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ABSTRACT
Let M =

h
A B
C D

i
be a 2n× 2n integer matrix with the prin-

cipal block A square and nonsingular. An algorithm is pre-
sented to determine if the Schur complement D−CA−1B is
equal to the zero matrix in O (̃nω log ||M ||) bit operations.
Here, ω is the exponent of matrix multiplication and ||M ||
denotes the largest entry in absolute value. The algorithm
is randomized of the Las Vegas type, and either returns the
correct answer (“yes” or “no”), or returns fail with proba-
bility less than 1/2. This gives a Las Vegas algorithm for
computing the rank r of an n × m integer matrix A in an
expected number of O (̃nmrω−2 log ||A||) bit operations.

Categories and Subject Descriptors: F.2 [Theory of
computation]: Analysis of algorithms and problem Com-
plexity; I.1 [Computing Methodology]: Symbolic and alge-
braic manipulation: Algorithms

General Terms: Algorithms

1. INTRODUCTION
Consider a 2n× 2n integer matrix

M =

»
A B
C D

–
, (1)

where all the blocks are square of dimension n and A is
nonsingular. The rank of M is equal to n if and only if the
Schur complement D−CA−1B is equal to the zero matrix.»

In

−CA−1 In

– »
A B
C D

–
=

»
A B

D − CA−1B

–
Entries of (D − CA−1B) det A are minors of M of dimen-
sion n + 1. The definition of the determinant gives the
bound ||(D − CA−1B) det A|| ≤ (n + 1)! ||M ||n+1 ≤ ((n +
1)||M ||)n+1, where || · || denotes the maximum entry in ab-
solute value. So, the numbers in D − CA−1B can have
size (bitlength) more than n times that of numbers in M .
The proof of [6, Proposition 2.3] details a deterministic algo-
rithm with cost O (̃n×n3 log ||M ||) bit operations to certify
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that D − CA−1B is the zero matrix. This can be reduced
to O (̃n × nω log ||M ||) where ω is the exponent of matrix
multiplication. The “n×” in these complexity results arise
because of the aforementioned bound for the size of entries
in D − CA−1B.

A well known, and much faster probabilistic approach to
test if D = CA−1B is to choose a single random prime
p and test if D ≡ CA−1B mod p. Primes are sufficiently
dense that it suffices to have log p ∈ O(log n + loglog ||M ||)
to ensure a high probability of success (see, for example, [13,
Section 2.1]). This gives a Monte Carlo algorithm with cost
O (̃nω loglog ||M ||+n2 log ||M ||) bit operations. If the algo-
rithm reports (“no,”, D 6= CA−1B) this is guaranteed to be
correct. But if the algorithm reports (“yes,” D = CA−1B)
this might be incorrect. The probability of returning an in-
correct answer can be made arbitrarily small by repeating
the algorithm, or, as is more usual, by choosing the prime p
from a larger set.

This paper is concerned with the problem of computing
the rank in a certified fashion. We give a Las Vegas algo-
rithm that has cost O (̃nω log ||M ||) bit operations to deter-
mine if rank(M) = n or rank(M) > n. This matches, up
to logarithmic factors, the cost of multiplying together two
integer matrices with the same dimension and same size of
entries as M . Using the best known exponent for ω this be-
comes O (̃n2.376 log ||M ||) bit operations. To the best of our
knowledge, the previously fastest Las Vegas algorithm for
this problem has cost O (̃n2.697263 log ||M ||) bit operations,
obtained by combining the minimal polynomial algorithm
of [9] with the techniques in [12].

Our interest in the rank certification problem is motivated
by the recent progress made in understanding the bit com-
plexity of linear algebra problems on integer matrices. We
refer to [9, 15] for surveys. In particular, the determinant
of an n × n nonsingular matrix A, and the solution of a
linear system of equations Ax = b, can be computed in a
Las Vegas fashion with O (̃nω log ||A||) bit operations [15].
A further example is certification of linear system inconsis-
tency in case A has unknown rank. The school method to
certify that Ax = b is inconsistent is to compare the rank of
A with that of the augmented system

ˆ
A b

˜
. Fast methods

to certify inconsistency have been developed that specifi-
cally avoid the need to certify the rank [5]. Adapted to the
setting of dense integer matrices [10], these methods lead to
an O (̃nω log ||A||) bit operations Las Vegas algorithm that
either computes a solution to the linear system over Q or
proves that the rank of the augmented system is one more
than the rank of A, but the actual certified rank of A itself



is not computed.
Although certified rank computation can be avoided in

some cases, many important problems on integer matrices,
such as computing a basis for the nullspace, computing a
reduced lattice basis from a generating set [11], or trans-
forming the input matrix to a canonical form, have the
property that the rank of the matrix is revealed. For ex-
ample, consider the problem of computing the Smith form,
a diagonal canonical form under unimodular pre- and post-
multiplication that looks like Diag(s1, s2, . . . , sr, 0, . . . , 0),
where 1 ≤ s1|s2| · · · |sr 6= 0 (see, for example, [4, 6, 13]).
Since r is the rank of the input matrix, a Las Vegas reduction
of Smith form computation to integer matrix multiplication
must certify correctness of r in the same time.

We can illustrate the key ideas of our approach using the
following scalar example.»

