
)

� P det(WP )(WP )

�1

W�: (3)

From (3) we see that d(ŷ)j(det(WP )d(B; 
)) sin
e P det(WP )(WP )

�1

W�

is over R. It follows that ord

p

(d(ŷ)) � ord

p

(d(B; 
)) sin
e by assumption

p=j det(WP ). On the other hand, we must have ord

p

(d(B; 
)) � ord

p

(d(ŷ))

sin
e ŷ is a rational solution ofBx = 
. It follows that ord

p

(d(ŷ)) = ord

p

(d(B; 
)).

Sin
e u = q(BP )

�1

= q(H

1

WP )

�1

= q(WP )

�1

H

�1

1

we have

ẑ
= d(uB)u


= d(uB)q(WP )

�1

H

�1

1

H

1

W�=d(B; 
)

=

1

det(WP )d(B; 
)

d(uB)q det(WP )(WP )

�1

W�: (4)

Sin
e V is unimodular we have d(uB) = d(uBV ) = d(uH) = d(uH

1

). Sin
e

p=j det(WP ), pjd(uH

1

) would imply that pjd(uH

1

(WP )) = d(uBP ) = d(q) =

1; a 
ontradi
tion, so p=jd(uH

1

) = d(uB). Sin
e p=jq det(WP )(WP )

�1

W� we

see from (4) that ord

p

(d(ẑ
)) � ord

p

(d(B; 
). Sin
e always ord

p

(d(ẑ
)) �

ord

p

(d(B; 
) it follows that ord

p

(d(ẑ
)) = ord

p

(d(B; 
). 2

13



De�nition 20 The pair (P; q) is a good pair with respe
t to the prime p if

(1) BP is nonsingular;

(2) ord

p

(d(ŷ)) = ord

p

(d(B; 
));

(3) ord

p

(d(ẑ
)) = ord

p

(d(B; 
)).

So if we 
hoose in the Algorithm MinimalSolution a good pair (P; q) with

respe
t to the prime p, y and z will satisfy from that moment on ord

p

(d(y)) =

ord

p

(d(z
)).

Lemma 21 Let p 2 R be prime, �:U ! R=pR the proje
tion map and g

the maximum number of elements in the preimage of any element from R=pR

under �. Then the probability that in a parti
ular iteration of the loop in

Algorithm MinimalSolution a good pair (P; q) with respe
t to p is 
hosen is at

least

 

1�

g

#U

!

0

�

1 �

g

#U

�

 

g

#U

!

2

1

A

:

PROOF. Let V;W and � be as in Lemma 19. If p=jd(B; 
) and p=j det(WP )

we have for all q 2 U

1�s

that ord

p

(d(ẑ
)) = ord

p

(d(B; 
)) = 0. So in that


ase it follows from Lemma 19 that in order for (P; q) to be a good pair with

respe
t to p it suÆ
es that p=j det(WP ).

Sin
e V

�1

is also over R and unimodular, it is 
lear that W modulo p has

rank s. Applying Corollary 16 with K = R=pR, m

1

= 0 and W

2

= W , we see

that the probability that p=j det(WP ) is at least

s

Y

i=1

0

�

1�

 

g

#U

!

i

1

A

:

Let x = g=#U . Then

s

Y

i=1

(1� x

i

)�

1

Y

i=1

(1 � x

i

)

= 1 +

1

X

k=0

(�1)

k+1

�

x

(k+1)(3k+2)=2

+ x

(k+1)(3k+4)=2

�

� 1� x� x

2

:

The se
ond last identity follows from (Hardy and Wright, 1979, Theorem 358).

The last inequality uses the observation that for odd k, the sum of the kth

and (k+1)th term in the sum is positive. The lemma follows when p=jd(B; 
).

Now assume that pjd(B; 
) and p=j det(WP ). Suppose pjW�. Sin
e the 
olumns

of W span all of R

s

we then have (W�)=p = W� for some � 2 R

m

and

14



thus B� = H

1

W� = H

1

W�=p = B�=p = (d(B; 
)=p)
, 
ontradi
ting the

minimality of d(B; 
). So p=jW� and thus p=j det(WP )(WP )

�1

W�. Applying

16 with K = R=pR, m

1

= 0, W

2

= (det(WP )(WP )

�1

W�)

t

and P = q

t

, we

see that the probability that p=jq det(WP )(WP )

�1

W� is at least 1 � g=#U .

The lemma follows from Lemma 19. 2

We want the numbers of elements in the preimage of all elements from R=pR

under �:U ! R=pR to di�er as little as possible.

De�nition 22 Let U � R �nite and p 2 R prime. We say that U is evenly

distributed with respe
t to p, if

(1) #(R=pR) <1: for all w 2 R

$

#U

#(R=pR)

%

� #fu 2 U j u � w (mod p)g �

&

#U

#(R=pR)

'

;

(2) #(R=pR) =1: for all w 2 R

#fu 2 U j u � w (mod p)g � 1:

Corollary 23 Let p 2 R be prime and U evenly distributed with respe
t to p.

Then the probability that (P; q) is not a good pair with respe
t to p is at most

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

10

if #U = 2 or (#U � 25 and #(R=pR) = 2);

2

#U

if #U < #(R=pR);

2

#(R=pR)

if #(R=pR)j#U ;

2

#(R=pR)

+

2

#U

if #(R=pR)=j#U:

PROOF. Sin
e (1� x)(1� x� x

2

) = 1� 2x+ x

3

it follows from Lemma 21

that the wanted probability is at most 2g=#U � (g=#U)

3

� 2g=#U . The

lemma now follows by noting that

g =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if #U < #(R=pR);

#U

#(R=pR)

if #(R=pR)j#U ;

j

#U

#(R=pR)

k

+ 1 if #(R=pR)=j#U:

2

One 
an give sharper bounds for the probability bounded in Corollary 23.

