
Linear Independence Oracles and Applications to
Rectangular and Low Rank Linear Systems

Arne Storjohann
astorjoh@uwaterloo.ca

Shiyun Yang
s97yang@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo, Ontario, Canada N2L 3G1

ABSTRACT
Randomized algorithms are given for linear algebra problems
on an input matrix A ∈ Kn×m over a field K. We give an al-
gorithm that simultaneously computes the row and column

rank profiles of A in 2r3 + (r2 + n+m+ |A|)1+o(1)
field op-

erations from K, where r is the rank of A and |A| denotes the
number of nonzero entries of A. Here, the +o(1) in cost es-
timates captures some missing logn and logm factors. The
rank profiles algorithm is randomized of the Monte Carlo
type: the correct answer will be returned with probability
at least 1/2. Given a b ∈ Kn×1, we give an algorithm that
either computes a particular solution vector x ∈ Km×1 to
the system Ax = b, or produces an inconsistency certificate
vector u ∈ K1×n such that uA = 0 and ub 6= 0. The lin-
ear solver examines at most r + 1 rows and r columns of A

and has running time 2r3 + (r2 + n+m+ |R|+ |C|)1+o(1)

field operations from K, where |R| and |C| are the number of
nonzero entries in the rows and columns, respectively, that
are examined. The solver is randomized of the Las Vegas
type: an incorrect result is never returned but the algo-
rithm may report FAIL with probability at most 1/2. These
cost estimates are achieved by making use of a novel ran-
domized online data structure for the detection of linearly
independent rows and columns.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms, analysis of algorithms; G.4
[Mathematical Software]: Algorithm Design and Analy-
sis; F.2.1 [Analysis of Algorithms and Problem Com-
plexity]: Numerical Algorithms and Problems—computa-
tions in finite fields, computations on matrices

General Terms
Algorithms

Keywords
Linear system, rank profile, rank, sparse matrix

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISSAC ’14, July 23 - 25, 2014, Kobe, Japan.
Copyright 2014 ACM 978-1-4503-2501-1/14/07 ...$15.00.
http://dx.doi.org/10.1145/2608628.2608673.

1. INTRODUCTION
Consider the following problems on an n×m input matrix

A over a finite field K.

• LinSys: Given a b ∈ Kn×1, compute a particular so-
lution x ∈ Km×1 to Ax = b, or a certificate of incon-
sistency [6]: a row vector u ∈ K1×n such that uA = 0
and ub 6= 0.

• RankProfiles: Compute the rank r together with
the lexicographically minimal lists [i1, i2, . . . , ir] and
[j1, j2, . . . , jr] of row and column indices of A such that
these rows and columns of A, respectively, are linearly
independent.

The column rank profile of a matrix corresponds to the
pivot locations in the reduced row echelon form, and is im-
portant information in applications such as Gröbner basis
computations [5] and computational number theory [12].

We first discuss previous results and then discuss our new
algorithms for solving the above problems. Running times
of algorithms are given in terms of the number of required
field operations from K.

Previous work
A lot of effort has been devoted to designing and analysing
algorithms for problems LinSys and RankProfiles that
have a running time that is sensitive to the rank r of A.
Classical Gaussian elimination solves both problems in time
O(nmr). Using block recursive methods [3, 7] the running
time is reduced to O(nmrω−2) where ω is the exponent of
matrix multiplication. A somewhat faster algorithm is pos-
sible when A is sparse [15]. Problem LinSys can be solved in
time O((n+m)r2) using a so called oracle based variant [10,
Section 2] of Gaussian elimination that examines a most r+1
rows and r columns of A. Note that if r2 < min(m,n) then
(n + m)r2 < nm so the running time of the oracle solver
may be sublinear in the size of the input.

Now consider randomized algorithms. If only the rank of
A is required then efficient preconditioners [1,8] give a Monte

Carlo algorithm with running time (rω + nm)1+o(1). Here,
the +o(1) in cost estimates captures some missing logn and
logm factors. Heuristics and algorithms (with implemen-
tations) for computing the rank of very large (out of core)
dense matrices modulo a prime p have been developed [9,11].
Now let µ(A) denote the time required to multiply a vec-
tor by A. For a sparse or structured matrix we may have
µ(A) ∈ o(nm). In particular, if |A| denotes the number of

nonzero entries in A then we can take µ(A) ∈ O(|A|). Black-
box approaches [8, 14] combined with early termination [4]

can compute r in time (µ(A) · r)1+o(1); incorporating early
termination into the black-box algorithm in [6] would seem
to give a Las Vegas algorithm for LinSys with the same
running time. In terms of the rank, none of the randomized
approaches just mentioned recover the rank profile, or even
determine a set of r linearly independent columns of A.