A B
C D

–
=

»
21 14
6 4

–
We can express 21−1 as an infinite 10-adic expansion as fol-
lows: 21−1 = 1+8·10+3·102+2·103+· · · . For this example,
6 · 21−1 · 14 = 4, so pre- and post-multiplying the infinite
10-adic expansion of 21−1 by 6 and 14 will annihilate the ex-
pansion except for the leftover term 4. As explained above,
it will be sufficient to assay if 6 · 21−1 · 14 ≡ 4 up to some
sufficiently high order. Suppose, for the purposes of this ex-
ample, that our goal is to assay if 6 · 21−1 · 14 ≡ 4 mod 1032.
For integers a and m > 0, let rem(a, m) denote the unique
integer in the range [0, m−1] that is congruent to a modulo
m. If we pre- and post-multiply rem(21−1, 1032) by 6 and
14 we obtain

6 rem(21−1, 1032) 14

= 6 · 80952380952380952380952380952381 · 14

= 6800000000000000000000000000000004

= 4 + 68 · 1032. (2)

The modulo 1032 adjustment term 68 · 1032 appears in (2)
because we used the truncated expansion rem(21−1, 1032).

We now show how to reduce the single problem of order 32
as described above to two problems of order only 16. Split
the expansion of rem(21−1, 1032) into its high and low order
parts as follows: rem(21−1, 1032) = L + H · 1016.

rem(21−1, 1032)

=

Hz }| {
8095238095238095

Lz }| {
2380| {z }
E

952380952381 . (3)

The high-order lifting techniques in [15] allow us to com-
pute the first few leading digits E of L efficiently, without
computing the entire expansion of L. Consider pre- and
post-multiplying L and H separately by 6 and 14.

6 rem(21−1, 1032) 14

= 6 ·
Hz }| {

8095238095238095

Lz }| {
2380952380952381 ·14

= (6 · L · 14) + (6 ·H · 1016 · 14)

= (4 + 20 · 1016) + (−20 · 1016 + 68 · 1032) (4)

Equation (4) illustrates a necessary condition for CA−1B =
D to hold: the modulo 1016 adjustment term arising from
the pre- and post-multiplication of L must cancel out the

leftover term arising from the pre- and post-multiplication
of H · 1016. To compute the modulo 1016 adjustment term
it will be sufficient to have only E, the first few leading bits
of L, as shown in (3). In particular, note that

6 · E · 14 = 6 · 2380 · 14 = −80 + 20 · 104.

We know that H = rem(21−1R, 1016) where the so-called
residue R is defined by R := (I − AL)/1016 = −5. Fortu-
nately, R is guaranteed to have small bitlength and can also
be computed efficiently using only E. If we let B̄ := RB =
−5 · 14 = −70 and D̄ := 20, then CA−1B ≡ D mod 1032 if
and only if CA−1B ≡ D mod 1016 and CA−1B̄ ≡ D̄ mod
1016. Our original problem of checking if 6·21−1 ·14 ≡ 4 mod
1032 is thus equivalent to checking if 6 ·21−1 ·

ˆ
14 −70

˜
≡ˆ

4 20
˜

mod 1016.

If our original problem is to check that rem(CA−1B, 10k)−
D = 0 where A, B, C and D are scalars and k is power of 2,
then repeating the above order reduction process i times
produces the equivalent problem of checking that

rem(CA−1B′, 10k′)−D′ = 0, (5)

with order k′ := k/2i, but where B′ and D′ are now row
vectors of dimension 2i. The second, and key idea of our
algorithm, is to exploit the following well known property of
the integers to achieve a compression of the problem dimen-
sion: if v is an integer row vector of arbitrary dimension,
then v is the zero vector if and only if the scalar vvT is zero,
where vT denotes the transpose of v. More generally, for
an integer matrix M we have rank(M) = rank(MMT ), a
property that is exploited for rank certification in [12]. An
equivalent problem to checking (5) is thus to check that the
dot product of the vector on the left of (5) with itself is
equal to zero. By using a high-order component of the ex-
pansion of A−1 and CA−1, we show how to reduce this to
three scalar problems of order k′.

We now discuss some related work for polynomials ma-
trices. If we consider the matrix in (1) to have entries uni-
variate polynomials from K[x] of degree d, K a field, the
algorithm in [16] will determine in a Las Vegas fashion if
D − CA−1B is the zero matrix in O (̃nωd) field operations
from K. The algorithm in [16] actually computes a complete
left nullspace of M of total size O (̃n2d) coefficients from K,
or about the same as required to write down M . For compar-
ison, the nullspace

ˆ
−CA−1 det A In det A

˜
based on the

Schur complement can require Ω(n3d) field elements to write
down. The rank certification algorithm for integer matrices
we present in this paper does not compute a nullspace of the
matrix: we only assay if D − CA−1B is the zero matrix.

The rest of this paper is organized as follows. Section 2
recalls some notation and results from [15] about X-adic ex-
pansions. Section 3 gives a detailed explanation of the rank
certificate algorithm, referring to the various results in Sec-
tion 4–6 that prove correctness of the algorithm. A Las Ve-
gas algorithm for solving the problem discussed at the start
of this introduction is given in Section 7. Finally, Section 8
extends the algorithm to get a Las Vegas algorithm for com-
puting the rank of an integer matrix in O (̃nmrω−2 log ||A||)
bit operations.