However, the bounds in Corollary 23 are easy to use and suÆ
e for our pur-

poses, so we will not give a more detailed analysis of the probability.
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Proposition 24 Let S be a �nite set of primes of R. Let U � R be evenly

distributed with respe
t to all primes in S. For t 2 Z

�2

and t = 1 let S

t

=

fp 2 S j #(R=pR) = tg. Then the probability that after N iterations of the

loop in Algorithm MinimalSolution there is still a prime p 2 S su
h that no

good pair (P; q) with respe
t to p was 
hosen is at most

8

>

>

>

>

>

<

>

>

>

>

>

:

#S

�

9

10

�

N

if #U = 2;

#S

2

�

9

10

�

N

+

P

t>#U

#S

t

�

2

#U

�

N

+

P

tj#U;t>2

#S

t

�

2

t

�

N

+

P

t=j#U;2<t<#U

#S

t

�

2

t

+

2

#U

�

N

if #U � 25:

PROOF. The wanted probability is at most the sum over all primes p 2 S of

the probability that no good pair with respe
t to p was 
hosen. The probability

that N independent experiments, ea
h with a probability of failure less than

f , all fail is less than f

N

. The lemma now follows from Corollary 23. 2

We now apply Proposition 24 when R = Zand R = K[x℄. In both 
ases we

will 
onsider U to be a minimal possible set (i.e. U = f0; 1g) and U of bigger

size. Re
all that for an integer matrix A we denote by jjAjj the maximum

magnitude of an entry in A. For a polynomial matrix A we denote by jjAjj the

maximum degree of an entry in A. The following well known bounds follow

from Cramer's rule and Hadamard's inequality (Horn and Johnson, 1985).

Fa
t 25 Let A 2 R

n�n

be nonsingular, b 2 R

n�1

and y 2 F

n�1

satisfy Ay = b.

� (R =Z) d(y) � n

n=2

jjAjj

n

and jjn(y)jj � n

n=2

jjAjj

n�1

jjbjj.

� (R = K[x℄) deg d(y) � njjAjj and jjn(y)jj � (n� 1)jjAjj+ jjbjj.

We will frequently use the following.

Fa
t 26 The expe
ted number of experiments one has to perform in order to

have su

ess is at most the inverse of a lower bound for the probability that

any single experiment has su

ess.

Corollary 27 (R =Z) Taking U = f0; 1g, the expe
ted number of iterations

of Algorithm MinimalSolution is O(log s+ log log jjBjj).

PROOF. Let S be the set of prime divisors of the denominator of y

0

. By

Proposition 24 the probability that after N iterations there is still a prime p 2

S su
h that ord

p

(d(y)) 6= ord

p

(d(z
)) is at most #S(9=10)

N

. From Fa
t 26 it

then follows that the expe
ted number of iterations in order that ord

p

(d(y)) =

16



ord

p

(d(z
)) for all p 2 S is at most

N

�

1 �#S

�

9

10

�

N

�

: (5)

Taking N =

l

log

(10=9)

(2#S)

m

we see that (5) is at most 2N . By Fa
t 25,

#S � s((log

2

s)=2 + log

2

jjBjj) and the lemma follows. 2

Corollary 28 (R =Z)Taking U = f0; 1; : : : ;Mg whereM = max(24; dlog

2

s

s=2

jjBjj

s

e),

the expe
ted number of iterations of Algorithm MinimalSolution is O(1).

PROOF. The proof is similar to the one of Corollary 27. Note that #U �

#S + 2 and #U � 25. Now, the probability that after N iterations there is

still a prime p 2 S su
h that ord

p

(d(y)) 6= ord

p

(d(z
)) is at most

�=

�

9

10

�

N

+

X

p2S;p>2

 

2

p

+

2

#U

!

N

�

�

9

10

�

N

+

#S+2

X

k=3

 

2

k

+

2

#U

!

N

�

�

9

10

�

N

+

A

X

k=3

�

2

k

+

2

25

�

N

+

#S+2

X

k=A+1

 

2

k

+

2

#S + 2

!

N

�

�

9

10

�

N

+

A

X

k=3

�

2

k

+

2

25

�

N

+

#S+2

X

k=A+1

�

4

k

�

N

�

�

9

10

�

N

+

A

X

k=3

�

2

k

+

2

25

�

N

+

1

X

k=A+1

�

4

k

�

N

;

and then the expe
ted number of iterations in order that ord

p

(d(y)) = ord

p

(d(z
))

for all p 2 S is at most N=(1 � �). Taking N = 10 and A = 10 we see that

this is less than 17. 2

Corollary 29 (R = K[x℄) Taking U = f0; 1g, the expe
ted number of itera-

tions that Algorithm MinimalSolution has to perform is O(log s+ log jjAjj).

PROOF. Similar to the proof of Corollary 27. Now #S � sjjAjj.

Corollary 30 (R = K[x℄) If K is not �nite, take t = 0 and U � K to be

of size max(25; 3sjjBjj); if K is �nite, let t be su
h that (#K)

t

� 3sjjBjj and
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take U = ff 2 K[x℄ j deg(f) < tg. Then the expe
ted number of iterations of

Algorithm MinimalSolution is O(1).

PROOF. Suppose K is not �nite. Then #U � 3(#S) and the probability

that after one iteration there is still a prime p 2 S su
h that ord

p

(d(y)) 6=

ord

p

(d(z
)) is at most #S(2=#U) � 2=3. Thus the expe
ted number of itera-

tions in order that ord

p

(d(y)) = ord

p

(d(z
)) for all p 2 S is at most 3.