Our work in this paper is motivated by a recent break-
through by Cheung, Kwok and Lau [2], who give an algo-

rithm for computing the rank of A in time (rω + |A|)1+o(1).
Note that the +|A| term in the cost estimate is optimal since
changing a single entry of A might modify the rank. They
also show how to compute a set of r linearly independent
columns of A in the same time. However, the columns com-
puted may not correspond to the column rank profile. For
an extensive list of applications (with citations) of fast rank
computation to combinatorial optimization and exact linear
algebra problems we refer to [2].

New algorithms
In this paper we give new randomized algorithms for prob-
lems LinSys and RankProfiles that have improved run-
ning times in the special case when r is small compared to
the row dimension n or column dimension m, or both. We
give a Monte Carlo algorithm for RankProfiles that has

running time bounded by 2r3+(r2 + n+m+ |A|)1+o(1)
. We

give a Las Vegas algorithm for LinSys that has running time

2r3 + (r2 + n+m+ |R|+ |C|)1+o(1)
, where |R| and |C| are

the number of nonzero entries in the subset of at most r+ 1
rows and r columns of A, respectively, that are examined by
the solver: at least (m − r)(n − r − 1) entries of A are not
examined. In later sections we develop the algorithms sup-
porting these cost bounds directly for the general case of an
input matrix A ∈ Kn×m of (unknown) rank r. But to help
explain our main technical contributions, we first consider
the special case of an input matrix with full row rank, and
then with full column rank.

Let A ∈ Kn×m be an input matrix that has full row rank
n, and consider the problem of computing the column rank
profile of A. Gaussian elimination on A requires O(n2m)
time to compute a lower triangular matrix L such that, up
to a row permutation, the matrix LA is upper triangular.
The first few rows of such a transformation are shown in
Figure 1. The columns of A corresponding to the pivot en-
tries of LA (the first nonzero zero entry in each row) are
thus linearly independent. But even if L is given, com-
puting LA explicitly requires O(n2m) time using standard
matrix multiplication. Instead of computing LA explicitly,
we show how to construct from the columns of A in time
|A|1+o(1) a randomized data structure — a linear indepen-
dence oracle — that allows to apply binary search to find
the pivot locations in LA in a Monte Carlo fashion in time

(n2 logm)
1+o(1)

. This gives a Monte Carlo algorithm to find
the column rank profile of a full row rank A ∈ Kn×m in time

2n3 + (n2 +m+ |A|)1+o(1)
.

Now let A ∈ Kn×m have full column rank m, and con-
sider the problem of computing the row rank profile of A.
Of course, we could simply apply the algorithm for column
rank profile to the transpose of A. But with an eye to the
general case (A with unknown rank) we develop an alterna-
tive method based on incorporating a linear independence

L
∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
...

...
...

...
. . .


A

...
...

...
...

...
...

...

=

LA
∗

∗
∗

∗
...

...
...

...
...

...
...


Figure 1: Example of pivot locations

oracle for the rows of A into the oracle linear solving al-
gorithm [10]. We prove that the row rank profile of a full
column rank A ∈ Kn×m can be computed in a Monte Carlo

fashion in time 2m3 + (m2 + n+ |A|)1+o(1)
by running the

linear solver algorithm with a right hand side vector b that
is uniformly and randomly sampled from the column space
of A.

The rest of the paper is organized as follows. In Sec-
tion 2 we recall the deterministic oracle linear solving al-
gorithm [10]. Section 3 shows that the deterministic oracle
linear solver will recover the row and column rank profiles of
A in a Monte Carlo fashion by choosing b to be a randomly
and uniformly sampled vector from the column space of A.
The linear independence oracle is described and analysed in
Section 4. Sections 5 and 6 give faster algorithms for LinSys
and RankProfiles for an input matrix A ∈ Kn×m of (un-
known) rank r by incorporating linear independence oracles
for both the rows and columns of A. Section 7 concludes.

Throughout the paper we use the following notation. For
a list P of distinct row indices and Q of distinct column
indices, we write AP to denote the submatrix of A consist-
ing of rows P, AQ to denote the submatrix consisting of
columns Q, and APQ to denote the submatrix consisting of
the intersection of rows P and columns Q of A.

2. ORACLE LINEAR SOLVING
Let A ∈ Kn×m and b ∈ Kn×1 be given. Oracle based elim-

ination [10] is a variation of Gaussian elimination that either
finds a particular solution to the linear system Ax = b or
proves that the system is inconsistent. The cost of the algo-
rithm is O((n+m)r2) field operations from K, where r is the
rank of A. This cost estimate, which can be o(nm) for small
values of r, can be achieved because the algorithm never ex-
amines more than r columns and r + 1 rows of the input
matrix. The name was chosen because the target vector b is
used as an oracle to determine a set of linearly independent
rows of the matrix A.

The oracle based solver proceeds in stages for s = 0, 1,
The goal at stage s is to determine a list of row indices
P = [i1, i2, . . . , is] and column indices Q = [j1, j2, . . . , js]
such that

• AP ∈ Ks×m has full row rank s,

• AQ ∈ Kn×s has full column rank s, and

• APQ ∈ Ks×s is nonsingular.