Following [3, 15], we give cost estimates in terms of mul-
tiplication times M(t) for integers and MM(n) for matrices.
The algorithm of [14] allows M(t) = O(t(log t)(log log t)),
while the asymptotically fastest known method for matrix



multiplication [2] allows MM(n) = O(n2.376). We place no
restrictions on MM: our results remain valid if ω = 2.

2. PRELIMINARIES
Fix an integer radix X > 1 and an integer shift 0 ≤ t ≤

X−1. Every rational number a with denominator relatively
prime to X can be expressed as a unique and possibly infinite
expansion

a = a0 + a1X + a2X
2 + a3X

3 + · · · ,

where each integer coefficient ai lies in the range [−t, X −
1− t]. Operation Trunc truncates an X-adic expansion:

Trunc(a, k) := a0 + a1X + a2X
2 + a3X

3 + · · ·+ ak−1X
k−1

Operation Left corresponds to a division by a power of X:

Left(a, k) := ak + ak+1X + ak+2X
2 + ak+3X

3 + · · · .

We will often use the decomposition a = Trunc(a, k) +
Left(a, k)Xk. Rational matrices also admit (X, t)-adic ex-
pansions. If A ∈ Zn×n is nonsingular with det A relatively
prime to X (Notation: det A ⊥ X) we can write A−1 =
∗+ ∗X + ∗X2 + · · · where each ∗ lies in [−t, X − 1− t]n×n.
Operation Trunc and Left extend by elementwise applica-
tion. The first step of the algorithm in this paper is to
compute some high-order components of A−1:

A−1 =

E(1)z }| {
∗+ ∗X +

E(2)X2z }| {
∗X2 + ∗X3 + ∗X4

+ ∗X5 +

E(3)X6z }| {
∗X6 + ∗X7 + ∗X8 + ∗X9 + · · ·

We will also require the analogous coefficients of the expan-
sion of CA−1. These high-order components can be accom-
plished using the high-order lifting techniques of [15].

Theorem 1. There exists an algorithm that takes as in-
put a prime p with p ⊥ det A and log p bounded by O(log n+
loglog ||A||), together with a bound β such that ||A||, ||C|| ≤
β, and returns as output

• an (X, t)-adic shifted number system for which X sat-
isfies log X ∈ O(log n+log ||A||) and the property that
Trunc(a, k) = a for all a ∈ Z with

|a|/Xk−1 ≤ 12n5β2 (6)

• the high-order inverse components

E(i) := Left(Trunc(A−1, 2i), 2i − 2)

and

R(i) := Left(Trunc(CA−1, 2i), 2i − 2)

for 1 ≤ i ≤ log2 k, where k is the smallest power of
two such that Xk > ((n + 1)β)n+1.

The cost of the algorithm is O((log n)MM(n)M(log n+log β))
bit operations. The algorithm is randomized and either re-
turns a correct result or reports failure, the latter with prob-
ability < 1/2.

We end this section by recalling some material from [15].
Let B ∈ Zn×∗ be an integer matrix of arbitrary column
dimension. Then

A−1B = Trunc(A−1B, k) + A−1Res(A, B, k)Xk

where the residue Res(A, B, k) is defined by

Res(A, B, k) := (B −A Trunc(A−1B, k))/Xk.

Note that the division by Xk is exact. If ||B|| is small
enough, the above formula to compute the residue may be
simplified.

Lemma 2. If B = Trunc(B, k) then

Res(A, B, k) = Left(−ATrunc(A−1B, k), k).

In particular, for any i > 0 we have

Res(A, I, 2i) = Left(−A E(i), 2).

The next two size bounds will be indispensable for the proofs
of results in the subsequent sections. Lemma 3 is [15, Corol-
lary 7].

Lemma 3. ||Left(A Trunc(∗, k), k)|| ≤ n||A||.

In the statement of the following lemma, the ∗ notation in
Z∗×n and Zn×∗ indicates an arbitrary (not necessarily the
same) dimension. The ∗ in Trunc(∗, k) indicates an arbitrary
n× n integer matrix.

Lemma 4. If F ∈ Z∗×n and G ∈ Zn×∗ then

||Left(F Trunc(∗, k)G, k)|| ≤ n||G||+ n2||F ||||G||.

Proof. Let L1 := Trunc(F Trunc(∗, k), k) and H1 :=
Left(F Trunc(∗, k), k) and decompose F Trunc(∗, k) = L1 +
H1X

k. We have thus reduced our problem to bounding
||Left((L1 + H1X

k)G, k). Decompose L1G = L2 + H2X
k.

Then Left((L1 +H1X
k)G, k) = H2 +H1G. By Lemma 3 we

have ||H1|| ≤ n||F || and ||H2|| ≤ n||G||. Using ||H1G|| ≤
n||H1||||G|| gives ||H2 + H1G|| ≤ n2||F ||||G||+ n||G||.

3. OUTLINE OF THE ALGORITHM
Fix matrices A, C ∈ Zn×n with A nonsingular. Given

(B, D) ∈ (Zn×n, Zn×n), our goal is to determine if CA−1B =
D. We will work in an X-adic number system with X cho-
sen to have size (bitlength) slightly larger than the size of
entries in B and D. If CA−1B = D, then simultaneously
pre-multiplying A−1 by C and post-multiplying by B has
the effect of annihilating the possibly infinite X-adic expan-
sion of A−1, leaving behind only a leftover term D which
satisfies Trunc(D, 1) = D. It will be sufficient to deter-
mine if Trunc(CA−1B, k) = D for large enough k, which
initially is about n. We may assume that k is a power of
two. Consider pre- and post-multiplying the truncated ex-
pansion Trunc(A−1, k) by C and B. If CA−1B = D then
we must have

C Trunc(A−1, k)B = D + TXk.