Now suppose that K is �nite. There are at most sjjBjj=(t + 1) primes in

S of degree > t and at most (#K)

k

primes of degree k. If #K > 2 the

probability that after N iterations there is still a prime p 2 S su
h that

ord

p

(d(y)) 6= ord

p

(d(z
)) is at most

�=

sjjBjj

t+ 1

 

2

(#K)

t

!

N

+

t

X

k=1

(#K)

k

 

2

(#K)

k

!

N

�

�

2

3

�

N

+

t

X

k=1

2

�

2

3

k

�

N�1

�

�

2

3

�

N

+

1

X

k=1

2

�

2

3

k

�

N�1

;

and the expe
ted number of iterations in order that ord

p

(d(y)) = ord

p

(d(z
))

for all p 2 S is at most N=(1 � �). Taking N = 8 this is at most 10.

If #K = 2 there are at most two primes p su
h that #(R=pR) = 2 and we get

�=2

�

9

10

�

N

+

sjjBjj

t+ 1

�

2

2

t

�

N

+

t

X

k=2

(#K)

k

 

2

(#K)

k

!

N

� 2

�

9

10

�

N

+

�

2

3

�

N

+

t

X

k=2

2

�

2

2

k

�

N�1

� 2

�

9

10

�

N

+

�

2

3

�

N

+

1

X

k=1

2

�

2

2

k

�

N�1

:

The expe
ted number of iterations in order that ord

p

(d(y)) = ord

p

(d(z
)) for

all p 2 S is at most N=(1 � �). Taking N = 15 this is at most 26. 2

5 Rational system solving over Zand K[x℄

Let Av = b be a nonsingular system of linear equations over R, where R =Z

or R = K[x℄. The most eÆ
ient algorithms for 
omputing v = A

�1

b are based
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on p-adi
 lifting as des
ribed by Moen
k and Carter (1979), see also Dixon

(1982). The method usually requires knowing a p 2 R su
h that p is relatively

prime to detA (notation: p ? detA), and p is not a unit of R.

First 
onsider the 
ase R = Z. The 
omplexity analysis of p-adi
 lifting by

Dixon (1982), and by Mulders and Storjohann (1999, Theorem 20), assumes

standard integer arithmeti
. The in
orporation of fast arithmeti
 is straight-

forward, but we are not aware of a 
areful presentation in the literature. We

o�er a treatment here, indi
ating only the required modi�
ations to the algo-

rithm as des
ribed in (Mulders and Storjohann, 1999).

We are given as input an A 2Z

n�n

and a b 2Z

n�1

. Suppose we are also given

a p 2 Z

>1

su
h that p ? detA and log p = O(log n + log�). Su
h a p 
an be


hosen at random, as in our algorithms in Se
tions 6 and 7.

Suppose jjAjj � � and jjbjj � �. Then numerators and denominators in A

�1

b

are bounded in magnitude by n

n=2

�

n�1

� and n

n=2

�

n

, respe
tively. We will

in
orporate fast integer multipli
ation by using the modulus q = p

k

instead

of p, where k is 
hosen minimal su
h that q

n

> 2bn

n=2

�

n�1

�
bn

n=2

�

n


. Then

log q = �(log� + log n) and exa
tly n steps of q-adi
 lifting are required to


ompute the q-adi
 expansion A

�1

b � z

0

+ z

1

q + : : :+ z

n�1

q

n�1

mod q

n

, ea
h

z

�

2Z

n�1

with jjz

�

jj < q.

B := mod(A

�1

; q);


 := the q-adi
 expansion of b;


omment: Keep 
 represented as: 
 = 


0

+ 


1

q + 


2

q

2

+ � � �

for i from 0 to n� 1 do

z

i

:= mod(B


i

; q);


 := 
�Az

i

q

i

od;

The inverseB 
an be 
omputed withO(n

3

M(log q)+n

2

B(log q)) bit operations

by working overZ=(q), see for example Storjohann (2000, page 55). The reason

for the n

2

B(log q) term is that O(n

2

) g
d-type operations may be required

sin
e q is not ne
essarily a prime. After stage i of the loop, A

�1

b = z

0

+ z

1

q+

� � �+z

i

q

i

+A

�1


, where 
 is divisible by q

i

. It follows that 
 = b�A(z

0

+z

1

q+� � �+

z

i

q

i

), whi
h shows that log 
 = O(n log q) throughout. The key to performing

the lifting eÆ
iently is to keep 
 in q-adi
 representation. The initial expansion

of a single entry of b 
an be a

omplished with O(B(n log q)) bit operations

using radix 
onversion (von zur Gathen and Gerhard, 1999, Se
tion 9.2). A


ost bound of O(n

2

M(log q)) bit operations for a single iteration of the loop is

now easily obtained. After the 
ode fragment �nishes, 
ompute z := z

0

+z

1

q+

� � �+ z

n�1

q

n�1

by applying radix 
onversion to ea
h entry. Finally, Wang and

Pan (2003) prove that rational re
onstru
tion 
an be applied to an entry of z
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at a 
ost of O(B(n log q)) bit operations. Note that O(B(n log q)) is bounded

by O(n

2

B(log q)), using the simpli�
ation B(n log q) = O(B(n)B(log q)), and

then B(n) = O(n

2

).

This variation of p-adi
 lifting des
ribed above supports the running time

bounds in Proposition 31. Part 1 of the proposition, the analysis in terms of

� and �, was already given by Mulders and Storjohann (1999, Theorem 20).