To start the process for stage s = 0 the lists P and Q are
simply initialized to be empty. To complete a stage s for
some s > 0, the algorithm takes the following two steps.

1. If

b−AQ · (APQ)−1 · bP (1)

is the zero vector then construct a particular solution
to Ax = b by setting x to be the zero vector except
with entries at index j1, . . . , js−1 equal to entries at
index 1, . . . , s − 1 of (APQ)−1 · bP . Otherwise, let is
be the index of the first nonzero entry of the column
vector in (1) and go to step 2.

2. If

A[is] −A[is]
Q · (A

P
Q)−1 ·AP (2)

is the zero vector then the system is inconsistent. A
so called certificate of inconsistency [6] can be con-
structed by setting u ∈ K1×n to be the zero vector
except with entry at index i1, . . . , is−1 equal to the en-

try at index 1, 2, . . . , s−1 of −A[is]
Q ·(A

P
Q)−1, and entry

at index is to be 1. The vector u has the property that
uA = 0 and ub 6= 0. Otherwise, set js to be the in-
dex of the first nonzero entry of the row vector in (2),
update P = [i1, i2, . . . , is] and Q = [j1, j2, . . . , js], and
proceed to stage s+ 1.

Note that (APQ)−1 need not be recomputed from scratch
at each stage. Rather, the inverse for the next stage can
be computed in O(s2) field operations from the inverse of
the current stage by performing a rank 1 update. Since s
is bounded by r + 1, all the inverses required can be be
computed in time O(r3). Similarly, computing the vectors
in (1) and (2) costs O(sn) and O(sm) time, respectively, for
an overall cost of O((n+m)r2).

Theorem 1. There exists a deterministic algorithm Ora-

cleSolve(A, b) that takes as input an A ∈ Kn×m and b ∈
Kn×1, and returns as output either “consistent, x, P, Q” or
“inconsistent, u, P, Q” as described above. The cost of the
algorithm is O((n+m)r2) field operations from K.

Although the overall cost estimate O(r3) for computing
the required inverses does not dominate the running time
of algorithm OracleSolve, it might dominate the running
time for the improved variations of algorithm OracleSolve

that we give in later sections. Thus, it will be useful here
to derive the leading constant in this asymptotic bound for
updating the inverses. Let P = [i1, i2, . . . , is−1] and Q =
[j1, j2, . . . , js−1] be as at the start of stage s, and let is and
js be as computed in steps 1 and 2. If we set u = AP[js] ∈
K(s−1)×1, v = A

[is]
Q ∈ K1×(s−1) and d = A

[is]

[js]
∈ K1×1, then

at stage s+ 1 we need the inverse of[
APQ u
v d

]
∈ Ks×s. (3)

Lemma 2. If the inverse B := (APQ)−1 ∈ K(s−1)×(s−1)

is precomputed, then the inverse of the matrix in (3), if it
exists, is equal to[

B + (Bu)w(vB) −(Bu)w
−w(vB) w

]
, (4)

with w = (d− v(Bu))−1, and can be computed in 6s2 +O(s)
field operations from K.

Proof. Correctness of the inverse is verified by direct
computation. The total cost of the matrix×vector prod-
uct Bu, the vector×matrix product vB, the outer product
(Bu)(vB), and the addition B + (Bu)w(vB) is 6s2 + O(s)
field operations from K. The remaining dot products and
scalar operations have cost O(s).

Since s is bounded by r+ 1, all the inverses required can be
be computed in time

∑r+1
s=1(6s2 +O(s)) = 2r3 +O(r2).

Remark 3. The vector×matrix product A
[is]
Q · (A

P
Q)−1 in

(2) for stage s is exactly the vector×matrix product vB used
to update the inverse for stage s+1 in the proof of Lemma 2.

Remark 4. Assuming that Bu and vB in (4) have been
precomputed, the matrix×vector product (APQ)−1 · bP in (1)
for stage s + 1 can be computed in O(s) field operations by
applying the formula for (APQ)−1 shown in (4) to bP , using

the fact that Bb[i1,...,is−1] is known from the previous stage.

3. RANDOMIZED RANK PROFILES
In this section we establish that if b is uniformly and

randomly sampled from the column space of A, the list of
row indices P and the list of column indices Q returned by
OracleSolve(A, b) will be the row and column rank profiles
of A with high probability. (The listQmay need to be sorted
in increasing order.) Algorithm 1 outlines this randomized
algorithm for RankProfiles.

Algorithm 1 RandomRankProfile(A)

Require: A ∈ Kn×m

Ensure: s ∈ Z≥0, P, C
1: Choose a w ∈ Km×1 uniformly and randomly.
2: b := Aw
3: ∗, ∗,P,Q := OracleSolve(A, b)
4: C := sort(Q)
5: Return length(P), P, C

Lemma 5. Let s, P and C be the output of Algorithm 1
RandomRankProfile for an input matrix A of rank r. If
s = r then C is the column rank profile of A.