Because we truncated the expansion there will be a modulo
Xk adjustment TXk. From our choice of X, which will
be sufficiently larger than ||C|| and ||D||, this adustment
will satisfy Trunc(T, 1) = T (this will follow from Lemma 4
and (6)).

Reduction to two problems of half the order
We can decompose A−1 as follows.

Trunc(A−1, k) = Trunc(A−1, k/2)

+ Trunc(A−1R, k/2)Xk/2 (7)



where R := Res(A, I, k/2). Suppose that CA−1B = D. If
we pre- and post-multiply Trunc(A−1, k/2) by C and B, we
will obtain

C Trunc(A−1, k/2)B = D − D̄Xk/2, (8)

where −D̄Xk/2 is the modulo Xk/2 adjustment. If we pre-
and post-multiply the high order part Trunc(A−1R, k/2) by
C and B we must obtain

C Trunc(A−1R, k/2)Xk/2B = D̄Xk/2 + ∗Xk. (9)

Comparing with (7), we see that the sum of the left hand
sides of equations (8) and (9) is equal to C Trunc(A−1, k)B.

Because we assumed that CA−1B = D, the modulo Xk/2

adjustment in (8) must be the negation of the leftover term

D̄Xk/2 in (9). (In other words, a necessary but not sufficient

condition for CA−1B = D to hold is that the modulo Xk/2

adjustment in (8) cancels out the leftover term in (9).) Our
original problem of determining if Trunc(CA−1B, k) = D
is thus equivalent to the following pair of problems: does
Trunc(CA−1B, k/2) = D and Trunc(CA−1RB, k/2) = D̄?
Let B̄ := RB. We can combine these two problems into a
single problem of double the column dimension:

Trunc(CA−1 ˆ
B B̄

˜
, k/2)

?
=

ˆ
D D̄

˜
.

To accomplish the problem reduction we need to compute D̄
shown in (8). Although we don’t have the entire expansion
Trunc(A−1, k/2), we do have the high-order component E.

Trunc(A−1, k/2) = ∗+ ∗X + · · · ∗Xk−3 +

EXk−2z }| {
∗Xk−2 + ∗Xk−1

On the one hand, if Trunc(C Trunc(A−1, k/2)B, k/2) is suf-
ficiently small (e.g., || · || < X) then Trunc(CEB, 2) will also
be small (Lemma 7). On the other hand, if Trunc(CEB, 2) is
sufficiently small (which we can easily check by direct com-
putation) then we can compute D̄ as D̄ := Left(CEB, 2)
(Theorem 8). If we determine that Trunc(CEB, 2) is not
small enough we report (“no,”, Trunc(CA−1B, k) 6= D).

Reduction of the bitlength
We have seen above how to reduce a single problem of given
order to an equivalent problem of half the order but with
twice the column dimension. One issue is that the num-
bers in the new problem might be more than twice the size
(bitlength) of numbers in the original problem (e.g., only
|| · || < X2 instead of || · || < X may apply). Let (B, D) be a
problem instance for which we want to reduce the bitlength.
We have the decomposition

Trunc(A−1B, k) = Trunc(A−1B, 2)

+ Trunc(A−1R, k − 2)X2 (10)

where R := Res(A, B, 2). Throughout the algorithm D will
be small enough so that if CA−1B = D then we must also
have Trunc(CA−1B, 2) = D (Lemma 5). Assume the check
Trunc(CA−1B, 2) = D holds. (If not we report (“no,”,
Trunc(CA−1B, k) 6= D).) We then have

C Trunc(A−1B, 2)B = D −D′X2,

where −D′X2 is the modulo X2 adjustment. If it is indeed
the case that Trunc(CA−1B, k) = D, then pre- and post-
multiplying Trunc(A−1R, k − 2) by C and D must give

C Trunc(A−1R, k − 2)X2 = D′X2 + ∗Xk.

We have already checked that Trunc(CA−1B, 2) = D, so
we may conclude that Trunc(CA−1B, k) = D if and only
if Trunc(CA−1R, k − 2) = D′ (Theorem 6). Note that the
decomposition in (10) is based on A−1B instead of A−1 as
in (7). Basing the construction on A−1B lets us prove good
bounds on the size of numbers in B′ and D′ (also in Theo-
rem 6).

Compression of column dimension
Using the two recipes described above we can transform
one certification problem of order k and bitlength < log2 X
to two certification problems of order k/2 and bitlength
< log2 X. The cost of the order reduction and bitlength
reduction is O(MM(n)M(log X)) bit operations. Repeating
this process recursively gives an algorithm for Schur com-
plement zero certification that has running time

Tbad(k) = 2Tbad(k/2) + Θ(MM(n)M(log X))

bit operations. Unfortunately, the solution to this recur-
rence is Tbad(n) = Θ(nMM(n)M(log X)). We now explain
the key ingredient of the algorithm which allows to compress
a certificate problem with column dimension 6n down to a
problem with column dimension only 3n. This leads to an
overall running time which satisfies the recurrence

Tgood(k) = Tgood(k/2) + Θ(MM(n)M(log X)).

