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ABSTRACT
The final step of some algebraic algorithms is to reconstruct
the common denominator d of a collection of rational num-
bers (ni/d)1≤i≤n from their images (ai)1≤i≤n mod M , sub-
ject to a condition such as 0 < d ≤ N and |ni| ≤ N for a
given magnitude bound N . Applying elementwise rational
number reconstruction requires that M ∈ Ω(N2). Using
the gradual sublattice reduction algorithm of van Hoeij and
Novocin [23], we show how to perform the reconstruction
efficiently even when the modulus satisfies a considerably
smaller magnitude bound M ∈ Ω(N1+1/c) for c a small con-
stant, for example 2 ≤ c ≤ 5. Assuming c ∈ O(1) the cost
of the approach is O(n(logM)3) bit operations using the
original LLL lattice reduction algorithm, but is reduced to
O(n(logM)2) bit operations by incorporating the L2 vari-
ant of Nguyen and Stehlé [17]. As an application, we give a
robust method for reconstructing the rational solution vec-
tor of a linear system from its image, such as obtained by a
solver using p-adic lifting.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-

ity]: Numerical Algorithms and Problems—Number-theoretic
computations; G.4 [Mathematical Software]: Algorithm
Design and Analysis; I.1.2 [Symbolic and Algebraic Ma-

nipulation]: Algorithms

General Terms
Algorithms

Keywords
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1. INTRODUCTION
A rational number reconstruction of an integer a ∈ Z with

respect to a positive modulus M ∈ Z>0 is a signed fraction
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n/d ∈ Q with gcd(n, d) = 1 such that a ≡ n/d (mod M).
In general, there may be multiple possibilities, for example
a ≡ n1/d1 ≡ n2/d2 (mod M) with n1 6≡ n2 (mod M).

Assuming a reconstruction exists, its uniqueness can be
ensured by stipulating bounds for the magnitudes of the out-
put integers n and d. In addition to a and M , the simplest
version of the problem takes as input a bound N < M , and
asks for output a pair of integers (d, n) such that

da ≡ n (mod M), |n| ≤ N, 0 < d ≤ N. (1)

Note that if (d, n) is a solution to (1) with gcd(n, d) = 1 then
n/d is a rational reconstruction of a (mod M). Since there
are Θ(N2) coprime pairs (d, n) which satisfy the bounds
of (1), a requirement for rational reconstruction uniqueness
is M ∈ Ω(N2) by the pigeonhole principle.

In fact, if the bound M > 2N2 is satisfied then there is
at most one solution of (1) with gcd(n, d) = 1. Such a so-
lution can be computed effectively using the well known ap-
proach based on the extended Euclidean algorithm and the
continued fraction expansion of a/M . See for example [11,
Theorem 5.1] or the books [8, 21].

Rational number reconstruction is an essential tool in many
algorithms that employ a homomorphic imaging scheme to
avoid intermediate expression swell, to allow for a simple
coarse grain parallelization, or to facilitate an output sensi-
tive approach; explicit examples include solving sparse ra-
tional systems [4] and computing gcds of polynomials [7].
Often, the final step of these algorithms is to reconstruct
the common denominator d ∈ Z>0 of a collection of rational
numbers (ni/d)1≤i≤n from their images (ai)1≤i≤n modulo
M . The images modulo M are typically computed by com-
bining multiple smaller images, either using Chinese remain-
dering (M = p1p2 · · · pm) or a variation of Newton–Hensel
lifting (M = pm). The cost of an algorithm that uses a ho-
momorphic imaging scheme is highly correlated to m, the
number of smaller images computed, which is directly re-
lated to the bitlength of the modulusM . Ideally, just enough
smaller images are computed to allow reconstruction of the
common denominator d. If N is an upper bound for both
d and maxi|ni|, elementwise rational reconstruction can be
applied but requires that M > 2N2 to ensure success.