Proof. If s = r then the row space of AP is equal to the
row space of A. Now note that (APQ)−1 ·AP is equal to row
permutation of the reduced row echelon form of A. Since the
list Q corresponds to the column indices of the pivot entries
in (APQ)−1 ·AP it is, up to sorting, equal to the column rank
profile of A.

Theorem 6. The output P and C of Algorithm 1 Ran-

domRankProfile will be the row and column rank profile of
A with probability at least (1− 1/#K)r, where r is the rank
of A.

The following two lemmas contribute to the proof of The-
orem 6.

Lemma 7. Let A ∈ Kn×m be a matrix of rank r and let
b ∈ Kn×1 be in the column space of A. Let

• Ā ∈ Kr×m be the submatrix of A comprised of the rank
profile rows and let P̄ be the list of row indices returned
by OracleSolve(Ā, b),

• P be the row indices returned by OracleSolve(A, b).

If P̄ = [1, 2, ..., r], then P is the row rank profile of A.

Proof. Assume P̄ = [1, 2, . . . , r]. Then the only differ-
ence in the computations done by the call OracleSolve(A, b)

compared to OracleSolve(Ā, b) occurs in step 1 when find-
ing the first nonzero entry in the vector in (1): precisely
the indices corresponding to rows not belonging to the rank
profile will be skipped over since these rows of the aug-
mented system

[
A b

]
are linearly dependent on the pre-

vious rows.

Lemma 8. If A ∈ Kn×m has full row rank n, and w ∈
Km×1 is chosen uniformly and randomly, then Aw is chosen
uniformly and randomly from Kn×1.

Proof. Corresponding to A ∈ Kn×m there always exists
a nonsingular matrix U ∈ Km×m such that AU =

[
In 0

]
.

Then Aw = AU(U−1w) = b. When w ∈ Km×1 is uniformly
and randomly chosen from K, U−1w is also uniformly and
randomly chosen from Km×1. The result now follows by
noting that b is equal to the first n entries of U−1w.

Proof of Theorem 6. By Lemma 7, it will be sufficient
to prove the theorem with input matrix A ∈ Kr×m of full
row rank r. When w is chosen uniformly and randomly from
Km×1, vector b = Aw ∈ Kr×1 is also chosen uniformly and
randomly from Kr×1 (Lemma 8). Since A is full rank, P is
the row rank profile of A if is = s for 1 ≤ s ≤ r.

For some s ≥ 1, suppose P = [i1, i2, ..., is−1] at the start
of stage s has been computed correctly to be [1, 2, . . . , s−1].
Then we claim that at stage s the probability that step 1 of
the algorithm computes is = s is equal to 1− 1/#K. To see
this, note that the entry of (1) at index s is equal to

b[s]−A[s]
Q · (A

P
Q)−1 · bP .

Since b[s] is chosen uniformly and randomly from K, the

probability that b[s] = A
[s]
Q ·(A

P
Q)−1 ·bP is bounded by 1/#K.

Since the entries in b are chosen independently, the suc-
cess probability at each stage can be multiplied together to
obtain (1 − 1/#K)r for the probability that the algorithm
returns P = [1, 2, . . . , r].

Finally, if P is the rank profile of A, then by Lemma 5, C
will be the column rank profile also.

For Algorithm 1, we remark that the output can satisfy
length(P) = rank(A) even if P is not the rank profile of A.
Consider the following example over K = Z3:

A =

[
−1 1
1 0

]
, w =

[
1
1

]
, b = Aw =

[
0
1

]
.

At stage s = 1, the vector (1) in step 1 is equal to b. The first
entry in (1) is zero, so i1 = 2. Therefore, OracleSolve(A, b)
will return P = [2, 1] for the row rank profile, which is in-
correct.

4. LINEAR INDEPENDENCE ORACLES
Throughout this section fix an R ∈ Kr×m and let v ∈ K1×r

be given. We describe the construction of a randomized bi-
nary tree data structure T that will allow us either determine
if v is in the left nullspace of R, that is, if vR is the zero
vector, or to find the first nonzero entry of vR ∈ K1×m, in
a Monte Carlo fashion in time O(r logm). We call T a lin-
ear independence oracle for R. Constructing a single linear
independence oracle T for R costs O(mr) field operations,
which would seem to preclude its usefulness since we can
compute vR ∈ K1×m explicitly in the same time. However,
our algorithm for constructing T is online. We will show

how to construct in overall O(mr) time a sequence of linear

independence oracles Ts for the submatrices R[1,2,...,s] for R,
s = 1, 2, . . . , r.

