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ABSTRACT
This paper presents a new algorithm for computing the Her-
mite form of a polynomial matrix. Given a nonsingular n×n
matrix A filled with degree d polynomials with coefficients
from a field, the algorithm computes the Hermite form of
A using an expected number of (n3d)1+o(1) field operations.
This is the first algorithm that is both softly linear in the
degree d and softly cubic in the dimension n. The algorithm
is randomized of the Las Vegas type.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm Design and Anal-
ysis; I.1.2 [Symbolic and Algebraic Manipulation]: Al-
gorithms; F.2.1 [Analysis of Algorithms and Problem

Complexity]: Numerical Algorithms and Problems

General Terms
Algorithms

Keywords
Hermite form, Polynomial matrices

1. INTRODUCTION
Among the classical normal forms for matrices over a prin-

cipal ideal domain, the Hermite form is the best known. Re-
call the definition of the form over the ring K[x] of univariate
polynomials over a field K. Corresponding to any nonsingu-
lar A ∈ K[x]n×n is a unimodular matrix U ∈ K[x]n×n such
that

H = UA =











h1 h̄12 · · · h̄1n

h2 · · · h̄2n

. . .
...
hn











is upper triangular, hj is monic for 1 ≤ j ≤ n, and deg h̄ij <
deg hj for 1 ≤ i < j ≤ n. The problem of computing the
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Hermite form has received a lot of attention. For example,
the thesis [5, 18, 15, 27, 6, 19] and ISSAC papers [25, 24,
26, 16] have addressed this topic.

Modulo determinant algorithms [11, 12, 7], see also [4],
compute the Hermite form of A working modulo the deter-
minant and require O (̃n4d) field operations from K. Matrix
multiplication can be introduced [11, 24] to reduce the cost
to O (̃nω+1d), where 2 < ω ≤ 3 is the exponent of matrix
multiplication. The iterative approach in [17] gives a deter-
ministic O(n3d2) algorithm, achieving a running time that
is cubic in n but at the cost of increasing the exponent of
d to two. In this paper we give a Las Vegas algorithm to
compute H using an expected number of O (̃n3d) field op-
erations from K. To the best of our knowledge, this is the
first algorithm that achieves a running time that is both
softly cubic in the matrix dimension n and softly linear in
the dimension d.

To put the problem of computing the Hermite form into
context, we note that many problems on polynomial matri-
ces now have algorithm that complete in O (̃nωd) field oper-
ations. Examples include the high-order lifting based linear
solving, determinant and Smith form algorithms in [20, 21],
the fast row reduction algorithm of [9] and minimal approx-
imant basis algorithms in [9, 28]. The techniques in [14] can
be adapted to the case of polynomial matrices and achieve
algorithms that are subcubic in n for many problems. It
is even known that the explicit inverse of A, which has to-
tal size Ω(n3d), can be computed in nearly optimal time
O (̃n3d) [13, 23].

The main difficulty to obtain fast algorithms for the Her-
mite form seems to be the unpredictability and nonuni-
formity of the degrees of the diagonal entries. The best
a priori bound for deg hj is jd, 1 ≤ j ≤ n. Summing
these a priori bounds gives

∑n

j=1 jd ∈ Θ(n2d), which over-

shoots by a factor of n the a priori bound
∑n

j=1 deg hj =
detA ≤ nd. For comparison, for the diagonal Smith form
S := ŪAV̄ = Diag(s1, . . . , sn) of A, a canonical form un-
der left and right unimodular multiplication, we have the
a priori bounds deg sj ≤ (n/(n − j + 1))d; summing these
yields Θ(nd log n). These good a priori bounds for the in-
variant factors sj are exploited, for example, in [20, 8] to get
improved algorithms for computing the Smith form.

The key to our approach in this paper is to use the Smith
form S of A, together with partial information of a right
unimodular transform V̄ , in order to obtain the Hermite
form H of A. Our algorithm has two main phases.

The first phase is to compute the degrees of the diagonal
entries of H . We show that this can be accomplished via a



unimodular matrix triangularization:
[

S
V In

]

−→

[

In ∗
T

]

∈ K[x]2n×2n. (1)

The matrix V is obtained from V̄ by reducing entries in
column j modulo sj , 1 ≤ j ≤ n. We show that the sub-
matrix T in (1) will be left equivalent to A and thus, up
to associates, has the same diagonal entries as H . When
performing the triangularization in (1), we exploit the fact
that S is diagonal by keeping offdiagonal entries in the first
n columns of the work work matrix reduced modulo the di-
agonal entry in the same column. Using the upper bound
∑n

j=1 deg sj ≤ nd, and by avoiding explicit computation of
the offdiagonal entries of T and the block above T , we can
compute the diagonal entries of T in O (̃n3d) operations
from K.