Proposition 31 (Cost of L

Z

(n; �; �)) Let nonsingular A 2 Z

n�n

and b 2

Z

n�1

be given, jjAjj � �, jjbjj � �. Then A

�1

b 2 Q

n�1


an be 
omputed with

(1) O(n

3

(log � + log n)

2

+ n(log �)

2

) bit operations using standard integer

arithmeti
, assuming we are given a p 2 Z

>1

su
h that p ? detA and

log p = O(log � + log n).

(2) O(n

3

B(log�+log n)) bit operations, assuming log � = O(n log �) and we

are given a p 2 Z

>1

su
h that p ? detA and log p = O(log �+ log n).

Now 
onsider the 
ase R = K[x℄. The 
onstru
tion of algorithms over K[x℄

is 
onsiderably easier than over Zbe
ause the degree norm for polynomials

is non-Ar
himedian (we don't have a problem with 
arries). Some improved

results are available. The �rst result of Proposition 32 is obtained using an al-

gorithm by Mulders and Storjohann (2000, Theorem 3). That algorithm allows

performing the lifting with the modulus x

�

, even when x divides detA. The

se
ond result, in
orporating matrix multipli
ation into the lifting algorithm,

is due to Storjohann (2003, Corollary 16).

Proposition 32 (Cost of L

K[x℄

(n; �; �)) Let nonsingular A 2 K[x℄

n�n

and

b 2 K[x℄

n�1

be given, jjAjj � �, jjbjj � �. Then A

�1

b 2 K(x)

n�1


an be


omputed with

(1) O(n

3

M(�) + n

2

�=�M(�) + nB(n� + �)) �eld operations.

(2) O(MM(n)(log n)M(�+deg p)+MM(n)B(�+deg p)+nB(n(�+deg p)))

�eld operations, assuming � = O(n�) and we are given a non
onstant

p 2 K[x℄ su
h that p ? detA.

Note that the bound in part 1 of Proposition 32 simpli�es to O(n

3

M(�) +

nB(n�)) �eld operations if � = O(n�). The bound in part 2 simpli�es to

O(MM(n)(log n)B(�+deg p)) �eld operations under the additional assumption

that B(t) = O(MM(t)=t). This assumption on B(t) stipulates that if fast matrix

multipli
ation te
hniques are used, then fast polynomial arithmeti
 should be

used also.
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6 Certi�ed solving of a 
onsistent system over Zand K[x℄

We give a modi�
ation of Algorithm MinimalSolution that is suited to the


ase when R = Zor R = K[x℄. We �rst explain the required modi�
ations,

present the algorithm, and then estimate the 
omplexity in ea
h of these 
ases.

To avoid expression swell, we need to 
hange how the various rational solutions

and 
erti�
ates are 
ombined. We use the following two lemmas. Corre
tness

of the �rst lemma is easy. The proof of the se
ond lemma is similar to that of

Lemma 7.

Let A 2 R

n�m

and b 2 R

n�1

.

Lemma 33 Let y

0

; y

1

; y

2

2 F

m�1

be rational solutions of Ax = b. Let a 2 R

be su
h that g
d(d(y

0

); d(y

1

) + ad(y

2

)) = g
d(d(y

0

); d(y

1

); d(y

2

)). Then

y :=

d(y

1

)y

1

+ ad(y

2

)y

2

d(y

1

) + ad(y

2

)

is a rational solution of Ax = b and g
d(d(y

0

); d(y)) divides g
d(d(y

0

); d(y

1

); d(y

2

)).

Lemma 34 Let z

1

; z

2

2 F

1�n

su
h that z

1

A; z

2

A 2 R

1�m

. Write z

1

b = n

1

=d

2

and z

2

b = n

2

=d

2

, where g
d(n

1

; d

1

) = g
d(n

2

; d

2

) = 1. Let g = g
d(d

1

; d

2

)

and l = l
m(d

1

; d

2

). Then g
d(n

1

d

2

=g; n

2

d

1

=g; l) = 1. Let a 2 R be su
h that

g
d(n

1

d

2

=g + an

2

d

1

=g; l) = 1. Then z := z

1

+ az

2

satis�es zA 2 R

1�m

and

d(zb) = l.

Figure 2 gives a detailed des
ription of the modi�ed algorithm. In order to

keep y and z small, we only 
ombine them with new solutions or 
erti�
ates

when this will lead to some progress in the 
omputation, i.e. d(y) gets smaller

or d(z
) gets bigger.

For T we will 
hoose a set of primes su
h that for nonsingular BP , BP mod p

is singular over R=(p) for at most half of the primes p 2 T . When p is well


hosen, one iteration of Algorithm Spe
ialMinimalSolution is similar to one

iteration of Algorithm MinimalSolution. The next result now follows from

Fa
t 26 and the previous lemmas in this se
tion.

Proposition 35 Algorithm Spe
ialMinimalSolution is 
orre
t. The expe
ted

number of iterations of the algorithm is at most two times the expe
ted number

of iterations of Algorithm MinimalSolution.
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algorithm Spe
ialMinimalSolution(B; 
; y

0

)

input: B 2 R

s�m

, 
 2 R

n

and y

0

2 R

m�1

, with B of rank s and By

0

= 
.


omment: The solution y

o

should be from a nonsingular subsystem of Bx = 
.

output: (y; z), with y 2 R

m�1

, z 2 R

1�s

, By = 
 and d(y) = d(z
).