Note that Tgood(n) = O((log n)MM(n)M(log X)) as desired.
Let (B, D) be a multi-problem instance, for example with

(B, D) ∈ (Zn×6n, Zn×6n) of column dimension 6. Then the
n × 6n matrix Trunc(CA−1B, k) − D is the zero matrix if
and only if the n × n symmetric and positive semi-definite
matrix

(Trunc(CA−1B, k)−D)(Trunc(CA−1B, k)−D)T

is the zero matrix. Expanding out gives an expression with
four terms P1 − P2 − P3 + P4, where

P1 := Trunc(CA−1B, k)Trunc(BT (A−1)T CT , k)

P2 := Trunc(CA−1B, k) DT

P3 := D Trunc(BT (A−1)T CT , k)

P4 := DDT

Thus, Trunc(CA−1B, k) = D if and only if P1 = P2 = P3 =
P4 = DDT . Actually, P2 = DDT if and only if P3 = DDT

since P3 = P T
2 and (DDT )T = DDT . We have reduced our

problem to determining if P1 = DDT and P2 = DDT . First
consider P2. We have precomputed the high order part R
of Trunc(CA−1, k).

Trunc(CA−1, k) = ∗+∗X + · · ·+∗Xk−3 +

RXk−2z }| {
∗Xk−2 + ∗Xk−1 .

If Trunc(CA−1B, k) = D then Trunc(RB, 2) is small enough
so that Left(Trunc(RB, 2), 1) is the zero matrix (Lemma 9).
Assume that Left(Trunc(RB, 2), 1) is indeed the zero ma-
trix. (If not, we return (“no,”, Trunc(CA−1B, k) 6= D).) By
part 3 of Lemma 10, our check that Left(Trunc(RB, 2), 1)
is the zero matrix implies that Trunc(CA−1B, k) is small
enough to ensure that

Trunc(CA−1BDT , k) = Trunc(CA−1B, k)DT .

We conclude that P2 = Trunc(CA−1BDT , k). The impor-
tant observation here is that BDT is n × n. One of our



subproblems will be to verify that Trunc(CA−1(BDT ), k) =
DDT .

Now consider P1. To apply a similar technique as for P2,
we construct the following decomposition.

Trunc(BT (A−1)T CT , k) = BT Trunc((A−1)T CT , k)−P T Xk

Lemma 10 shows that we can construct the matrix P T ef-
ficiently using R because Left(Trunc(RB, 2), 1) is the zero
matrix. Substituting the above into P1 − DDT gives that
P1 = DDT if and only if both of the following hold:

Trunc(CA−1B, k)BT = DBT (11)

and

Left(DBT Trunc((A−1)T CT , k), k)

= Trunc(CA−1B, k)P T . (12)

Consider (11). Because Trunc(CA−1B, k) is small enough,
we have Trunc(CA−1B, k)BT = Trunc(CA−1BBT , k). Sim-
ilarly, we can prove that the left hand side of (12) is equal
to DP T (part 2 of Lemma 10) and the right hand side is
equal to Trunc(CA−1BP T , k).

Our original problem is reduced to verifying that

Trunc(CA−1 ˆ
BBT BDT BP T

˜
, k) =

ˆ
DBT DDT DP T

˜
,

which has column dimension only 3n.

4. BITLENGTH REDUCTION
In this section we are starting with the following problem.

Start:

24 Input: B, D ∈ Zn×m, k ≥ 2
Condition: ||B|| ≤ 6n3β2, ||D|| ≤ 6n4β2

Question: Does Trunc(CA−1B, k) = D?
(13)

Our goal is to produce an equivalent problem that has better
bounds on the magnitude of entries.

Target:

24 Input: B′, D′ ∈ Zn×m

Condition: ||B′|| ≤ nβ, ||D′|| ≤ nβ
Question: Does Trunc(CA−1B′, k − 2) = D′?

The algorithm to accomplish this is given below.

ReduceBitlength(B, D)
if Trunc(CA−1B, 2) 6= D then

return “no”
else

B′ := Left(−A Trunc(A−1B, 2);
D′ := −Left(C Trunc(A−1B, 2), 2);
return (B′, D′)

fi

The rest of this section proves correctness of the algorithm.

Lemma 5. If Trunc(CA−1B, k) = D then we have that
Trunc(CA−1B, 2) = D.

Proof. The bound for ||D|| in (13) satisfies (6) so that
Trunc(D, 1) = D. It follows that Trunc(D, 2) = D also.

The following theorem assumes k ≥ 2 and the bounds
for ||B|| and ||D|| indicated in (13). The assumption (im-
plicit throughout the paper) that ||A||, ||C|| ≤ β is also
used in the proof. The matrices B′ and D′ are as in Al-
gorithm ReduceBitlength given above.

Theorem 6. If Trunc(CA−1B, 2) = D then

Trunc(CA−1B, k) = D ⇐⇒ Trunc(CA−1B′, k − 2) = D′.

Moreover, ||B′|| ≤ nβ and ||D′|| ≤ nβ.