This paper gives a deterministic algorithm for efficiently
computing the common denominator d that for some ap-
plications requires about half as many image computations
as the standard approach. Our specification of the vector
version of the problem differs slightly from the scalar case
shown in (1). The vector rational reconstruction problem
takes as input a vector a ∈ Zn of images modulo M , and



asks for a pair (d,n) ∈ (Z,Zn) such that

da ≡ n (mod M), 0 <
∥

∥

[

d n
]∥

∥

2
≤ N. (2)

Here, we use a common bound for d and n based on the
2-norm because this is a more natural condition for the algo-
rithm we will present, which is based on integer lattice basis
reduction. In particular, the problem of computing solutions
to (2) is equivalent to finding short nonzero vectors in the
lattice generated by the rows of the matrix

[

MIn×n

1 a

]

∈ Z(n+1)×(n+1). (3)

The lattice shown in (3) is a special case of the “knapsack-
type” lattices studied by van Hoeij and Novocin [23], who
give an algorithm which can be used to compute a “generat-
ing set” for (2), that is, a set (di,ni)1≤i≤c corresponding to
linearly independent vectors

[

di ni

]

1≤i≤c
such that every

solution of (2) can be expressed as a Z-linear combination of
the members of the generating set. On the one hand, from
the scalar case, we know that a sufficient condition to ensure
the existence of a generating set of dimension zero (no solu-
tion) or one (a unique minimal denominator solution) is that
the modulusM be large enough to satisfy M > 2N2. On the
other hand, if c is an integer such that M > 2(c+1)/2N1+1/c

is satisfied, it follows from a strengthening of [23, Theorem 2]
that the generating set returned will contain at most c vec-
tors. The generating set produced will be LLL reduced, so
the 2-norm of the first vector will be at most 2(c−1)/2 times
that of the shortest vector which solves (2).

To apply lattice reduction directly to a lattice with row
dimension n + 1 would be prohibitively expensive in terms
of n when n is large. Instead, van Hoeij and Novocin [23]
propose a gradual sublattice reduction algorithm which adds
columns to the work lattice one by one, while keeping the
row dimension bounded by c+1 by removing vectors which
provably can’t contribute to a solution of (2). Assuming
c ∈ O(1), this algorithm applied to bases of the form in (3)
will run in O(n2(logM)3) bit operations when the standard
LLL algorithm algorithm is used. By using properties of
the special basis form (3) and incorporating the L2 algo-
rithm [17] we show how to reduce the cost to O(n(logM)2)
bit operations.

The approach is particularly well suited to applications
where it is known a priori that there can exist at most one
linearly independent solution to (2). In Section 5 we consider
the problem of solving a nonsingular integer linear system
Ax = b, which has exactly one rational solution vector with
common denominator a factor of detA. As a concrete ex-
ample, coming from [2], suppose A and b have dimension
10,000 and are filled randomly with single decimal digit in-
tegers. The common denominator and the numerators of a
typical solution vector for such a system have about 24,044
decimal digits, or of magnitude about β = 1024044 . To apply
elementwise rational reconstruction requires M > 2N2 with
N ≥ β to be satisfied, so M needs to have length about
48,088 decimal digits. But by choosing the parameter c = 5,
the vector algorithm requires only that M > 2(c+1)/2N1+1/c

with N ≥
√
n+ 1β in order to succeed, so M need have

only about 28,856 decimal digits. The method we propose
is robust in the sense that β need not be known beforehand;
if a reconstruction is attempted with N too small, FAIL will
be reported, but if N is sufficiently large the algorithm will
guarantee to return the correct reconstruction.

Related work.
For the scalar version of the problem, much work has fo-

cused on decreasing the running time from O((logM)2) to
nearly linear in logM by incorporating fast integer multi-
plication. For a survey of work in this direction we refer
to [15]. An algorithm that doesn’t need a priori bounds for
the numerator and denominator is described in [16].

Now consider the vector version of the problem. Two
approaches are proposed in [12]. The first is a heuristic
randomized algorithm to recover a solution d and n that
satisfies d‖n‖∞ ∈ O(M). The second, based on the good
simultaneous Diophantine approximation algorithm in [13],
can be applied to find a solution even when

∥

∥

[

d n
]∥

∥

2
∈

o(N2) but the algorithm performs lattice reduction directly
on n+ 1 dimensional lattices similar to (3) and seems to be
expensive when n is large.