U := �nite subset of R;

T := SetOfPrimes(B;U);

y := y

0

;

z := (0; : : : ; 0) 2 R

1�s

;

do

Choose P 2 U

m�s

and p 2 T randomly and uniformly;

if BP mod p is nonsingular then

v := (BP )

�1


;

ŷ := Pv;

if g
d(d(y

0

); d(y); d(ŷ)) 6= g
d(d(y

0

); d(y)) then

y := as in Lemma 33 with (y

0

; y

1

; y

2

) = (y

0

; y; ŷ)

�;

Choose q 2 U

1�s

randomly and uniformly;

u := q(BP )

�1

;

ẑ := d(uB)u;

if l
m(d(z
); d(ẑ
)) 6= d(z
) then

z := as in Lemma 34 with (z

1

; z

2

) = (z; ẑ)

�

�

until g
d(d(y

0

); d(y)) = d(z
);

y := as in Lemma 3 with (y

1

; y

2

) = (y; y

0

);

return (y; z)

Fig. 2. Algorithm Spe
ialMinimalSolution

6.1 Complexity when R =Z

Most of our e�ort is to bound the bitlengths of numbers o

urring dur-

ing the algorithm. When the elements in U are bounded in magnitude by

M , then jjBP jj � mM jjBjj and detBP is bounded in magnitude by N =

(s

1=2

mM jjBjj)

s

. Let l = 6+dlog logNe and 
hoose T to be a set of 2dd(log

2

Ne=(l�

1)e primes between 2

l�1

and 2

l

. Giesbre
ht (1993, Theorem 1.8, based on

bounds by Rosser and S
hoenfeld (1962)) shows that there are at least this

many primes in this range and notes that the 
onstru
tion of T 
an be a
-


omplished with O(logN log log logN) bit operations using the sieve of Eras-

tosthenese, see (Knuth, 1981, Se
tion 4.5.4).

In what follows we will either take U = f0; 1g or take U = f0; 1; : : : ;Mg, where

M = max(24; dlog

2

(s

s=2

jjBjj

s

)e). It follows that primes in T have bitlength

bounded by O(log s + log logm + log log jjBjj); we use this bound impli
itly

in what follows. By Fa
t 25, the following bitlength bounds hold throughout
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exe
ution of the algorithm:

n(y

0

) O(s(log s+ log jjBjj) + log j
jj)

d(y

0

) O(s(log s+ log jjBjj))

d(v); d(ŷ); d(u); n(u); n(ẑ) O(s(logm+ log jjBjj))

n(v); n(ŷ) O(s(logm+ log jjBjj) + log jj
jj)

Let V , H and H

1

be as in Fa
t 18. Sin
e ẑB 2 R

1�m

we also have ẑ

�

H

1

0

�

=

ẑBV 2 R

1�m

and thus d(ẑ)jdet(H

1

). In the same way we �nd d(z)jdet(H

1

).

Sin
e g
d(d(y

0

); d(y)) and d(z
) are always bounded by d(y

0

) it follows that

y and z will be modi�ed at most O(s(log s+ log jjBjj)) times. The a of Lem-

mas 33 and 34 will be 
omputed to have magnitude bounded by d(y

0

) and

l
m(d(z); d(ẑ)) respe
tively. This gives the following length bounds holding

throughout exe
ution of the algorithm:

d(ẑ); d(z) O(s(log s+ log jjBjj))

n(y) O(s(logm+ log jjBjj) + log jj
jj)

d(y); n(z) O(s(logm+ log jjBjj))

We get the following lemmas.

Lemma 36 (R = Z) Let (y; z) be output from Algorithm Spe
ialMinimalSo-

lution. Then d(y) and d(z) have bitlength bounded by O(s(log jjBjj+ log s)).

Entries of n(y) and n(z) have bitlength bounded by O(s(log jjBjj + logm) +

log jj
jj) and O(s(log jjBjj+ logm)) respe
tively.

Lemma 37 (R = Z) Assume that log jjU jj = O(log s + log log jjBjj). The


ost of one iteration of the loop in Algorithm Spe
ialMinimalSolution, ex
ept

for the 
omputation of v and u, is bounded by O(m(MM(s)=s)M(d+ logm) +

mB(s(d + logm))) bit operations, where d is a bound for both log jjBjj and

(log jj
jj)=s.

PROOF. Integers throughout are bounded in length by O(s(d+logm)) bits.

For most of the steps (eg. 
omputing denominators, g
ds, l
ms, ve
tor arith-

meti
, 
omputation of BP et
.) the lemma now follows from standard 
om-

plexity 
onsiderations.

For the 
omputation of a in Lemmas 33 and 34 we 
an use an algorithm de-

s
ribed in (Mulders and Storjohann, 1999) when B(n) = O(n

2

) and in (Stor-

johann and Mulders, 1998) when B(n) = O(M(n) log n).
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For the 
omputation of Pv, pro
eed as follows.

(1) Divide the entries in n(v) in 
hunks of length d(log

2

jjn(v)jj)=se bits and


onsider v as an s�O(s) matrix V . Note that log jjV jjj = O(d + logm).

(2) Compute d(v)Pv from PV by shifts and additions.

This shows that Pv 
an be 
omputed in the allotted time. The 
omputation

of uB is a

omplished similarly. 2

The next result follows immediately from Lemma 37, Proposition 35 and

Corollaries 27 and 28.

Proposition 38 (R =Z) Let d be a bound for both log jjBjj and (log jj
jj)=s.

� Taking U = f0; 1; : : : ;Mg with M = max(24; dlog

2

s

s=2

jjBjj

s

e), the expe
ted


ost of Algorithm Spe
ialMinimalSolution is O(m(MM(s)=s)M(d+logm)+

mB(s(d + logm))) bit operations, plus the 
ost of solving an expe
ted O(1)

instan
es of L

Z

(s;mM jjBjj;max(M; jj
jj)).

� Taking U = f0; 1g, the expe
ted 
ost is O((m(MM(s)=s)M(d + logm) +

mB(s(d + logm))) � (log s + log log jjBjj)) bit operations, plus the 
ost of

solving an expe
ted O(log s+ log log jjBjj) instan
es of L

Z

(s; jjBjj; jj
jj).