The second phase of our algorithm uses the knowledge of
the degrees of the diagonal entries of H to set up a minimal
approximant basis problem for recovering H . In particular,
the Hermite formH can recovered by computing a left kernel
basis in canonical form for the first n columns of the matrix
in (1):

[

−HV S−1 H
]

[

S
V

]

= 0.

Our main contribution is to show how to transform the ker-
nel computation shown above to an equivalent problem that
can be solved in time O(nω

B(d)) using the fast minimal
approximant basis algorithm of [9]. Our problem transfor-
mation makes use of the partial linearization and reduction
of order techniques in [22].

The rest of this paper is organised as follows. Section 2
gives our algorithm for computing the diagonal entries of H .
Section 3 gives the algorithm to compute the entire Hermite
form given knowledge of the degrees of the diagonal entries.
Section 4 makes some concluding remarks. Our cost model
is defined below.

Cost model
Algorithms are analysed by bounding the number of required
field operations from a field K on an algebraic random access
machine; the operations +, −, × and “divide by a nonzero”
involving two field elements have unit cost.

We use M for polynomial multiplication: let M : Z≥0 →
R>0 be such that polynomials in K[x] of degree bounded by d
can be multiplied using at most M(d) field operations from
K. Given two polynomials a, b ∈ K[x] with b nonzero, we
denote by Rem(a, b) and Quo(a, b) the unique polynomials
such that a = Quo(a, b) b+Rem(a, b) with degRem(a, b) <
deg b. If a and b have degree bounded by d then both of these
operations have cost O(M(d)). M is superlinear: M(ab) ≤
M(a)M(b) for a, b ∈ Z>1.

The Gcdex operation takes as input two polynomials a, b ∈
K[x], and returns as output the polynomials g, s, t, u, v ∈
K[x] such that

[

s t
u v

] [

a
b

]

=

[

g
]

, (2)

with g a greatest common divisor of a and b, and sv − tu a
nonzero constant polynomial. It will be useful to define an
additional function B to bound the cost of the extended gcd
operation, as well as other gcd–related computations. We
assume that B(d) = M(d) log d.

2. THE DIAGONAL ENTRIES
Throughout this section let A ∈ K[x]n×n be nonsingular

with degree d.
In this section we show how to pass over the Smith form

of A in order to recover the degrees of the diagonal entries
of the Hermite form of A. The algorithm actually recovers
the diagonal entries and not just the degrees, but it is the
degrees that will be required by our Hermite form algorithm
in the next section. Some mathematical background and
previous results are developed and recalled in Subsection 2.1.
The algorithm for computing the diagonal entries is given in
Subsection 2.2.

2.1 Hermite form via kernel basis
The Hermite form is a canonical form for left equivalence

over K[x]. A Hermite form H is the Hermite form of A
if H is left equivalent to A: H = UA for a unimodular
transformation U . Solving for U gives U = HA−1. The
following lemma gives an alternative, equivalent criteria for
a Hermite form H to be left equivalent to A that does not
explicitly involve U .

Lemma 1. A Hermite form H is the Hermite form of A
if deg detH ≤ deg detA and HA−1 is over K[x].

To obtain a more compact representation of the matrix A−1

in Lemma 1 we will pass over the Smith form. Recall the def-
inition: corresponding to A are unimodular matrices Ū , V̄ ∈
K[x]n×n such that S := ŪAV̄ = Diag(s1, . . . , sn) is the
Smith canonical form of A, that is, each si is monic and
si | si+1 for 1 ≤ i ≤ n − 1. Solving for A−1 gives A−1 =
V̄ S−1Ū . Considering Lemma 1, and noting that Ū is uni-
modular, we may conclude that, for any matrixH ∈ K[x]n×n,
HA−1 is over K[x] if and only if HV̄ S−1 is over K[x]. Multi-
plying S−1 by sn, the largest invariant factor, gives snS

−1 =
Diag(sn/s1, . . . , sn/sn) ∈ K[x]n×n. We conclude thatHV̄ S−1

is over K[x] if and only if HV̄ (snS
−1) ≡ 0 mod sn. We ob-

tain the following result.

Lemma 2. Suppose S = ŪAV̄ = Diag(s1, . . . , sn) is the
Smith form of A, where Ū and V̄ are unimodular, and let
V ∈ K[x]n×n be the matrix obtained from V̄ by reducing
column j of V̄ modulo sj, 1 ≤ j ≤ n. Then a Hermite form
H is the Hermite form of A if deg detH ≤ deg detA and
HV̄ (snS

−1) ≡ 0 mod sn.

The following corollary of Lemma 2 is the basis for our ap-
proach to compute the diagonal entries of the Hermite form
of A.

Corollary 3. Let V and S be as in Lemma 2. The Her-
mite form of

[

S
V In

]

∈ K[x]2n×2n (3)

has the shape
[

In ∗
H

]

∈ K[x]2n×2n, (4)

where H is the Hermite form of A.