The survey [10] has an overview of using lattices with
bases similar to (3) for effectively solving real and p-adic si-
multaneous Diophantine approximation problems. However,
these results are concerned with existence, not uniqueness.

An efficient algorithm for the rational function version of
the vector reconstruction problem is given in [20].

Organization.
In Section 2 we illustrate the main ideas of the algorithm

with a worked example. In Section 3 we establish our nota-
tion and recall the required facts about lattices and the LLL
lattice basis reduction algorithm. Section 4 presents the
algorithm for vector rational reconstruction, proves its cor-
rectness, and provides a simple cost analysis. In Section 5
we show how the vector rational reconstruction algorithm
can be incorporated into an algorithm for solving nonsingu-
lar linear systems to save on the number of required image
computations.

2. OUTLINE OF THE ALGORITHM
As previously noted, the problem of finding solutions to (2)

is identical to the problem of finding short nonzero vectors,
with respect to the 2-norm, in the lattice generated by the
rows of the following matrix:















M

..
.

M
M

1 a1 a2 · · · an















∈ Z(n+1)×(n+1).

The first n rows of the matrix can be used to reduce modulo
M the last n entries of any vector in the lattice; in particular,
a vector obtained by multiplying the last row by d. The first
entry of such a vector will still be d and the ith entry for
2 ≤ i ≤ n+ 1 will be congruent to dai−1 (mod M).

For example, consider the lattice basis matrix

L =











195967
195967

195967
195967

1 −23677 −49539 74089 −21989











where our target length is N = 104. When n is large it is
infeasible to reduce the entire basis at once. Instead, the
gradual sublattice reduction algorithm of [23] will keep the



row dimension of the lattice constant by adding columns one
by one, and removing basis vectors which are provably too
big. We continue with our example, which is similar to the
example given in [18, Section 2.2].

Consider reducing just the lower-left 2 × 2 submatrix of
L:

[

0 195967
1 −23677

]

LLL
===⇒

[

−389 −96
−149 467

]

Knowing the reduction of the lower-left 2× 2 submatrix can
help us reduce the lower-left 3× 3 submatrix of L. The first
step is to find a basis of the lower-left 2 × 3 submatrix by
‘adding a column’.

Though we could have kept track of the third column of
L while doing the above reduction, it can also be simply
computed afterwards: the third column is just a2 times the
first column, since this property holds in the the lower-left
2 × 3 submatrix of L and is preserved by the unimodular
row operations used in lattice basis reduction.

After determining a basis of the lower-left 2×3 submatrix,
the next step is simply to ‘add a row’ to find a basis of the
lower-left 3×3 submatrix. For example, the lattice generated
by the lower-left 3×3 submatrix of L has the following basis,
which we again reduce:




0 0 195967
−389 −96 19270671
−149 467 7381311





LLL
===⇒





−538 371 470
91 1030 −808

27089 13738 20045





Now, it happens that the final vector in the Gram–Schmidt
orthogonalization of this basis has norm larger than N . It
follows [23, Lemma 2] that any vector in the lattice gener-
ated by this basis which includes the final basis vector must
have norm at least N . Since we are only interested in vec-
tors shorter than this, we can safely discard the last row,
and repeat the same augmentation process to find a sublat-
tice which contains all short vectors in the lattice generated
by the lower-left 4× 4 submatrix of L.

If M > 2(c+1)/2N1+1/c for c ∈ Z>0 then the process de-
scribed above of adding columns and removing final rows of
the lattice will keep the row dimension of the lattice bounded
by c+ 1. For c ∈ O(1) this leads to a cost estimate that is
quadratic in n. To obtain a running time that is linear in n,
we avoid computing the basis vectors in L as the reduction
proceeds. Instead, we show how to reconstruct the entire
basis from only its first column.

3. PRELIMINARIES
For a k × n matrix L we let LS be the rows of L which

have indices in S ⊆ {1, . . . , k}, let LT
R be the columns of L

which have indices in R ⊆ {1, . . . , n}, and let LS,R denote
(LS)

T
R. We simply write i for {i} and 1..i for {1, . . . , i}.