6.2 Complexity when R = K[x℄

When the elements in U have degree bounded by t, the entries in BP have

degree bounded by jjBjj+t and thus the degree of any minor of BP is bounded

by N := s(jjBjj+ t). Choose T in step (1) di�erently depending on the size of

K.

(Case 1: #K � 2N) Take for T a set of 2N polynomials of the form X � a,

with a 2 K.

(Case 2: #K < 2N) Let q = #K and let l 2 Z be minimal su
h that

q

l

� q(q

l=2

� 1)=(q � 1) � 2N . Then l = O(log

q

N). From Lidl and Nieder-

reiter (1983, Exer
ise 3.27) it follows that there are � 2N=l moni
 irre-

du
ible polynomials of degree l over K. Thus, we 
an take for T the set

of all moni
 irredu
ible polynomials of degree l. The expli
it 
onstru
tion

of T is not a
tually required. A random irredu
ible polynomial of degree l

(
hosen randomly and uniformly from the set of all su
h polynomials) 
an

be 
onstru
ted with an expe
ted number of O(l

3

) �eld operations, see for

example Shoup (1994).

In what follows we will either take U = f0; 1g or take U as in Corollary 30.

Then t = O(log

q

s + log

q

jjBjj) and it follows that the degree of a prime in
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T is bounded by O(log

q

s+ log

q

jjBjj). Similar to the integer 
ase, we get the

following degree bounds holding throughout the algorithm:

n(y

0

) O(sjjBjj+ jj
jj)

d(y

0

); d(ẑ); d(z) O(sjjBjj)

d(u); d(ŷ); d(v); n(v); n(ẑ); d(y); n(z) O(s(jjBjj+ t))

n(u); n(ŷ); n(y) O(s(jjBjj+ t) + jj
jj)

We get the following lemmas.

Lemma 39 (R = K[x℄) Let (y; z) be output from Algorithm Spe
ialMinimal-

Solution. Then d(y) and d(z) have degree bouded by O(sjjBjj). Let t be the

maximum degree of entries in U . Then entries of n(y) and n(z) have degree

bounded by O(s(jjBjj+ t) + jj
jj) respe
tively.

Lemma 40 (R = K[x℄) Let t be the maximum degree of entries in U . The 
ost

of one iteration of the loop in Algorithm Spe
ialMinimalSolution, expe
t for


omputation of v and u, is bounded by O(m (MM(s)=s)M(d+t)+mB(s(d+t)))

�eld operations, where d is a bound for both jjAjj and jj
jj=s.

The proof of Lemma 40 is analogous to the proof of Lemma 37.

The next result follows immediately from Lemma 40, Proposition 35 and

Corollaries 29 and 30.

Proposition 41 (R = K[x℄) Let d be a bound for both jjBjj and jj
jj=s.

� Taking U as in Corollary 30, the expe
ted 
ost of Algorithm Spe
ialMini-

malSolution is O(m(MM(s)=s)M(d+t)+mB(s(d+t))) �eld operations, plus

the 
ost of solving O(1) instan
es of L

K[x℄

(s; jjBjj + t;max(t; jj
jj)), where

t = 0 if #K is in�nite and t = blog

#K

(3sjjBjj)
 otherwise.

� Taking U = f0; 1g, the expe
ted 
ost is bounded by O((m(MM(s)=s)M(d) +

mB(sd))�(log s+log jjBjj)) �eld operations, plus the 
ost of solving O(log s+

log jjBjj) instan
es of L

K[x℄

(s; jjBjj; jj
jj).

7 Certi�ed solving over Zand K[x℄

Let R =Zor R = K[x℄. This se
tion presents an extension of Algorithm Spe-


ialMinimalSolution that solves the 
erti�ed linear system solving problem.

The algorithm that takes as input an A 2 R

n�m

, whi
h may not be of full row

rank, together with a b 2 R

n�1

and returns as output one of the following:
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(1) (y; z), where

� y 2 F

m�1

with Ay = b,

� z 2 F

1�n

with zA 2 R

1�m

, and

� zb and y have the same denominator.

(2) (\no solution", q), where

� q 2 F

1�n

with qA = (0; : : : ; 0) 2 F

1�m

and qb 6= 0.

The idea of 
ertifying in
onsisten
y as in 2. is due to Giesbre
ht et al. (1998,

Theorem 2.1), who make the following observation.

Theorem 42 Let A 2 F

n�m

and b 2 F

n�1

. There is no x 2 F

m�1

su
h that

Ax = b if and only if there exists a u 2 F

1�n

su
h that uA = (0; : : : ; 0) 2 F

1�m

and ub 6= 0.

Algorithm Certi�edSolver is shown in Figure 3. The algorithm is an easy

extension of Algorithm Spe
ialMinimalSolution. Let r = rank[A℄ and �r =

rank[A j b℄. Then r � �r � r+1 and the system Ax = b is in
onsistent pre
isely

when �r = r+1. This test for in
onsisten
y is performed in step 2 by 
omputing

the rank over R=(p) for a randomly 
hosen prime p. The set T will be 
hosen

so that for at least half the primes p 2 T we have, in step 2, that s = rank[A℄.

After step 2 and throughout the algorithm we will always have s � �s � s+1,

s � r and �s � �r. Now 
onsider step 3. Assume, without loss of generality, that

P = I

n

and Q = I

m

.