Proof. First note that
[

S V T
]T

is left equivalent to
[

S V̄ T
]T

where V is a unimodular matrix. It follows
that the principal n × n submatrix of the Hermite form of



the matrix in (3) must be In. It remains to prove that H
is the Hermite form of A. The unimodular transformation
that transforms the matrix in (3) to its Hermite form in (4)
must have the following shape:

[

∗

−HV S−1 H

] [

S
V In

]

=

[

In ∗
H

]

.

The result follows as the last n rows [−HV S−1 H ] of the

transformation matrix are a left kernel basis for [ S V T ]
T
.

Theorem 4. Let A ∈ K[x]n×n be nonsingular of degree
d. If #K ≥ 8nd, matrices S and V as in Lemma 2 can be
computed in a Las Vegas fashion with an expected number of
O(n2

B(nd)) operations from K.

Proof. First compute a row reduced form R of A using
the algorithm of [9], or the deterministic variant in [10]. The
Las Vegas algorithm supporting [23, Theorem 28] can now
be used to compute V and S from R in the allotted time.

2.2 The algorithm for diagonal entries
Corresponding to a nonsingular input matrix A ∈ K[x]n×n

of degree d, let S and V be as in Lemma 2. Instead of work-
ing with the matrix in (3) it will be useful to reverse the
columns of V . To this end, let P be the n× n permutation
matrix with ones on the antidiagonal. Note that postmulti-
plying a matrix by P reverses the order of the columns. Our
input matrix has the shape

G =

[

P
I

] [

S
V I

] [

P
I

]

=





















sn
sn−1

. . .
s1

∗ ∗ · · · ∗ 1
∗ ∗ · · · ∗ 1
...

... · · ·
...

. . .
∗ ∗ · · · ∗ 1





















∈ K[x]2n×2n,

and satisfies the following properties:

1. Diag(s1, . . . , sn) is the Smith form of A and hence sat-
isfies

∑n

j=1 deg sj = deg detA ≤ nd, where d = degA.

2. Off diagonal entries in column j of G have degree less
than the diagonal entry in the same column, 1 ≤ j ≤ n.

Our goal is to recover the last n diagonal entries of the Her-
mite form of G. The standard approach to triangularize G,
without any regard to cost or concern for growth of degrees,
is to use extended gcd computations and unimodular row
operations to zero out entries below the pivot entry in each
column.

for j from 1 to 2n− 1 do

for i from j + 1 to 2n do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);
[

G[j, ∗]
G[i, ∗]

]

:=

[

s t
u v

] [

G[j, ∗]
G[i, ∗]

]

od

od

Note that, for j = 1, 2 . . . , n−1, the first n−j iterations of
the inner loop do nothing since the principal n× n block of

G remains upper triangular during the elimination; omitting
these vacuous iterations, the following example shows how
the shape of the work matrix changes as in the case n = 3:







s3 s2
s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ 1






→







∗ ∗ ∗ ∗
s2

s1
∗ ∗ ∗

∗ ∗ ∗ 1
∗ ∗ ∗ 1






→







∗ ∗ ∗ ∗ ∗
s2 s1
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ 1







→





∗ ∗ ∗ ∗ ∗ ∗
s2 s1
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



 →





∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
s1
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



 → · · ·

Note that even after only the first column has been elimi-
nated, the upper triangular structure of the trailing n × n
block has been lost, thus necessitating that j range up to 2n.
Our first refinement of the algorithm is to reverse the order
of elimination of entries in the southwest block of G, thus
preserving the upper triangularity of the southeast block.

for j from 1 to n do

for i from 2n by −1 to n+ 1 do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);
[

G[j, ∗]
G[i, ∗]

]

:=

[

s t
u v

] [

G[j, ∗]
G[i, ∗]

]

od

od

The following example for n = 3 shows how the shape of
the shape of the work matrix changes during the first few
iterations:







s3 s2 s1
∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ 1






→







∗ ∗ ∗ ∗
s2 s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗






→







∗ ∗ ∗ ∗ ∗
s2 s1

∗ ∗ ∗ 1
∗ ∗ ∗ ∗
∗ ∗ ∗







→





∗ ∗ ∗ ∗ ∗ ∗
s2 s1
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗



 →





∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
s1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗



 → · · ·

Our next two refinements of the triangularization algorithm
concern the cost.