When not used with a subscript, LT denotes the transpose of
L. A subscript on a row vector will always refer to entrywise
selection, and the norm of a row vector will refer to the
2-norm, ‖x‖ :=

√
xxT.

Vectors are denoted by lower-case bold variables and ma-
trices by upper-case or Greek bold variables, with the bold-
face dropped when referring to individual entries. The remM (x)
function returns the reduction of x (mod M) in the symmet-
ric range, and applies elementwise to vectors and matrices.

3.1 Lattices

A point lattice is a discrete additive subgroup of Rn. The
elements of the lattice generated by the rank k matrix L ∈
Zk×n are given by

L(L) :=

{ k
∑

i=1

riLi : ri ∈ Z

}

,

and L is a basis of L(L). If L(S) ⊆ L(L) then L(S) is
known as a sublattice of L(L); this occurs if and only if
there exists an integer matrix B such that S = BL.

The set of vectors in L(L) shorter than some target length
N is denoted

LN (L) := { b ∈ L(L) : ‖b‖ ≤ N }.

We call a basis of a sublattice of L which contains all the
elements of LN (L) a generating matrix of LN(L).

3.2 Linear Algebra
For a lattice basis L ∈ Zk×n, let L∗ ∈ Qk×n denote its

Gram–Schmidt orthogonal R-basis and let µ ∈ Qk×k denote
the associated change-of-basis matrix. That is,











L1

L2

...
Lk











=











1
µ2,1 1
...

. . .

µk,1 µk,2 · · · 1





















L∗
1

L∗
2

...
L∗

k











with µi,j = Li(L
∗
j )

T/‖L∗
j‖2. Additionally, let G = LLT ∈

Zk×k denote the Gramian matrix of L.

3.3 LLL Reduction
A lattice basis L ∈ Zk×n (or its Gramian G ∈ Zk×k) is

said to be LLL-reduced if its Gram–Schmidt orthogonaliza-
tion satisfies the conditions

1. ‖µ− Ik×k‖max ≤ 1
2
,

2. ‖L∗
i ‖2 ≥ ( 3

4
− µ2

i,i−1)‖L∗
i−1‖2 for 1 < i ≤ k.

Given a lattice basis L ∈ Zk×n, the lattice basis reduc-
tion problem is to compute an LLL-reduced basis L′ such
that L(L) = L(L′). Assuming k ∈ O(1), the L2 algorithm
from [17] accomplishes this in O(n(logB)2) bit operations,
where maxi‖Li‖ ≤ B. A well known and important feature
of the LLL algorithm, that we will exploit, is that the se-
quence of unimodular row operations required to reduce a
given lattice can be determined strictly from the µi,j and
‖L∗

i ‖2, or in the case of L2, the Gramian.
Consider Algorithm 1, which only includes the specifica-

tion of the input and output. If G is the Gramian for a
lattice L with row dimension k and arbitrary column dimen-
sion, we could LLL reduceL in-place by calling InPlaceL

2(k,G,L).
Alternatively, we could also initialize a matrix U as Ik×k,
call InPlaceL2(k,G,U) to capture all required unimodular
transformations in U , and then compute the reduced lattice
as UL.

The following algorithm, Algorithm 2 from [23] applied
to L2, computes an LLL-reduced generating matrix (for a
given target length N) of a lattice by using L2 and discarding
vectors which are too large to contribute to a vector shorter
than the target length.



Algorithm 1 The InPlaceL2(k,G,U) lattice basis reduction
algorithm.

Input: The Gramian G ∈ Zk×k of some lattice basis
L ∈ Zk×∗, and a matrix U ∈ Zk×∗.
Output: Use L2 to update G to be an LLL-reduced
Gramian of L(L) and apply all unimodular row operations
to U .

Algorithm 2 The L
2
WithRemovals(k,G,U , N) generating

matrix algorithm.

Input: The Gramian G ∈ Zk×k of some lattice basis
L ∈ Zk×∗, a target length N ∈ Z>0, and a matrix U ∈ Zk×∗.
Output: Use L2 to update G to be an LLL-reduced
Gramian of a generating matrix of LN(L), update k to be
its number of rows, and apply all unimodular row operations
to U .