Definition
By augmenting R with at most m− 1 zero columns we may
assume without loss of generality that m is a power of two.
A linear independence oracle T for R, shown in Figure 2,
is a perfect binary tree of height h := log2m, that is, with
m leaf nodes. The nodes of the last level of the tree, from
left to right, are associated with (i.e., store) the correspond-
ing columns R[1], R[2], . . . , R[m] of R. In addition to R, the
definition of the tree is based on a given list of elements
α1, α2, . . . , αm−1 ∈ K, which we associate to the internal
nodes of T according to the level order traversal. In a bot-
tom up fashion, for level h−1, h−2, . . . , 0, associate to each
internal node the vector obtained by adding the vector asso-
ciated to the left child with α∗ times the vector associated
with the right child. For example, for the left child of the
root we have R1∼m

2
= R1∼m

4
+ α2Rm

4
+1∼m

2
. Note that by

construction, Ra∼b is a vector that is a linear combination of
R[a], R[a+ 1], . . . , R[b]. We call T a linear independence or-
acle for R based on the parameters α1, . . . , αm−1. In what
follows it will be helpful to abuse notation somewhat and
simply identify the nodes of T with the vectors stored at the
node. For example, v is non-orthogonal with a node if the
dot product of v with the node is nonzero.

Output
On the one hand, if v is in the left nullspace of R then v is
orthogonal with the root R1∼m as well since by construction
R1∼m is a linear combination of the columns of R. On the
other hand, if vR1∼m is nonzero, then because each internal
node of T is a linear combination of the children, there must
be a path from the root down to a leaf with v non-orthogonal
to all nodes on the path.

Definition 9. The output of a linear independence ora-
cle T with respect to a v ∈ K1×r is either

• “v is in the left nullspace of R” if vR1∼m is zero, or,

• the minimal j for which v is non-orthogonal with all
nodes on the path from R[j] back up to the root.

Lemma 10. The output of T with respect to v can be
found in time O(r log2m).

Proof. If vR1∼m is zero we are done. Otherwise, use a
straightforward recursive search starting at the root node.
For example, if vR1∼m

2
6= 0 then recurse on the left subtree.

If vR1∼m/2 = 0 then necessarily vRm
2
+1∼m 6= 0 so recurse

on the right subtree. After arriving at a leaf node R[j] report
j. The cost is h dot products of length r.

Definition 11. T is correct with respect to a v ∈ K1×r

if either v is in the left nullspace of R, or the output of T with
respect to v is the minimal j such that v is non-orthogonal
to R[j].

Correctness of T will depend on the choice of the param-
eters α1, . . . , αm−1 used during the construction. We first
deal with construction of T before considering the probabil-
ity of correctness.

α1, R1∼m

α3, Rm
2

+1∼m

α7, R 3m
4

+1∼m

...

αm−1, Rm−1∼m

R[m]R[m− 1]

6= 0 = 0

...

...

· · ·

α6, Rm
2

+1∼ 3m
4

...

...

· · ·

...

...

· · ·

6= 0 = 0

α2, R1∼m
2

α5, Rm
4

+1∼m
2

...

...

· · ·

...

...

· · ·

α4, R1∼m
4

...

...

· · ·

...

αm/2, R1∼2

R[2]R[1]

6= 0 = 0

6= 0 = 0

6= 0 = 0

Figure 2: Oracle tree

Construction
Theorem 12. A sequence of linear independence oracles

Ts for R[1,2,...,s] ∈ Ks×m, s = 0, 1, . . . , r, all based on the
parameters α1, . . . , αm−1, can be constructed in total time
O(min(mr,m + |R| log2m)), where |R| denotes the number
of nonzero entries of R.

Proof. We will construct Ts for s = 0, 1, . . . , r in succes-
sion. For efficiency, each column vector associated with a
node in tree Ts should be represented as a singly linked list
of nonzero elements, that is, each node in the list contains
the index and the nonzero element of the vector stored at
that index. Initialize T0 to be a perfect binary tree with
each node associated with a vector of length zero. The cost
of this initialization is accounted for by the “m+” term in
the cost estimate.

Given Ts−1 for some s > 0, the linear oracle Ts is con-
structed from Ts−1 and the next row vector R[s] in a bottom
up fashion: augment the column vectors associated to the
nodes in level i of Ts−1 for i = h, h − 1, . . . , 1. Since there
are 2m − 1 nodes in the tree the cost of obtaining Ts from
Ts−1 is bounded by O(m). Since 1 ≤ s ≤ r the total cost is
O(mr).

But note that only the leaf nodes associated to nonzero
elements of row R[s] may need to have their associated vec-
tors modified. Similarly, internal nodes of the tree may need
to be modified only if they had a child node that was mod-
ified. The cost of modifying each level is thus |R[s]|. (See
Example 13 below.) Since there are 1 + log2m levels, the

total cost of constructing Ts from Ts−1 is O(|R[s]| logm).
Summing this estimate for s = 1, 2, . . . , r, that is, over all
rows of R, gives the claimed result.