In 
ase s = �s, Algorithm Spe
ialMinimalSolution is used to 
ompute a minimal

denominator solution y to the full row rank subsystem [A

11

jA

12

℄x = b

1

. The

algorithm then 
he
ks if y is a solution to the entire system Ax = b. Note that

if s = r and r = �r then this 
he
k will not fail. If this 
he
k does fail, then

we know that �s < �r, so we in
rement �s, adjust P as indi
ated and return to

step 3 with �s = s+1. Note that if we are arriving at step 3 from step 4, then

the �rst �s rows of P [AQjb℄ have rank only �s � 1 over R=(p), but rank �s over

R, as required.

In 
ase �s = s+ 1, the algorithm attempts to 
ompute a 
erti�
ate for in
on-

sisten
y. By 
onstru
tion,

�

u �1

�

2

6

4

A

11

A

12

b

1

A

21

A

22

b

2

3

7

5
=

2

6

4

A

11

A

12

b

1


 �

3

7

5
(6)

where 
 mod p is zero and � is nonzero when 
 is zero. The algorithm then


he
ks if 
 is zero overR, in whi
h 
ase the system is 
erti�ed to be in
onsistent.

Note that if s = r then this 
he
k will not fail.
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algorithm Certi�edSolver

input: A 2 R

n�m

, b 2 R

n�1

.

output: Either (y; z) with y 2 F

m�1

, z 2 F

1�n

, Ay = b, zA 2 R

1�m

and

d(y) = d(zA) OR (\no solution", q) where q 2 F

1�n

su
h that qA = 0 and

qb 6= 0.

(1) T := SetOfPrimes(A);

(2) Choose p randomly and uniformly from T ;

s := rank(A mod p);

�s := rank([Ajb℄ mod p);

P;Q := permutation matri
es as indi
ated below;

(3) Write P [AQjb℄ using a blo
k de
omposition as

P [AQjb℄ =

2

6

6

6

6

6

4

A

11

A

12

b

1

A

21

A

22

b

2

A

31

A

32

b

3

3

7

7

7

7

7

5

;

where A

11

is s � s with rank s, A

21

is (�s� s) � s and the �rst �s rows of

the augmented system have rank �s.

(4) if s = �s then


omment:

�

A

21

A

22

b

2

�

has dimension 0� (m+ 1).

v := A

�1

11

b

1

;

y

0

:= (v; 0; : : : ; 0) 2 F

n�1

;

(y; z) := Spe
ialMinimalSolution([A

11

jA

12

℄; b

1

; y

0

);

if [A

31

jA

32

℄y 6= b

3

then

Let i be su
h that i'th entry of [A

31

jA

32

℄y � b

3

is nonzero;

Inter
hange row s+ 1 and s+ i of P ;

�s := �s+ 1;

goto (3)

�;

z := (z; 0; : : : ; 0) 2 F

1�n

;

return (Qy; zP )

else

u := A

21

A

�1

11

;

if uA

12

6= A

22

then goto (2) �;

q := (u;�1; 0; : : : ; 0) 2 F

1�m

;

return (\no solution", qP )

�

Fig. 3. Algorithm Certi�edSolver
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Re
all that T is 
hosen so that at most half the primes in T 
ause repetition

of the algorithm. The next result now follows from Fa
t 26.

Proposition 43 Algorithm Certi�edSolver is 
orre
t. The algorithm repeats

step 2 an expe
ted number of fewer than two times.

7.1 Complexity when R =Z

A maximal rank minor of A is bounded in dimension by m and hen
e in

magnitude by N = (m

1=2

jjAjj)

m

. As explained in x6.1, we 
an set l = 6 +

dlog logNe and 
hoose T to be a set of 2ddlog

2

Ne=(l � 1)e primes between

2

l�1

and 2

l

. Then primes in T have length bounded by O(logm+ log log jjAjj)

bits.

Proposition 44 (R = Z) The expe
ted 
ost of Algorithm Certi�edSolver is

bounded O(nm(MM(r)=r

2

)M(d+ logm) + (n+m)B(r(d+ logm))) bit opera-

tions, where r is the rank of A and d is bound for both log jjAjj and (log jjbjj)=r,

plus the 
ost of solving an expe
ted O(1) instan
es of L

Z

(r;mM jjAjj;max(M; jjAjj; jjbjj)),

where M = max(24; dlog

2

r

r=2

jjAjj

r

e).

PROOF. The 
ost of 
omputing [A j b℄ mod p is bounded byO(nmM(log jjAjj)+

nM(log jjBjj)). The ranks (s; �s) over R=(p) are re
overed by 
omputing a

row e
helon form of [A j b℄ mod p. This 
osts O(nm (MM(r)=r

2

)M(log p) +

r B(log p)) bit operations using an algorithm of Storjohann and Mulders (1998),

see also (Storjohann, 2000, Chapter 2). At the same time we 
an re
over per-

mutation matri
es P and Q su
h that the prin
ipal s�s submatrix of PAQ is

nonsingular modulo p and the �rst �s rows of P [Ajb℄ are linearly independant

over R=(p). This shows that step 2 
an be a

omplished in the allotted time.

Now 
onsider step 4. Lemma 36 bounds log jjn(y)jj by O(r(logm+log jjAjj)+

log jjbjj). For the 
omputation of [A

31

jA

32

℄y use the same te
hnique as used to


ompute Pv in the proof of Proposition 37. Compute uA

12

in a similar way. Fi-

nally, the 
omputation of v and u are instan
es of L

Z

(r; jjAjj;max(jjAjj; jjbjj)).

The result now follows from Proposition 38 and 43. 2

Corollary 45 (R = Z) Let nonsingular A 2 Z

n�m

and b 2 Z

n�1

be given.