4. THE VECRECON ALGORITHM
In this section we present our vector rational reconstruc-

tion algorithm, which computes an LLL-reduced generating
matrix for LN (ΛM

a
), where a ∈ Z1×n, M ∈ Z>0, and

Λ
M
a

:=















M

..
.

M
M

1 a1 a2 · · · an















∈ Z(n+1)×(n+1).

The computed generating matrix contains at most c vectors,
where c ≥ 1 is a small constant such thatM > 2(c+1)/2N1+1/c

is satisfied. The larger c is chosen, the smaller M is allowed
to be (assuming c <

√

2 log2 N). However, if c is chosen
too large the algorithm may be inefficient, since in the worst
case it will reduce bases containing up to c+ 1 vectors.

As already outlined, the algorithm computes a generat-
ing matrix of LN(ΛM

a
) gradually, by computing generating

matrices of LN (ΛM
a1..l

) for l = 1, 2, . . . , n. However, for effi-
ciency these intermediate generating matrices will not be ex-
plicitly stored during the algorithm; we will only keep track
of the first column f . The following lemma shows how all
sublattices of L(ΛM

a1..l
) have bases of a special form which

strongly depends on the first basis column.

Lemma 1. Any L ∈ Zk×(l+1) with L(L) ⊆ L(ΛM
a1..l

) is
of the form

[

LT
1 remM (LT

1 a1..l) +MR
]

for some R ∈ Zk×l.

Proof. Let Λ denote ΛM
a1..l

. Since L(L) is a sublattice

of L(Λ) there exists a B ∈ Zk×(l+1) such that

L = BΛ

= B
T
l+1Λl+1 +B

T
1..lΛ1..l

=
[

BT
l+1 BT

l+1a1..l +BT
1..lΛ1..l,2..l+1

]

,

so BT
l+1 = LT

1 . The result follows since M divides every

entry of Λ1..l,2..l+1 and remM (LT
1 a1..l) = LT

1 a1..l +MQ for
some Q ∈ Zk×l.

The complete algorithm pseudocode is given as Algorithm 3.
Were we explicitly storing the generating matrix L, we would

require the initialization of L1,1 := 1 in step 1, and the col-
umn/row augmentation in step 3 of

L :=

[

0 M
L remM (alf)

]

where f = L
T
1 . (4)

The application of remM to the new column entries is jus-
tified by adding suitable multiples of the first row. It is
not strictly necessary, but ensures that the new entries have
absolute value at most M/2, and allows us to give tighter
bounds on the entries of L. The following lemma is a strength-
ening of [23, Lemma 7], due to the special form of bases we
are considering.

Algorithm 3 The VecRecon(n,a,M,N, c) generating ma-
trix algorithm using L2.

Input: a ∈ Z1×n
M and N , c ∈ Z>0 with M >

2(c+1)/2N1+1/c.
Output: An LLL-reduced generating matrix S ∈ Zk×(n+1)

of LN (ΛM
a
) with k ≤ c.

// Note f ∈ Zk×1, G ∈ Zk×k after each step

1. [Initialization]
k := 1; f1 := 1; G1,1 := 1;

2. [Iterative lattice augmentation]
for l := 1 to n do

3. [Add new vector to generating matrix]
k := k + 1;

// Update G, due to addition of column g to gen-
erating matrix

G :=

[

0 0

0 G

]

+ ggT where g =

[

M
remM (alf)

]

;

// Update first column of generating matrix

f :=

[

0
f

]

;

4. [LLL reduction with removals]
L
2
WithRemovals(k,G,f , N);

If k = 0, return the unique element of Z0×(n+1).

assert A. L =
[

f remM (fa1..l)
]

is an LLL-reduced

generating matrix of LN(ΛM
a1..l

) with Gramian G

B. k ≤ c

5. [Complete generating matrix]
return S :=

[

f remM (fa)
]

;

Lemma 2. At the conclusion of the following steps during
Algorithm 3 the following bounds hold:

• Step 3: maxi‖Li‖ ≤ M if k ≤ c+ 1

• Step 4: maxi‖Li‖ < M/2 if k ≤ c

Proof. After step 4, LLL reduction with removals (with
target length N) will return a basis which satisfies ‖Li‖ ≤
2(k−1)/2N by [23, Lemma 3]. Since k ≤ c, it follows

‖Li‖ < 2(c+1)/2N1+1/c/2 < M/2.