Initially, we assume that the offdiagonal entries in G are
reduced modulo the diagonal entry in the same column. As
the algorithm eliminates entries in column j, we can implic-
itly perform unimodular row operations to reduce entries in
column j + 1, . . . , n modulo the diagonal entry in the same
column. In the following example, entries that are kept re-
duced modulo the diagonal entry in the same column are
represented by ∗̄.







s3 s2 s1
∗̄ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗̄ 1






→







∗ ∗̄ ∗̄ ∗
s2 s1

∗ ∗̄ ∗̄ 1
∗ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗






→







∗ ∗̄ ∗̄ ∗ ∗
s2 s1

∗ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗ ∗
∗̄ ∗̄ ∗







→







∗ ∗̄ ∗̄ ∗ ∗ ∗
s2

s1
∗̄ ∗̄ ∗ ∗ ∗
∗̄ ∗̄ ∗ ∗
∗̄ ∗̄ ∗






→







∗ ∗ ∗̄ ∗ ∗ ∗
∗ ∗̄ ∗
s1

∗ ∗̄ ∗ ∗ ∗
∗ ∗̄ ∗ ∗
∗̄ ∗






→ · · · (5)

The second refinement of the algorithm is to keep the ∗̄ en-
tries reduced modulo the diagonal entry in the same column
during the elimination.



for j from 1 to n do

for i from 2n by −1 to n+ 1 do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);

G[j, j], G[i, j] := g, 0;

U :=

[

s t
u v

]

;

for k from j + 1 to n do
[

G[j, k]
G[i, k]

]

:= Rem

(

U

[

G[j, k]
G[i, k]

]

, sn−k+1

)

od;
for k from n+ 1 to 2n do

[

G[j, k]
G[i, k]

]

:= U

[

G[j, k]
G[i, k]

]

od

od

od

Notice in (5) that entries in the last n columns of the work
matrix G are not kept reduced and can suffer from expres-
sion swell. However, our goal is to recover only the trailing
n diagonal entries of the last n columns of the triangular-
ization of G. To avoid the cost associated with performing
the unimodular row operations on the last n columns of the
work matrix, we can exploit the special structure of the work
matrix and modify the elimination procedure to only keep
track of the the last n diagonals. The following illustrates
our point with an example for n = 3. Let

G =







s3
s2 s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
a1 ∗ ∗ 1






.

The first elimination step computes the extended gcd of
s3 and a1, (g, s, t1, u, v1) = Gcdex(s3, a1), and updates the
work matrix to have the following shape:









s t1
1
1
1
1

u v1















s3 0
s2 s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
a1 ∗ ∗ 1






=







g ∗ ∗ t1
s2 s1

∗ ∗ ∗ 1
a2 ∗ ∗ 1

∗ ∗ v1






.

Continuing the elimination gives







∗ ∗ ∗ t1
s2 s1

∗ ∗ ∗ 1
a2 ∗ ∗ 1

∗ ∗ v1






→







∗ ∗ ∗ t2 ∗
s2

s1
a3 ∗ ∗ 1

∗ ∗ v2 ∗
∗ ∗ v1







→





∗ ∗ ∗ t3 ∗ ∗
s2 s1
∗ ∗ v3 ∗ ∗
∗ ∗ v2 ∗
a4 ∗ v1



 →







∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ t4s1
∗ ∗ v3 ∗ ∗
∗ ∗ v2 ∗
∗ v1v4






· · ·

The key observation is that, although the offdiagonal entries
in the last n columns are modified during the elimination,
they never affect the last n diagonal entries entries which
will depend only on the vi computed by the calls to Gcdex.
Our third refinement of the algorithm is to avoid storing
and updating any of the offdiagonal entries in the last n
columns of the matrix. Instead, we can keep track of the
last n diagonal entries using a vector D ∈ K[x]1×n.

For n = 3, the following shows the state of G andD during
the execution of Algorithm DiagonalHermite. Here vi is the

DiagonalHermite(S, V )
Input: • S ∈ K[x]n×n, the Smith form of a

nonsingular A ∈ K[x]n×n of degree d.
• V ∈ K[x]n×n, degCol(V, j) < deg sj , 1 ≤ j ≤ n.

Output: D ∈ Z
1×n, the degrees of the last n diagonals

in the Hermite form of

[

S
V I

]

.

Let P be equal to In with columns reversed.

Intialize G =

[

P
I

] [

S
V

]

P .

Initialize D = [1, . . . , 1].

for j from 1 to n do

for i from 2n by −1 to n+ 1 do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);

G[j, j], G[i, j] := g, 0;

U :=

[

s t
u v

]

;

for k from j + 1 to n do

U := Rem(U, sn−k+1);
[

G[j, k]
G[i, k]

]

:= Rem

(

U

[

G[j, k]
G[i, k]

]

, sn−k+1

)

od;
D[i− n] := D[i− n]× v

od

od;
return [degD[1], . . . ,degD[n]]

Figure 1: Algorithm DiagonalHermite

value of v on the i’th call to Gcdex in the above algorithm.