Example 13. Suppose r = 3, m = 8 and

R =

1 2 3 4 5 6 7 8
∗ ∗
∗ ∗

∗ ∗ ∗

∈ K3×8,

with zero entries left blank and nonzero entries indicated
with a ∗. All nodes in the initial tree T0 store empty linked

lists. The construction of T1, T2 and T3 are shown in Fig-
ure 3. For brevity, for each node in the tree only the length
of the list, corresponding to the number of nonzero entries
in the vector, is indicated. The modified nodes (and their
paths) are highlighted in dashed red.

Probability of correctness
Lemma 14. Let α1, . . . , αm−1 ∈ K be chosen uniformly

and randomly. If T is a linear independence oracle for R ∈
Kr×m based on α1, . . . , αm−1, then T is correct with respect
to v with probability at least (1− 1/#K)log2 m.

Proof. If vR = 0 then T is correct independent of the
choice of the α1, . . . , αm−1, so assume vR 6= 0 and let j be
the minimal index such that vR[j] 6= 0. Consider the path
from R[j] up to the root. If the sibling of R[j] is R[j̄] then
the parent of R[j] is either R[j̄] + α∗R[j] or R[j] + α∗R[j̄],
depending on whether or not j is even or odd, respectively.
In either case, since vR[j] 6= 0 there is at most one choice of
α∗ such that v is orthogonal with the parent of R[j]. The
same argument applies for the other internal nodes on the
path from R[j] up to the root. Since the α∗ associated with
each internal node are chosen uniformly and independently
from K, and the number of internal nodes on the path is
h = log2m, the result follows.

Now, instead of a single v ∈ K1×r, let a sequence of vectors
vs ∈ K1×s for s = 1, 2, . . . , r be given in addition to R ∈
Kr×m.

Corollary 15. Let α1, . . . , αm−1 ∈ K be chosen uni-
formly and randomly. If (Ts)1≤s≤r is a sequence of linear

independence oracles for (R[1,2,...,s])1≤s≤r, all based on the
same α1, . . . , αm−1 ∈ K, then (Ts)1≤s≤r are correct with
respect to (vs)1≤s≤r simultaneously with probability at least
(1− r/#K)log2 m.

Proof. For 1 ≤ s ≤ r, let v̄s ∈ K1×r be the vector ob-
tained from vs by augmenting with r− s zeroes. Then Ts is
correct with respect to vs precisely when T is correct with
respect to v̄s. For all s ∈ [1, 2, . . . , r] such that v̄sR 6= 0,
consider the path from the leftmost leaf node in T that is

1

1

0

00

1

01

1

1

01

0

00

(a) T1

2

2

0

00

2

02

2

2

11

0

00

(b) T2

3

3

1

10

3

03

3

2

11

1

10

(c) T3

Figure 3: T1, T2, and T3

Figure 4: Non-orthogonal paths in a linear indepen-
dence oracle

non-orthogonal to v̄ back up to the root. There will be at
most r such paths. (See Figure 4 for an example illustrating
eight such paths.) Consider the choice of α∗ for the nodes
at level i = h− 1, h− 2, . . . , 0 of T . In the best case, all the
paths at level i from the leaf nodes back up to the root are
independent, so we can multiply the probability of success
at each internal node to get the estimate (1− 1/#K)r that
all the α∗ intersecting a path at level i are well chosen. How-
ever, as paths rise they may join implying that the same α∗
has to be well chosen for more than one path. The worst case
occurs near the root node when possibly all paths converge.
In the worst case, we can bound from below the probability
that a given α∗ is good for all paths is at least 1 − r/#K.
Since there are log2m internal levels, and the α∗ at each
level are chosen independently, the result follows.

5. FASTER LINEAR SYSTEM SOLVING
The computations that dominated the running time in

the deterministic oracle solver described in Section 2 were
to determine, at stage s = 1, 2, . . ., the first nonzero entry

in b − AQ · (APQ)−1 · bP and A[is] − A[is]
Q · (APQ)−1 · AP in

steps 1 and 2, respectively. We can recast the computation

in step 2 as follows. First compute

vs :=
[
−A[is]
Q · (A

P
Q)−1 1

]
∈ K1×s

in 2s2 + O(s) field operations. By Remark (3), the leading
term 2s2 in this cost estimate is already counted in the worst
case cost estimate for updating all the required inverses.
Now set

R[1,2,...,s] :=

[
AP

A[is]

]
∈ Ks×m.

We now need to assay if vsR
[1,2,...,s] ∈ K1×m is the zero

vector, and find the index of the first nonzero element of
vsR

[1,2,...,s] otherwise: if we have precomputed a linear in-
dependence oracle Ts for R[1,2,...,s] we can solve this problem
in a Monte Carlo fashion in time O(r logm).

Since the situation in (1) is simply transposed the com-
putation in step 1 can be recast similarly by computing

v̄s :=

[
1

−(APQ)−1 · bP
]T
∈ K1×s

and setting

R̄[1,2,...,s] =
[
b AQ

]T ∈ Ks×n.