After step 3, ‖L1‖ = M and for i > 1 we have ‖Li‖2 <
(M/2)2 +(M/2)2 by the previous bound (assuming k ≤ c at



the start of step 3) and the fact the new entries are in the
symmetric range.

We are now ready to show the assertions after step 4 of
Algorithm 3 hold, from which the algorithm’s correctness
immediately follows.

Proposition 1. Assertion A after step 4 of Algorithm 3
holds.

Proof. The fact L(L) is a sublattice of L(ΛM
a1..l

) follows
from the fact every vector in L is a linear combination of the
vectors in ΛM

a1..l
by (4) and LLL reduction does not change

this. The fact L(L) contains all vectors in LN(ΛM
a1..l

) and

thatL is LLL-reduced follows from the output of L2
WithRemovals.

By how f is updated in steps 3 and 4 it is clear that f =
LT

1 . However, we still must show thatL =
[

f remM (fa1..l)
]

,
i.e., when L is expressed in the form from Lemma 1, R is
the zero matrix. If it were not, then some entry of L would
not be in the symmetric range (mod M). In which case
there would be an entry |Li,j | ≥ M/2, so ‖Li‖ ≥ M/2, in
contradiction to Lemma 2.

Finally, taking the Gramian of (4) shows that step 3 en-
sures G = LLT, and L

2
WithRemovals also keeps G correctly

updated.

The next proposition follows from the method of proof of [23,
Theorem 2] taking into account that ‖L∗

i ‖ ≤ M by Lemma 2
at the start of (and therefore during) the LLL reduction
when k ≤ c+ 1.

Proposition 2. Assertion B after step 4 of Algorithm 3
holds.

Proof. If no vector was discarded during step 4 when
k = c+1 we would have a contradiction from bounds on the
volume

√
detG of the lattice,

2c(c+1)/2Nc+1 < Mc ≤
√
detG ≤ 2c(c+1)/4Nc+1.

The upper bound holds for all LLL-reduced bases with final
Gram–Schmidt vector shorter than N . The lower bound is
derived by noting the volume increases by a factor of M
each time a vector is added to the basis, and decreases by a
factor of at most M each time a vector is removed from the
basis.

Finally, we analyze the bit complexity of our algorithm
for c ∈ O(1) and ‖a‖∞ ∈ O(M). During step 3 we have
‖f‖∞ < M/2 by Lemma 2, so the bitlength of numbers in-
volved is O(logM), and thus step 3 executes in O((logM)2)
bit operations. Step 4 executes L2

WithRemovals on a lattice
of dimension at most c, with Gramian entries of bitlength
O(logM), at a cost of O((logM)2) bit operations. Since
the loop runs O(n) times, the total cost is O(n(logM)2) bit
operations. Step 5 requires O(n) arithmetic operations, all
on integers of bitlength O(logM). This gives the following
result.

Theorem 1. Algorithm 3 returns an LLL-reduced gener-
ating matrix S ∈ Zk×(n+1) of LN(ΛM

a
) with k ≤ c. When

c ∈ O(1) and ‖a‖∞ ∈ O(M), the running time is O(n(logM)2)
bit operations.

5. LINEAR SYSTEM SOLVING
In this section let A ∈ Zn×n be a nonsingular matrix and

b ∈ Zn be a vector such that
∥

∥

[

A b
]∥

∥

max
≤ B. Consider

the problem of computing x ∈ Qn such that Ax = b, using
for example Dixon’s algorithm [5]. This requires reconstruct-
ing the solution x from its modular image a = remM (x),
where M = pm for some prime p ∤ det(A) and m ∈ Z>0 is
large enough that the reconstruction is unique.