G =

[s3 s2 s1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

]

→

[∗ ∗ ∗
s2 s1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗

]

· · · →

[∗ ∗ ∗
s2 s1
∗ ∗
∗ ∗
∗ ∗

]

→

[∗∗ ∗
∗ ∗s1
∗ ∗
∗ ∗
∗

]

· · ·

D = [1,1,1] [1,1,v1 ] [v3,v2,v1 ] [v3,v2,v1v4 ]

We now bound the running time of Algorithm Diagonal-

Hermite. During the elimination of column j, entries in
column j remain bounded in degree by the diagonal entry,
a divisor of sn−j+1. Thus, each call to Gcdex is bounded by
B(deg sn−j+1) operations from K. The cost of all n2 calls
to Gcdex is thus bounded by n

∑n

j=1 B(deg sj) ≤ nB(nd),

using
∑n

j=1 deg sj ≤ nd.
The cost of applying the transformation U , in each itera-

tion of i, is bounded by c1
∑n−j+1

k=1 M(deg sk) for some con-
stant c1 > 0. For every column j, the total cost of applying
transformations is bounded by nc1

∑n−j+1
k=1 M(deg sk). Thus

the cost of applying the transformation U , in all iterations,
is bounded by

nc1

n
∑

j=1

n−j+1
∑

k=1

M(deg sk) ≤ c1n
2
M(nd),

using the superlinearity ofM and that fact that
∑n

j=1 deg sj ≤
nd.

Each entry in D is updated n times and also at any time
during the execution of the algorithm

∑n

i=1 degD[i] ≤ nd.
This provides a bound for the cost of all updates to D as
O(nM(nd)).



We obtain the following result.

Theorem 5. Algorithm DiagonalHermite is correct. The
cost of the algorithm is O(n2

M(nd) + nB(nd)) operations
from K.

3. FROM DIAGONAL TO HERMITE
We begin by defining some notation. Let e = (e1, . . . , en)

be a tuple of integers and u =
[

u1 · · · un

]

∈ K[x]1×n.
Following [2], the e-degree of u is equal to mini deg ui −
ei. We define Le(A) to be the set of row vectors of L(A)
that have nonpositive e-degree, that is, those vectors u that
satisfy deg ui ≤ ei, 1 ≤ i ≤ n.

Definition 6. Let L ∈ K[x]∗×n and e = (e1, . . . , en) be
a tuple of degree constraints. A matrix G ∈ K[x]∗×n is a
genset of type e = (e1, . . . , en) for Le(L) if

• every row of G has nonpositive e-degree,

• Le(G) = Le(L).

Note that for some tuples e we may have L(Le(A)) ⊂ L(A).
In other words, there may not exist a basis for the lattice
L(A) for which every row in the a basis has degree bounded
by e. An obvious example is when e = (−1, . . . ,−1), in
which case L(Le(A)) has dimension zero.

3.1 From genset to Hermite form
Let d = (d1, . . . , dn) be the degrees of the diagonal en-

tries of the Hermite form H of a nonsingular A ∈ K[x]n×n.
Because H is a basis for L(A), and each row of H has non-
positive d-degree, we have the following result.

Lemma 7. L(Ld(A)) = L(A).

The following lemma shows how to recover H from a genset
H̄ of type d for Ld(A). The lemma follows as a corollary of
Lemma 7 and the following fact regarding H : From among
all rows of L(A) which have first i−1 entries zero and entry
i nonzero, the i’th row of the Hermite form has i’th entry of
minimal degree, 1 ≤ i ≤ n.

Lemma 8. Suppose H̄ ∈ K[x]m×n is a genset of type d for
Ld(A). Let L ∈ K

m×n : Col(L, j) = Coeff(Col(H̄, j), xdj ),
1 ≤ j ≤ n. If U ∈ K

m×m is a nonsingular matrix such
that UL is in reduced row echelon form, then UH̄ will have
principal n × n submatrix equal to H, and last m − n rows
zero.

Example 9. Let K = Z/(7), and consider the following
Hermite form H ∈ K[x]3×3, together with a genset H̄ ∈
K[x]5×3 of type (1, 3, 2) for L(H).

H =

[

x x2 + 1 x+ 2
x3 + 2x2 x+ 3

x2 + 2

]

H̄ =









4x 6x3 + 2x2 + 4 6x2 + 3x+ 3
x 4x3 + 2x2 + 1 5x2 + 5x+ 3
x 2x3 + 5x2 + 1 3x2 + 3x
3x 5x3 + 6x2 + 3 4x2 + x+ 1
2x 2x2 + 2 4x2 + 2x+ 5









The following shows the leading coefficient matrix L of H̄,
together with a nonsingular matrix U ∈ K

5×5 that trans-
forms L to reduced row echelon form, which due to Lemma 8
will necessarily have principle 3× 3 submatrix equal to I3.

U






2 1 6 0 0
2 6 0 0 0
5 5 3 0 0
6 3 5 1 0
2 3 2 0 4







L






4 6 6
1 4 5
1 2 3
3 5 4
2 0 4






=





1
1
1





UH̄ is equal to the Hermite form H augmented with two zero
rows.

3.2 Hermite form via kernel basis
The quantities defined in this subsection will be used in

the remaining subsections. Let A ∈ K[x]n×n be nonsingular,
with the following quantities precomputed:

• The Smith form S = Diag(s1, . . . , sn) ∈ K[x]n×n of A.