By Remark 4, v̄s can be computed in O(s) field operations.
This gives the following algorithm.

1. Choose α1, . . . , αm−1, β1, . . . , βn−1 uniformly and ran-
domly from K.

2. Use algorithm OracleSolve described in Section 2, but
instead of explicitly computing the vectors in (1) for
s = 1, 2, . . ., initialize T0 to be an oracle tree for the 0×
m vector, and use the method supporting Theorem 12
to construct from Ts−1 an R[s] and oracle tree Ts for
R[1,2,...,s] based on α1, . . . , αm−1. Similarly, instead of
explicitly computing the vectors in (2), use a sequence
of oracle trees based on β1, . . . , βn−1

3. Assay correctness of the output of the algorithm either
by checking that Ax = b or checking that uA = 0.

Corollary 15 bounds from below the probability that the
linear independence oracles in step 2 will make exactly the

same choices for i1, i2, . . . , is and j1, j2, . . . , js as the deter-
ministic algorithm OracleSolve described in Section 2. We
obtain the following result as a corollary of Lemma 10 (cost
of using an oracle), Theorem 12 (constructing the sequences
of oracles) and Corollary 15 (probability of success).

Theorem 16. There exists a randomized algorithm Rand-

omOracleSolve(A, b) that takes as input an A ∈ Kn×m and
b ∈ Kn×1, and returns as output either

• “FAIL, x, P, Q” with Ax 6= b, or

• “FAIL, u, P, Q” with uA 6= 0 and ub 6= 0, or

• “consistent, x, P, Q” with Ax = b, or

• “inconsistent, u, P, Q” with uA = 0 and ub 6= 0.

Here, P = [i1, . . . , is] and Q = [j1, . . . , js] are such that AP

and AQ have full row and column rank s, respectively. The
algorithm has the following properties:

1. n+m− 2 random choices from K are required.

2. If r is the rank of A, then with probability at least(
1− r

#K

)dlog2 ne+dlog2 me

(5)

FAIL is not returned and the output is identical to
the output of algorithm OracleSolver supporting The-
orem 1.

3. The running time is bounded by

2r3 +O(r2(logn+ logm) + r(n+m))

and

2r3 +O(r2(logn+ logm) + n+m

+ |AP | logn+ |AQ| logm). (6)

field operations from K.

If #K is too small we can work over a small field exten-
sion of #K to ensure positive probability of success. The
following corollary is obtained from (5) by substituting r ≤
min(n,m) and using the fact that for any x > 0 and y ∈ Z>0

we have 1− xy ≤ (1− x)y.

Corollary 17. If

#K ≥ 2 min(n,m)(dlog2 ne+ dlog2me)

then the probability that algorithm RandomOracleSolve does
not return FAIL is at least 1/2.

By Corollary 17, the degree of the field extension required
to ensure a probability of success at least 1/2 is bounded
by O(logn + logm) in the worst case. If a field extension
is required the cost of constructing and using the sequence
of oracles increase by a multiplicative factor that is softly
linear in logn + logm. However, the inverse computations
via rank one updates during each phase of the oracle solver
are still performed over the ground field and have overall
cost bounded by 2r3 +O(r2) field operations. This gives the
following result, valid over any finite field.

Corollary 18. There exists a Las Vegas algorithm for
problem LinSys that has running time

2r3 + (r2 + n+m+ |R|+ |C|)1+o(1)
,

where R and C are the subsets of at most r + 1 rows and r
columns of A that are examined by the algorithm.

6. FASTER RANK PROFILES
In the following theorem, let ImprovedRankProfile be

identical to Algorithm 1 RandomRankProfile except with
the call to the deterministic algorithm OracleSolve replaced
with a call to the faster algorithm RandomOracleSolve sup-
porting Theorem 16.

The following theorem follows as a corollary of Theorems 6
and 16.

Theorem 19. There exists a randomized algorithm Impr-

ovedRankProfile(A) that takes as input an A ∈ Kn×m and
returns as output s ∈ Z≥0 together with lists P = [i1, . . . , is]
and C = [j1, . . . , js] such that AP and AC have full row and
column rank s, respectively. The algorithm has the following
properties:

1. n+ 2m− 2 random choices from K are required.

2. P and C will be the row and column rank profiles of A,
respectively, with probability at least(

1− 1

#K

)r (
1− r

#K

)dlog2 ne+dlog2 me

where r is the rank of A.

3. The running time is bounded by

2r3 +O(r2(logn+ logm) + nm)

and

2r3 +O(r2(logn+ logm) + n+m

+ |A|+ |AP | logn+ |AC| logm) (7)

field operations from K.

The following two corollaries are very similar to Corollar-
ies 17 and 18.

Corollary 20. If

#K ≥ 2 min(n,m)(1 + dlog2 ne+ dlog2me)

then the probability that ImprovedRankProfile returns the
correct result is at least 1/2.