We can use p-adic lifting to recover the image vector a

for m = 2, 3, . . . , though it is not necessary that m increase
linearly. The cost of the lifting phase of the solver is directly
related to the number of lifting steps m, which dictates the
precision of the image. Highly optimized implementations of
p-adic lifting [3, 4, 6, 9] employ an output sensitive approach
to compute the vector rational reconstruction x from a in
order to avoid computing more images than required. As
m increases, the algorithm periodically attempts to perform
a rational reconstruction of the current image vector. The
attempted rational reconstruction should either return the
unique minimal denominator solution or FAIL. When FAIL
is returned more lifting steps are performed before another
rational reconstruction is attempted.

Suppose (d,n) ∈ (Z,Zn) is such that a = remM (n/d),
that is, An ≡ db (mod M). To check if An = db, that
is, if n/d is the actual solution of the system Ax = b, we
could directly check if An = db by performing a matrix
vector product and scalar vector product. However, this
direct check is too expensive. The following idea of Cabay [1]
can be used to avoid the direct check, requiring us to only
check some magnitude bounds.

Lemma 3. If ‖n‖∞ < M/(2nB), 0 < |d| < M/(2B),
and An ≡ db (mod M) then x = n/d solves Ax = b.

Proof. Note that ‖An‖∞ ≤ nB‖n‖∞ and ‖db‖∞ ≤
B|d|, so by the given bounds ‖An‖∞ < M/2 and ‖db‖∞ <
M/2. Every integer absolutely bounded by M/2 falls into
a distinct congruence class modulo M , so since the compo-
nents of An and db are in this range and componentwise
they share the same congruence classes, An = db, and the
result follows.

Algorithm 4 shows how Lemma 3 can be combined with
the elementwise rational reconstruction approach to get an
output sensitive algorithm for the reconstruction of x from
its image a. Let RatRecon(a,M,N) be a function which
returns the minimal d which solves (1), or FAIL if no solution
exists.

The algorithm does not take the target length N as a
parameter, but calculates an N such that there will be at
most one lowest-terms reconstruction. Lemma 3 may be
used following step 4 to guarantee the output in step 5 will
be the unique solution vector x.

Note that the elementwise approach requires us to choose
N to satisfy M > 2N2. If β is the maximum of the mag-
nitudes of the denominator and numerators of the actual
solution vector of the system then we need N ≥ β for the al-
gorithm to succeed, i.e., M ∈ Ω(β2). By Hadamard’s bound

and Cramer’s rule we have the a priori bound β ≤ nn/2Bn,
but in general this bound is pessimistic and to avoid needless
lifting we employ a output sensitive approach, as in [22].

Algorithm 5 shows how Lemma 3 can be combined with
VecRecon instead to get an output sensitive algorithm for
the reconstruction. For this algorithm we need only M >



Algorithm 4 An output sensitive LinSolRecon(n,a,M,B)
using scalar reconstruction.

Input: The image a ∈ Zn
M of the solution of the linear

system Ax = b, and B ∈ Z>0, an upper bound on the
magnitude of the entries of A and b.
Output: Either the solution x ∈ Qn or FAIL.

// Need M > 2N2 and M > 2nBN .

1. [Set an acceptable size bound]

N :=
⌈

min
(√

M/2,M/(2nB)
)⌉

− 1;

2. [Simultaneous rational reconstruction]
d := 1;
for i := 1 to n do

3. [Entrywise rational reconstruction]
d := d · RatRecon(remM (dai),M,N);
If RatRecon returns FAIL then return FAIL.

4. [Check reconstruction]
If |d| > N or ‖remM (da)‖∞ > N then return FAIL.

5. [Return solution]
return remM (da)/d;

2(c+1)/2N1+1/c to satisfy the precondition of VecRecon. On
the one hand, Lemma 4 shows that Algorithm 5 will never
return an incorrect answer. On the other hand, Lemma 5
shows that the algorithm will succeed forM ∈ Ω((

√
nβ)1+1/c).

Algorithm 5 An output sensitive LinSolRecon(n,a,M,B, c)
using vector reconstruction.