• A matrix V ∈ K[x]n×n such that u ∈ L(A) if and only
if uV S−1 is over K[x]. The i’th column of V has entries
of degree less than deg si.

• The degrees d = (d1, . . . , dn) of the diagonal entries of
the Hermite form H of A.

Let R := −HV S−1 ∈ K[x]n×n. Then

[

R H
]

[

S
V

]

= 0. (6)

Since column i of V has degree strictly less than deg si,
we have degR ≤ D where D = maxi di − 1. Let D =
(D, . . . ,D), of length n. The matrix

[

R H
]

is a basis
(with all rows of nonpositive (D,d)-degree) for the left ker-

nel of
[

S V T
]T

. In fact, by Lemma 8, to recoverH it will

be sufficient to compute a genset
[

R̄ H̄
]

of type (D,d)

for L(D,d)(
[

R H
]

). The next subsection computes such
a genset using fast minimal approximant basis computation.

We remark that the transformation of a canonical form
computation to that of a kernel computation is used in [2,
3]. In particular, note that

[

U H
]

[

A
In

]

= 0. (7)

The setup in (7) requires no precomputation, and is useful
if the unimodular transformation U to achieve the Hermite
form is also required. What is important in our approach
shown in (6) is the shape of the input problem: we will ex-
ploit the fact that S is diagonal, with sum of column degrees
in both S and V bounded by nd.

3.3 Hermite via minimal approximant basis
Let G ∈ K[x]n×m and e be a tuple of nonnegative integers.

The entries of e may be considered to be degree constraints.
Recall that an order N minimal approximant basis (or σ-
basis [1]) of type e for G is a nonsingular and row reduced
matrix M ∈ K[x]n×n such that MG ≡ 0 mod xN . The min-
imality condition means that the rows of M have e-degrees
as small as possible.

Lemma 10. Let M ∈ K[x]2n×2n be an order N = D +
deg sn + 1 minimal approximant basis of type (D,d) for
[

S V T
]T

. The submatrix of rows of M that have non-

positive (D,d)-degree comprise a basis for L(
[

R H
]

).



Proof. Let v ∈ K[x]1×2n have nonpositive (D,d)-degree.

The order N is high enough that v
[

S V T
]T

= 0 if and

only if v
[

S V T
]T

≡ 0 mod xN .

Example 11. Consider the matrix H from Example 9.
The degrees of the diagonal entries of H are (1, 3, 2) and
thus D = 2. The Smith form of H is diag(1, 1, x6 + 2x5 +
2x4 + 4x3). Since the first two invariant factors are trivial,
we can restrict S to its last entry and V to its last column
as the input:

[

S
V

]

=







x6 + 2x5 + 2x4 + 4x3

5x5 + x3 + 6x2 + 6
6x5 + 3x4 + 3x3 + x
4x5 + 2x4 + 2x3






. (8)

The following shows an order 9 minimal approximant basis

M of type (2, 1, 3, 2) for
[

S V T
]T

, rows permuted to be
in nondecreasing (D,d)-degree.

M =







3x+ 6 x2 + 2
x x x2 + 1 x+ 2

x2 + 4x+ 5 x3 + 2x2 x+ 3
x4 + 5x3 + 2x2 + x+ 4 0 5x2 x







Exactly the first n = 3 rows have nonpositive (D,d)-degree.
For this example, the northeast block of M is the Hermite
form of A up to a row permutation. In general, the northeast
block will be a genset of full row rank for Ld(H).

Using directly the approach of Lemma 10 to recover H is too
expensive because the required order N = D + deg sn + 1
of the minimal approximant basis computation is too high.
Indeed, we may have N ∈ Ω(nd). The reduction of order
technique in [22, Section 2] can be used to reduce the order
down to one more than times the maximum of the degree
constraints in (D,d). Unfortunately, the largest entry in
d and D may be Ω(nd). Before applying the reduction of
order technique we apply the partial linearization technique
from [22, Section 3] to transform to a new minimal approx-
imant basis problem of type (D,d1), with all entries of d1

bounded by d.
We need to recall some notation from [22]. The norm

of a tuple of degree constraints d is defined to be ‖d‖ =
(d1 + 1) + · · · + (dn + 1). For b ≥ 0, let φb be the function
which maps a single degree bound di to a sequence of degree
bounds, all element of the sequence equal to b except for pos-
sibly the last, and such that ‖(di)‖ = di + 1 = ‖(φb(di))‖.
Let len(φb(di)) denote the length of the sequence. For ex-
ample, we have φ3(10) = 3, 3, 2 with len(φ3(10)) = 3, while
φ2(11) = 2, 2, 2, 2 and len(φ2(11)) = 4. Computing a genset
of type (D,d) for L(D,d)(

[

R H
]

) can be reduced to com-
puting an order N genset of type d1 = (φb(d1), . . . , φb(dn)).
Corresponding to d1 define the following n̄× n expansion /
compression matrix

B :=































1
xb+1

...
x(b+1)len(φb(d1))−1

1
xb+1

...
x(b+1)(len(φb(d2))−1)

. . .