Proof. The bound for ||B|| in (13) satisfies (6) so that
Trunc(B, 1) = B. It follows that Trunc(B, 2) = B also. By
Lemma 2

A−1B = Trunc(A−1B, 2) + A−1B′X2

It follows that

CA−1B = C Trunc(A−1B, 2) + CA−1B′X2

= D −D′X2 + CA−1B′X2

The theorem follows from the last equation. The bounds for
||B′|| and ||D′|| follow from Lemma 3 using the assumption
||C||, ||A|| ≤ β.

5. ORDER REDUCTION
In this section we are starting with the following problem.

Start:

24 Input: B, D ∈ Zn×m, k > 2 a power of 2
Condition: ||B|| ≤ nβ, ||D|| ≤ nβ
Question: Does Trunc(CAB, k) = D?

(14)

Our goal is to produce an equivalent problem of only half
the order (but with twice the column dimension).

Target:

24 Input: B′, D′ ∈ Zn×2m

Condition: ||B′|| ≤ n3β2, ||D′|| ≤ n2β + n3β2

Question: Does Trunc(CAB′, k/2) = D′?

The algorithm to accomplish the problem transformation,
given below, makes use of the single high-order inverse com-
ponent

E := Left(Trunc(A−1, k/2), k/2− 2).

ReduceToHalfOrder(B, D, E)
if Left(Trunc(CEB, 2), 1) is not the zero matrix

then return “no”
else

B′ :=
ˆ

B Left(−AE, 2)B
˜
;

D′ :=
ˆ

D −Left(CEB, 2)
˜
;

return (B′, D′)
fi

The rest of this section proves correctness of the algorithm.

Lemma 7. If Trunc(CA−1B, k) = D then we have that
Left(Trunc(CEB, 2), 1) is the zero matrix.

Proof. First consider k = 4. Then E = Trunc(A−1, 2)
and Left(Trunc(CEB, 2), 1) = Left(D, 1), which is zero in
light of (6) and the bound for ||D|| in (14). Now consider the
case k ≥ 8. We have Trunc(A−1, k/2) = Trunc(A−1, k/2 −
2) + EXk/2−2, giving

D = Trunc(CA−1B, k/2)

= Trunc(C Trunc(A−1, k/2− 2)B

+ CEBXk/2−2, k/2). (15)

We have already established that Trunc(D, 1) = D, so we
also have Trunc(D, k/2− 2) = D, which leads to

C Trunc(A−1, k/2− 2)B =

D+Left(C Trunc(A−1, k/2−2)B, k/2−2)Xk/2−2. (16)



Substituting (16) into (15) reveals that

Trunc(CEB, 2) =

−Left(C Trunc(A−1, k/2− 2)B, k/2− 2). (17)

We will now use ||B|| ≤ nβ from (14) together with the
assumption that ||A|| ≤ β. Using Lemma 4 to bound the
magnitude of the right hand side of (17) gives

||Trunc(CEB, 2)|| ≤ n||B||+ n2||A||||B|| ≤ n2β + n3β2,

which satisfies (6) so that Trunc(CEB, 1) = CEB. The
result follows.

The following theorem assumes k > 2 and the bounds for
||B|| and ||D|| in (14). The assumption ||A||, ||C|| ≤ β is also
used. B′ and D′ are as in Algorithm ReduceToHalfOrder

given above.

Theorem 8. If Left(Trunc(CEB, 2), 1) is zero, then

Trunc(CA−1B, k) = D ⇐⇒ Trunc(CA−1B′, k/2) = D′.

Moreover, ||B′|| ≤ n3β2 and ||D′|| ≤ n2β + n3β2.

Proof. Lemma 2 gives

A−1 = Trunc(A−1, k/2) + A−1Left(−AE, 2)Xk/2.

Premultiplying by C and postmultiplying by B reveals that
Trunc(CA−1B, k) = D if and only if Trunc(CA−1B, k/2) =
D and

Trunc(CA−1Left(−AE, 2)B, k/2) =

−Left(C Trunc(A−1, k/2)B, k/2).

It remains to establish that the right hand side of the last
equation is equal to −Left(CEB, 2). To this end, let L =
Trunc(A−1, k/2− 2) and consider the decomposition

Trunc(A−1, k/2) = L + EXk/2−2.

Then

C Trunc(A−1, k/2)B

= CLB + CEBXk/2−2

= CLB + Trunc(CEB, 2)Xk/2−2| {z }
|| · || ≤ γ

+Left(CEB, 2)Xk/2,

where γ ≤ (n||B||+n2||C||||B||+X)Xk/2−2; this bound for
γ follows from Lemma 4 and the assumption that

Left(Trunc(CEB, 2), 1)

is the zero matrix (which implies Trunc(CEB, 2) ≤ X). Us-
ing ||B|| ≤ nβ and ||C|| ≤ β gives n||B||+n2||C||||B||+X ≤
n2β + n4β2 + X, which upon division by X satisfies (6). It
follows that

Trunc(CLB + Trunc(CEB, 2)Xk/2−2, k/2) =

CLB + Trunc(CEB, 2)Xk/2−2.

Finally, the claimed bounds for ||B′|| and ||D′|| follow from
Lemmas 3 and 4 respectively, using ||A||, ||C|| ≤ β and the
bound for ||B|| in (14).

6. DIMENSION REDUCTION
In this section we are starting with the following problem

with column dimension up to 6n.

Start:

264 Input: B, D ∈ Zn×
≤6n
m , k ≥ 4 a power of 2

Condition: ||B|| ≤ nβ, ||D|| ≤ nβ
Question: Does Trunc(CAB, k) = D?