Corollary 21. There exists a Monte Carlo algorithm
for problem RankProfiles that has running time bounded

by 2r3 + (r2 + n+m+ |A|)1+o(1)
.

7. CONCLUSIONS AND FUTURE WORK
For convenience, we have assumed that K is a finite field,

which allowed us to choose elements uniformly and randomly
from K, but it should not be difficult to extend algorithms
RandomOracleSolve and ImprovedLinSys to work over any
field, for example by choosing random elements from a suf-
ficiently large subset of K.

Algorithm ImprovedRankProfile can compute the col-
umn rank profile of an A ∈ Kn×m in a Monte Carlo fashion

in time 2r3 + (r2 + |A|)1+o(1)
, where |A| ≥ max(n,m) is an

upper bound on the number of nonzero entries in A. The 2r3

term in this cost estimate may seem unavoidable because the
iterative nature of the algorithm and the needs to compute,
for s = 1, 2, 3, . . ., the vector (APQ)−1 · bP ∈ Ks×1. Recently
we have discovered an online algorithm for relaxed matrix
inversion [13] that can be used to compute all these vectors
in time O(rω), provided that the final matrix AP ∈ Kr×m

has generic column rank profile. By incorporating the online
matrix inversion algorithm together with a Toeplitz precon-
ditioner [8] into algorithm ImprovedRankProfile, we can
compute the row rank profile of a full column rank matrix

A in time (rω + |A|)1+o(1). Combined with the algorithm
supporting [2, Theorem 2.11] for computing a maximal rank
subset of of linearly independent columns, this gives an algo-
rithm that computes the column rank profile of an arbitrary

A with high probability in time (rω + |A|)1+o(1). The full
exposition of the relaxed online inversion algorithm together
with its application to rank profile computation will be pre-
sented in a future paper.

8. REFERENCES
[1] L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders,

W. J. Turner, and G. Villard. Efficient matrix
preconditioners for black box linear algebra. Linear
Algebra and its Applications, 343–344:119–146, 2002.
Special issue on Infinite Systms of Linear Equations
Finitely Specified.

[2] H. Y. Cheung, T. C. Kwok, and L. C. Lau. Fast
matrix rank algorithms and applications. Journal of
the ACM, 60(5):733–751, 2013. Article No. 31.

[3] J.-G. Dumas, C. Pernet, and Z. Sultan. Simultaneous
computation of the row and column rank profiles. In
Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’13, pages 181–188. ACM Press,
New York, 2013.

[4] W. Eberly. Early termination over small fields. In
Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’03, pages 80–87. ACM Press,
New York, 2003.

[5] J.-C. Faugère. A new efficient algorithm for computing

Grobner basis (F4). Journal of pure and applied
algebra, 139:61–88, 6 1999.

[6] M. Giesbrecht, A. Lobo, and B. D. Saunders.
Certifying inconsistency of sparse linear systems. In
O. Gloor, editor, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’98, pages 113—119.
ACM Press, New York, 1998.

[7] C.-P. Jeannerod, C. Pernet, and A. Storjohann.
Rank-profile revealing Gaussian elimination and the
CUP matrix decomposition. Journal of Symbolic
Computation, 56:56–58, 2013.

[8] E. Kaltofen and B. D. Saunders. On Wiedemann’s
method of solving sparse linear systems. In Proc.
AAECC-9, Lecture Notes in Comput. Sci., vol. 539,
pages 29–38, 1991.

[9] J. P. May, B. D.Saunders, and Z. Wan. Efficient
matrix rank computation with application to the
study of strongly regular graphs. In J. P. May, editor,
Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’07, pages 277–284. ACM Press,
New York, 2007.

[10] T. Mulders and A. Storjohann. Rational solutions of
singular linear systems. In C. Traverso, editor, Proc.
Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC’00, pages 242–249. ACM Press, New York,
2000.

[11] B. Saunders and B. Youse. Large matrix, small rank.
In Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’09, pages 317–324. ACM Press,
New York, 2009.

[12] W. Stein. Modular Forms, a Computational Approach.
Graduate Studies in Mathematics. American
Mathematical Society, 2007.

[13] A. Storjohann and S. Yang. A relaxed algorithm for
online matrix inversion, 2014. Poster available at
https://cs.uwaterloo.ca/~astorjoh/online.pdf.

[14] D. Wiedemann. Solving sparse linear equations over
finite fields. IEEE Trans. Inf. Theory, IT-32:54–62,
1986.

[15] R. Yuster. Generating a d-dimensional linear subspace
efficiently. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 467–470. Society for Industrial and
Applied Mathematics, 2010.

https://cs.uwaterloo.ca/~astorjoh/online.pdf

	Introduction
	Oracle linear solving
	Randomized rank profiles
	Linear independence oracles
	Faster linear system solving
	Faster rank profiles
	Conclusions and future work
	References