,

where n̄ =
∑n

i
len(φb(di)) =

∑n

i
⌈(di + 1)/(b+ 1)⌉.

Lemma 12. Let b ≥ 0 and define ei = ⌈(di + 1)/(b+ 1)⌉,
1 ≤ i ≤ n. Let M1 be an order N = D + deg sn + 1 mini-

mal approximant basis of type (D,d1) for
[

S (BV )T
]T

,

where d1 = (φb(d1), . . . , φb(dn)). If
[

R̄1 H̄1

]

is the sub-
set of rows of M1 which have degree bounded by (D,d1), then
[

R̄1 H̄1B
]

is a genset of type (D,d) for L(D,d)(H).
Furthermore, with the choice b = d the row dimension n̄

of BV will satisfy n̄ ∈ O(n).

Example 13. The problem in Example 11 was to com-
pute a minimal approximant of type (D,d) = (2, 1, 3, 2) for
the 4×1 input matrix shown in (8). Consider setting the lin-
earization parameter b in Lemma 12 as b = 1. The expanded
problem BV is

B








1
1
x2

1
x2









V =

BV










5x5 + x3 + 6x2 + 6
6x5 + 3x4 + 3x3 + x
6x7 + 3x6 + 3x5 + x3

4x5 + 2x4 + 2x3

4x7 + 2x6 + 2x5











. (9)

The degree constraints for the expanded problem are

(D,d1) = (2, φ1(1), φ1(3), φ1(2))

= (2, 1, 1, 1, 1, 0).

The following shows an order 9 minimal approximant basis

of type (2, 1, 1, 1, 1, 0) for
[

S (BV )T
]T

.

M =













3x+ 6 0 0 0 2 1
x2 + 4x+ 5 0 0 x+ 2 x+ 3 0

x x 1 1 x+ 2 0
3x+ 6 0 0 0 x2 + 2 0

0 0 x2 6 0 0
x4 + 5x3 + 2x2 + x+ 4 0 0 5 x 0













The first 3 rows of M have nonpositive (D,d1)-degree. Ap-
plying the compression matrix to the northwest block of M
gives a genset H̄ of type d for Ld(H):

[

0 0 0 2 1
0 0 x+ 2 x+ 3 0
x 1 1 x+ 2 0

]

B =

H̄
[

0 0 x2 + 2
0 x3 + 2x2 x+ 3
x x2 + 1 x+ 2

]

.

Note that in this example H̄ has full row rank. We re-
mark that, in general, the genset produced using this ex-
pansion/compression technique may have linearly dependent
rows.

At this point, we have reduced the problem of computing H
to that of computing the rows

[

R̄1 H̄1

]

of nonpositive
(D,d1)-degree in an order N = D + deg s1 + 1 minimal
approximant basis of type (D,d1), namely

[

R̄1 H̄1

]

[

S
BV

]

= 0 mod xN .

The degree constraints D = (D, . . . ,D) corresponding the
columns of R̄1 may still be too large in general, since D =
maxi di − 1 ∈ Ω(nd) in the worst case. The key idea now
is that R̄1 is not required. Let C be a matrix such that
BV − CS has each column of degree bounded by si, and
consider the transformed input:

[

In
−C I

] [

S
BV

]

=

[

S
E

]

. (10)



Note that each column in E has degree strictly less than the
corresponding diagonal entry in S.

Lemma 14. Let D1 = (d− 1, . . . , d− 1), of length n. Let
M2 be an order N = D + deg sn + 1 minimal approximant

basis of type (D1,d1) for
[

S ET
]T

. Let
[

R̄2 H̄2

]

be
the submatrix of M2 comprised of rows that have nonpositive
(D1,d1)-degree. Then H̄2B is a genset of type d for Ld(H).

Proof. The order N is large enough to ensure that
[

R̄2 H̄2

] [

S ET
]T

= 0,

and (10) gives that
[

R̄2 − H̄2C H̄2

] [

S (BV )T
]T

=
0, which implies that

[

R̄2 − H̄2C H̄2B
]

[

S
V

]T

= 0,

with all rows in H̄2B of nonpositive d-degree. But since V
has degrees of entries bounded by the corresponding diago-
nal entry of S, each row of R̄2−H̄2 has nonpositiveD degree.
We conclude that

[

R̄2 − H̄2C H̄2

]

⊆ L(D,d)(
[

R H
]

).
The other direction is similar.

Provided we have chosen the linearization parameter b in
Lemma 12 to satisfy b ∈ Θ(d) (e.g., b = d will suffice),
the final minimal approximant problem in Lemma 14 will
have dimension O(n) × n. Note that entries of the com-
pression/expansion matrix B are all powers of x. Thus, the
only computation (in terms of field operations) required to
construct the input problem in Lemma 14 is to construct E
from BV by reducing entries in each column i modulo the
diagonal entry in the same column of S, 1 ≤ i ≤ n.