(18)

Our goal is to produce an equivalent problem that has col-
umn dimension 3n.

Target:

24 Input: B′, D′ ∈ Zn×3n

Condition: ||B′|| ≤ 6n3β2, ||D′|| ≤ 6n4β2

Question: Does Trunc(CAB′, k) = D′?
(19)

The algorithm to accomplish the problem transformation,
given below, makes use of the single high-order component

R := Left(Trunc(CA−1, k), k − 2).

ReduceColumnDimension(B, D, R)
if Left(Trunc(RB, 2), 1) is not the zero matrix

then return “no”
else

P := Left(Trunc(RB, 2), 2);
B′ :=

ˆ
BDT BBT BP T

˜
;

D′ :=
ˆ

DDT DBT DP T
˜
;

return (B′, D′)
fi

The rest of this section proves correctness of the algorithm.
For convenience, let H stand for A−1.

Lemma 9. If Trunc(CHB, k) = D then

Left(Trunc(RB, 2), 1)

is the zero matrix.

Proof. Decompose Trunc(CH, k) = Trunc(CH, k− 2)+
RXk−2. Then

D = Trunc(Trunc(CH, k − 2)B + RBXk−2, k).

The bound for ||D|| in (18) satisfies (6) so Trunc(D, 1) = D.
It follows that Trunc(D, k − 2) = D also, so we must have

Trunc(RB, 2) = Left(Trunc(CH, k − 2)B, k − 2).

Lemma 3 bounds the right hand side of the last equation
by n||B|| = n2β, which satisfies (6) so that Trunc(RB, 1) =
RB. The result follows.

Lemma 10. Define P := Left(Trunc(CH, k)B, k). If

Left(Trunc(RB, 2), 1)

is the zero matrix then

1. P = Left(RB, 2) with ||P || ≤ n2β

2. Left(Trunc(CH, k)BDT , k) = PDT .

3. Trunc(CHB, k)F T = Trunc(CHBF T , k) for any ma-
trix F ∈ Zn×6n with ||F || ≤ n2β.

Proof. Let L = Trunc(CH, k − 2) and consider the de-
composition Trunc(CH, k) = L + RXk−2. Then

Trunc(CH, k)B

= LB + RBXk−2

= LB + Trunc(RB, 2)Xk−2| {z }
|| · || ≤ (n||B||+ X)Xk−2

+Left(RB, 2)Xk



The || · || bound follows from Lemma 3 and the assumption
that Left(Trunc(RB, 2), 1) is the zero matrix. Using ||B|| ≤
nβ and dividing by X shows the bound satisfies (6) so that

Trunc(LB + Trunc(RB, 2)Xk−2, k) =

LB + Trunc(RB, 2)Xk−2.

The first claim of the lemma follows.
Now consider the second claim.

Trunc(CH, k)BDT

= LBDT + RBDT Xk−2

= LBDT + Trunc(RB, 2)DT Xk−2| {z }
|| · || ≤ γ

+Left(RB, 2)DT Xk

where γ ≤ (n||BDT || + 6nX||DT ||)Xk−2. Next note that
n||BDT ||+nX||DT || ≤ 6n4β2+6n2Xβ, which when divided
by X satisfies (6), so

Trunc(LBDT + Trunc(RB, 2)DT Xk−2, k) =

LBDT + Trunc(RB, 2)DT Xk−2.

The second claim follows.
Now consider the third claim. Our proof of the first claim

established that ||Trunc(CHB, k)|| ≤ (n||B||+ X)Xk−2. It
follows that ||Trunc(CHB, k)F T || ≤ 6n3(n2β + X)βXk−2,
which when divided by Xk−1 satisfies (6).

Theorem 11. Let P be as in Lemma 10. If

Left(Trunc(CEB, 2), 1)

is the zero matrix, then Trunc(CHB, k) = D if and only if
both of the following hold:

1. Trunc(CHBDT , k) = DDT

2. Trunc(CHBBT , k)Trunc(HTCT , k)
−Trunc(CHBRT )Xk = DDT

Proof. Trunc(CHB, k)−D is the zero matrix if and only
if

(Trunc(CHB, k)−D)(Trunc(CHB, k)−D)T (20)

is the zero matrix. Expanding and comparing terms reveals
that (20) is zero if and only if

Trunc(CHB, k)DT = DDT (21)

and

Trunc(CHB, k)Trunc(BT HT CT , k) = DDT (22)

By part 3 of Lemma 10, we may substitute

Trunc(CHB, k)DT = Trunc(CHBDT , k)

into (21), giving the first condition in the theorem.
Next we reformulate (22) to an equivalent identity. We

have

Trunc(CHB, k) = Trunc(CH, k)B − PXk,

the transpose of which is

Trunc(BT HT CT , k) = BT Trunc(HT CT , k)− P T Xk. (23)

Substitute (23) into (22) to obtain the equivalent identity

Trunc(CHB, k)BT Trunc(HT CT , k)

−Trunc(CHB, k)P T Xk = DDT . (24)

Together with ||B|| ≤ nβ from (18), Lemma 3 gives ||R|| ≤
n2β. The second condition of the theorem now follows from
two applications of part 3 of Lemma 10 to equation (24).