The 
erti�ed linear system solving problem with input (A; b) 
an be solved with

an expe
ted number of O(nmr B(d+logm)) bit operations, where r is the rank

of A and d is a bound for both log jjAjj and (log jjbjj)=r.
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PROOF. Let � = mM jjAjj and � = max(M; jjAjj; jjbjj). Then log� =

O(logm + log jjAjj) and log � = O(r log�). Ea
h instan
e of L(r; �; �) 
an

be solved in the allotted time using the algorithm supporting part 2 of Propo-

sition 31. This requires knowing a p 2 Z for whi
h the input system re-

mains nonsingular modulo p. Noti
e that, every time an instan
e of L

Z

(r; �; �)

needs to be solved in Algorithm Certi�edSolver or Spe
ialMinimalSolution,

su
h a p has already been 
hosen and has bitlength bounded by log p =

O(logm + log log jjAjj). This gives the estimate O(nmr B(d + logm) + (n +

m)B(r(d + logm))) for the expe
ted number of required bit operations. The

bound given in the statement of the 
orollary is a
tually a simpli�
ation, ob-

tained using B(r(d + logm)) = O(B(r)B(d + logm)), then B(r) = O(r

2

). 2

7.2 Complexity when R = K[x℄

Any minor of A has degree bounded by M := min(n;m)jjAjj. Choose T in

step (1) di�erently depending on the size of K.

(Case 1: #K � 2M) Choose T as explained in 
ase 1 of x6.2 with N :=M .

(Case 2a: #K < 2M and log

#K

min(n;m) � jjAjj) Choose T as explained

in 
ase 2 of x6.2 with N :=M .

(Case 2b: #K < 2M and log

#K

min(n;m) > jjAjj) Constru
t an irredu
ible

polynomial p of degree 2jjAjj (see Shoup (1994)) and 
ompute �r to be the

rank of A mod p 2 (K[x℄=(p))

n�m

. By Lemma 46 we have r � �r � 2r where

r is the rank of A. Constru
t T as in 
ase 2 of x6.2 with N := �rjjAjj.

In all 
ases, primes in T have degree bounded by O(log

#K

r + log

#K

jjAjj).

Lemma 46 Let A 2 K[x℄

n�m

and p 2 K[x℄ be irredu
ible. Let �r be the rank

of A mod p 2 (K[x℄=(p))

n�m

. If deg p > jjAjj, then the rank r of A over K[x℄

satis�es �r � r � �r=(1 � jjAjj=deg p).

PROOF. The rank modulo a prime 
an only de
rease so the 
laim �r � r is


lear. It remains to prove that r � �r=(1 � jjAjj=deg p), whi
h is equivalent

to r � �r � rjjAjj=deg p. If r = �r the 
laim is true, so assume �r < r. Let

diag(s

1

; s

2

; : : : ; s

r

; 0; : : : ; 0) be the Smith form of A. Then

P

i

deg s

i

� rjjAjj,

whi
h is the maximum degree of any minor of A. Sin
e p divides s

�r+1

, we have

deg s

�r+1

� deg p. Sin
e s

1

js

2

j � � � js

r

, we have (r� �r) deg p �

P

i

deg s

i

� rjjAjj.

The result follows. 2

The proof of the next result is analogous to that of Proposition 44.
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Proposition 47 (R = K[x℄) The expe
ted 
ost of Algorithm Certi�edSolver

is bounded by O(nm(MM(r)=r

2

)M(d + t) + (n + m)B(r(d + t))) �eld oper-

ations, plus the 
ost of solving an expe
ted O(1) instan
es of L

K[x℄

(r; jjAjj+

t;max(t; jjbjj)), where r is the rank of A, d is a bound for both jjAjj and jjbjj=r,

and t = 0 if #K is in�nite and t = blog

#K

(3rjjAjj)
 otherwise.

The proof of the next result is similar to that of Corollary 45, but now using

Proposition 32 to bound the 
ost of solving the instan
es of L

K[x℄

(r; �; �).

Corollary 48 (R = K[x℄) Let nonsingular A 2 K[x℄

n�n

and b 2 K[x℄

n�1

be given. The 
erti�ed linear system solving problem with input (A; b) 
an be

solved using an expe
ted number of

(1) O(nmr B(d + t)), or

(2) O(nm (MM(r)=r

2

)M(d+ t)+MM(r)(log r)B(d+ t)+(n+m)B(r(d+ t)))

�eld operations, where r is the rank of A, d is a bound for both jjAjj and jjbjj=r,

and t = 0 if #K is in�nite and t = O(log

#K

r) otherwise.

If we assume that B(r) = O(MM(r)=r), whi
h stipulates that if fast ma-

trix multipli
ation te
hniques are used then fast polynomial arithmeti
 should

be used also, then the bound in part 2 of Corollary 48 
an be simpli�ed to

O(nm(MM(r)=r

2

)(log r)B(d + t)) �eld operations.

8 Shortest ve
tor 
omputation

We mention the notion of minimal fa
tor. Let R be a prin
ipal ideal domain

and F its fra
tion �eld. Let Ax = b over R be 
onsistent. The set of all f 2 F

for whi
h Ax = fb admits a diophantine solution is a fra
tional ideal of R in

F , that is an R{module I � F su
h that 
I � R for some 
 2 Rnf0g (see Lang

(1986)). As in Se
tion 2, we get a unique generator f(A; b) for this fra
tional

ideal | the set equals f(A; b)R. We 
all f(A; b) the minimal fa
tor of the

system Ax = b. The ve
tor f(A; b)b is the shortest ve
tor in the dire
tion of

b that is 
ontained in the R{latti
e spanned by the 
olumns of A. It is not

diÆ
ult to show that f(A; b) = d(A; b=g)=g, where g is the g
d of entries in b

and d(A; b=g) is the minimal denominator of Ax = b=g. Thus, f(A; b) 
an be


omputed easily using the algorithms in this paper.
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