Input: The image a ∈ Zn
M of the solution of the linear

system Ax = b, and B ∈ Z>0, an upper bound on the
magnitude of the entries of A and b. Also, a parameter
c ∈ Z>0 controlling the maximum lattice dimension to use
in VecRecon.
Output: Either the solution x ∈ Qn or FAIL.

// Need M > 2(c+1)/2N1+1/c and M > 2(c+1)/2nBN .

1. [Set an acceptable size bound]

N :=
⌈

min
(

Mc/(c+1)/2c/2,M/(2(c+1)/2nB)
)⌉

− 1;

2. [Vector rational reconstruction]

S := VecRecon(n,a,M,N, c) ∈ Zk×(n+1);
If k = 0 then return FAIL.

assert k = 1

3. [Return solution]
return S2..n+1/S1;

Lemma 4. If Algorithm 5 does not return FAIL then the
output when run on a = remM (x) is the correct solution
x = A−1b.

Proof. First, note that every entry of S is absolutely

n B Alg. 4
Alg. 5
c = 2

Alg. 5
c = 3

Alg. 5
c = 4

Alg. 5
c = 5

200 1 1061 800 712 668 642
400 1 2398 1803 1604 1504 1444
800 1 5349 4017 3571 3349 3215
1600 1 11806 8860 7876 7385 7090
Alg. 5/Alg. 4 ≈ 75% ≈ 67% ≈ 63% ≈ 60%

Table 1: The value of logM required to guarantee

Algorithms 4 and 5 return a solution.

bounded by M/(2nB):

‖S‖max ≤ maxi‖Si‖ (Norm comparison)

≤ 2(k−1)/2‖S∗
k‖ (Proposition (1.7) in [14])

≤ 2(c−1)/2N (Output of VecRecon)

< M/(2nB) (M > 2(c+1)/2nBN)

Then we can apply Lemma 3 on any row i of S, since
A(Si,2..n+1)

T ≡ Si,1b (mod M) by construction of S. There-
fore every row of S yields a solution x = Si,2..n+1/Si,1, but
since there is only one solution and the rows of S are lin-
early independent, S can have at most one row. Assuming
the algorithm did not return FAIL, we have x = S2..n+1/S1,
as required.

Lemma 5. Let d, n be the minimal denominator and nu-
merators of the system’s unique rational solution vector x,

and suppose |d|, ‖n‖∞ ≤ β. If M ≥ 2(c+1)/2(
√
n+ 1β)1+1/c

then Algorithm 5 run on a = remM (x) will return x, not
FAIL.

Proof. From the given bounds,
∥

∥

[

d n
]∥

∥

2 ≤ (n+ 1) β2,

so when
√
n+ 1β ≤ N we have that

[

d n
]

∈ LN (ΛM
a ),

which is guaranteed to be in the lattice L(S) found by Vec-

Recon in step 2.
It is straightforward to check that if M satisfies the given

bound then in fact after step 1 we have N ≥
√
n+ 1β, so

the algorithm will not return FAIL in this case. By Lemma 4
the output will be the correct solution x.

The running time of Algorithm 5 is simply that of Vec-

Recon, which by Theorem 1 is O(n(logM)2) bit operations.
Table 1 shows the reduction in required bitlength of logM by
comparing some minimal bounds on logM for Algorithms 4
and 5 to succeed.

6. FUTURE WORK
The recent article [19] gives an LLL-like algorithm for lat-

tice basis reduction which is quasi-linear in the bitlength M
of the input basis entries, that is, for a lattice with vectors of
constant dimension it runs in O((logM)1+ǫ) bit operations.
It would be interesting to see if this quasi-linear algorithm
could be employed with VecRecon.

The VecRecon algorithm, based on the L
2
WithRemovals

algorithm of [23], requires that M ∈ Ω(N1+1/c) for some
positive integer c. But according to Lemma 3, when the in-
put a to the vector reconstruction problem is the image of
a rational linear system of dimension n with size of entries
bounded by B, we only need M > 2nBN to ensure that
at most one linearly independent reconstruction da ≡ n



(mod M) with |d|, ‖n‖∞ ≤ N exists. This raises the follow-
ing open question: is there a fast algorithm to find d, if it
exists, that only requires M ∈ O(nBN)?
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