Example 15. The problem in Example 13 was to com-
pute a minimal approximant of type (D,d1) = (2, 1, 1, 1, 1, 0)
for the partially linearized 6×1 input matrix B shown in (9).
Reducing the last 5 entries modulo the the principal entry we
obtain the new input

[

S
E

]

=

















x6 + 2x5 + 2x4 + 4x3

5x5 + x3 + 6x2 + 6
6x5 + 3x4 + 3x3 + x

2x5 + x4 + 2x3

4x5 + 2x4 + 2x3

6x5 + 3x4 + 3x3

















. (11)

The following shows the submatrix of an order N = D +
deg sn+1 = 9 minimal approximant basis of type (D1,d1) =

(0, 1, 1, 1, 1, 0) for
[

S ET
]T

comprised of rows that have
nonpositive (D1,d1)-degree:

[

R̄2 H̄2

]

=





0 0 0 0 2 1
0 x 1 2x+ 5 3x+ 1 0
1 0 0 x+ 2 x+ 3 0



 .

Applying the compression matrix B to H̄2 yields a genset
H̄2B of type d for Ld(H).

At this point (Lemma 14) we have reduced the problem of
computing H to that of computing the rows

[

R̄2 H̄2

]

of
nonpositive (D1,d1)-degree of a minimal approximant basis

of order N = D + deg sn + 1 for an input
[

S ET
]T

. If
the partial linearization parameter in Lemma 12 was chosen
as b = d, then E has dimension O(n) × n, and all degree

constrains in (D1,d1) are bounded by d. Since the sum

of the column degrees in
[

S ET
]T

is bounded by nd,
the reduction of order technique in [22, Section 2] can be
used to transform to an equivalent problem of dimension
O(n)×O(n) and order only 2d+1. We refer to [22] for details
of the reduction of order technique, and only illustrate the
technique here on our running example.

Example 16. In Example 15 we computed an order 9
minimal approximant basis of type (D1,d1) = (0, 1, 1, 1, 1, 0)

for the 6× 1 input F :=
[

S ET
]T

shown in (11). Since
the maximum degree constraint is 1, we can instead compute
an order 2 · 1 + 1 = 3 minimal approximant basis M̄ of type
(D1,d1, d − 1, d − 1) = (0, 1, 1, 1, 1, 0, 0, 0) for the following
input:

F̄ =





F Quo(F, x2) Quo(F, x4)
1

1



 ∈ K[x]8×3.

Indeed, the submatrix of M̄ comprised of rows that have non-
positive (D1,d1, 0, 0)-degree can be written as

[

W ∗
]

,
where W is the submatrix of an order 9 minimal approxi-
mant basis of type (D1,d1) for F .

We obtain the following theorem.

Theorem 17. Let A ∈ K[x]n×n be nonsingular of degree
d. Assuming #K ≥ 8nd, there exists a Las Vegas probabilis-
tic algorithm that computes the Hermite form H of A using
an expected number of O(n2

B(nd)) field operations from K.

Proof. By Theorem 4, the Smith form S of A and corre-
sponding V as described in Subsection 3.2 can be computed
in a Las Vegas fashion in the allotted time. By Theorem 5,
the degrees of the diagonal entries of H can be computed in
the allotted time using Algorithm DiagonalHermite. Con-

struct column i of the block E of the input
[

S ET
]T

to
the minimal approximant problem of Lemma 14 by reduc-
ing modulo si the entries in column i of BV , 1 ≤ i ≤ n.
Compute the rows of nonpositive degree in the minimal ap-
proximant indicate in Lemma 14 by first applying the reduc-
tion of order technique from [22, Section 2] to obtain a new
problem of dimension O(n) × O(n) and order 2d + 1, and
then apply algorithm PM-Basis from [9] in time O(nω

B(d))
operations from K. Finally, use the approach of Lemma 8
to recover the Hermite form from the genset for Ld(H).

4. CONCLUSIONS
We have given a Las Vegas algorithm for computing the

Hermite form of a nonsingular A ∈ K[x]n×n using O (̃n3d)
field operations form K. The algorithm has four phases:

1. Compute a row reduced form of A.

2. Compute the Smith form S and the image V of a Smith
post-multiplier for A.

3. Compute the diagonal entries of H from S and V .

4. Compute H from S and V and the knowledge of the
degrees of the diagonal entries of H

We remark that row reduction algorithm of [9] can accom-
plish phase 1 using an expected number of O (̃nωd) field op-
erations, and we have shown how to apply the fast minimal



approximant basis algorithm of [9] to accomplish phase 4
in the same time. O (̃nωd) algorithms for phases 2 and 3
may be possible by incorporating blocking into the iterative
algorithms currently used, although some additional novel
ideas seem to be required for phase 2.
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