Theorem 12. Let P be as in Lemma 10. If

Left(Trunc(RB, 2), 1)

is the zero matrix, then Trunc(CHB, k) = D if and only if
all of the following hold

Trunc(CHBDT , k) = DDT (25)

Trunc(CHBBT , k) = DBT (26)

Trunc(CHBP T , k) = DP T (27)

Proof. The “only if” direction is clear. Now suppose
all of (25), (26) and (27) hold. Then (25) implies that the
first condition of Theorem 11 holds. Substituting (26) and
(27) into the left hand side of the second condition of The-
orem (11) gives

DBT Trunc(HT CT , k)−DP T Xk (28)

Now note that

DBT Trunc(HT CT , k)

= Trunc(DBT Trunc(HT CT , k), k)

+ Left(DBT Trunc(HT CT , k), k)Xk

= DDT + Left(DBT Trunc(HT CT , k), k)Xk (29)

= DDT + Left(DP T , k)Xk (30)

= DDT + DP T Xk (31)

Here, line (29) follows from (25), and (30) from part 2 of
Lemma 10. Finally, substituting (31) into (28) gives DDT ,
which matches the right hand side of the second condition
of Theorem 11.

7. ALGORITHM
Algorithm SchurCert is shown in Figure 1. Lemmas 5,

7 and 9 ensure that if CA−1B = D then none of calls
to the subroutines ReduceBitlength, ReduceToHalfOrder

and ReduceColumnDimension will return “no,”, respectively.
Theorems 6, 8 and 12 ensure the equivalence of all the prob-
lems (i.e., they all have the same answer). The cost analysis
of the algorithm was detailed in Section 3. We obtain the
following result.

Theorem 14. Algorithm SchurCert works as stated. The
running time is O((log n)MM(n)M(log n + log ||A||)) bit op-
erations.

8. A LAS VEGAS RANK ALGORITHM
Let A ∈ Zn×m. Assume without loss of generality that

n ≤ m. Minors of A are bounded in magnitude by (n||A||)n.
Choose a random prime p with log p ∈ Θ(log n+loglog ||A||)
so that the rank of A mod p over Z/(p) is equal to the rank of
A over Z with probability at least 1/4. For details of choos-
ing such a prime see for example [3]. Compute A mod p us-
ing nm modular reductions. This costs O(nmM(log ||A||))
bit operations, which will be dominated by the other steps.
(Note that if p > ||A|| the modular reduction is free.)



Algorithm 13. SchurCert(A, B, C, D)
Input: A, B, C, D ∈ Zn×n, p ∈ Z>0 with p ⊥ det A
Output: “yes” if CA−1B=D, “no” otherwise, or fail
Condition: log p ∈ O(log n + loglog A)
Note: Fail is returned with probability < 1/2.

1. β := max(||A||, ||B||, ||C||, ||D||);
Compute the following as per Theorem 1:
• An (X, t)-adic shifted number system.
• k, the minimal power of 2 such that

Xk > ((n + 1)β)n+1,
together with

E(i) := Left(Trunc(A−1, 2i), 2i − 2)
and

R(i) := Left(Trunc(CA−1, 2i), 2i − 2)
for 1 ≤ i ≤ log2 k.

# Note: If the above fails then return fail.

2. for i := (log2 k)− 1 downto 2 do

(B, D) := ReduceToHalfOrder(B, D, E(i));
(B, D) := ReduceBitlength(B, D);

(B, D) := ReduceColumnDimension(B, D, R(i));
(B, D) := ReduceBitlength(B, D)

od;
if Trunc(CA−1B, 2) = D then return “yes”
else return “no” fi

Figure 1: Algorithm SchurCert

Next compute the rank r̄ of A mod p using a rank sen-
sitive variation of LSP decomposition [7] developed in [8].
The cost is O((log r̄)nm(MM(r̄)/r̄2)) arithmetic operations
modulo Z/(p) [8, Theorem 3.3]. We remark that the extra
log r̄ will not occur if n2+ε ∈ O(MM(r)) for some ε > 0,
see [8] for details. All the arithmetic operations are ad-
ditions, subtractions and multiplications, each with a cost
of O(M(log p)) bit operations, plus r̄ modular inverse, each
costing O(M(log p) loglog p) bit operations. The bit cost of
the LSP decomposition is thus

O((log r̄)nm(MM(r̄)/r̄2)M(log n + loglog ||A||)).

The LSP decomposition also gives a row and column permu-
tation of A such that we can write

A =

»
Ā B
C D

–
with Ā nonsingular.

Finally, partition D into at most d(n− r̄)/r̄ed(m− r̄)/r̄e
blocks of dimension bounded by r̄, and for each block use
algorithm SchurCert to test that the Schur complement of
D is the zero matrix. Note that the high-order components
of Ā−1 and CĀ−1 need to be computed only once. One
subtlety to be aware of is that the shifted number system
from [15] will require choosing an X that satisfies log X ∈
O(log n+log ||A||), not just log X ∈ O(log r+log ||A||). This
is because C has row dimension Θ(n), implying the need to
certify correctness of Θ((log r)nr) X-adic coefficients.

Since r̄ ≤ r and log X ∈ O(log n + log ||A||), we get the
following result.

Theorem 15. Given an A ∈ Zn×m, there exists a Las
Vegas probabilistic algorithm that computes the rank r of A

using an expected number of

O((log r)nm(MM(r)/r2)M(log min(n, m) + log ||A||))

bit operations.
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