Diss. ETH No. 13922

Algorithms for

Matrix Canonical Forms

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Sciences

presented by
ARNE STORJOHANN
M. Math., Univ. of Waterloo
born December 20, 1968
citizen of Germany

accepted on the recommendation of
Prof. Dr. Gaston H. Gonnet, examiner
Prof. Dr. Gilles Villard, co-examiner

2013



Acknowledgments

Thanks to

Gaston Gonnet and Gilles Villard for their support and encourage-
ment

Thom Mulders for exciting years of collaboration

other colleagues and mentors in the computer algebra community:
Wayne Eberly, Jirgen Gerhard, Mark Giesbrecht, Erich Kaltofen,
George Labahn, David Saunders, Joachim von zur Gathen and
many others

Frau Anne Preisig, our institute secretary, for excellent adminis-
trative and organizational support

Leonhard Jaschke for singing, and for assistance in preparing this
document

Ari Kahn for many things, including introducing me to the music
of the Grateful Dead

other friends at ETH: Bettina, Chantal, Christian, Gabi, Gina,
Laura, Michela, Mike, Nora, Olli, Preda, Seb, Silvania, Ulrike,
Win, Wolf, Xianghong

Mom and Dad and all my family for their patience and support
friends back home: Alan, Eric, Laurie, Tania for always being there

Bill Millar, who once told me that people should write down what
they think.



Abstract

Computing canonical forms of matrices over rings is a classical math-
ematical problem with many applications to computational linear alge-
bra. These forms include the Frobenius form over a field, the Hermite
form over a principal ideal domain and the Howell and Smith form over
a principal ideal ring. Generic algorithms are presented for computing
each of these forms together with associated unimodular transformation
matrices. The algorithms are analysed, with respect to the worst case, in
terms of number of required operations from the ring. All algorithms are
deterministic. For a square input matrix, the algorithms recover each
of these forms in about the same number of operations as required for
matrix multiplication.

Special emphasis is placed on the efficient computation of transforms
for the Hermite and Smith form in the case of rectangular input matrices.
Here we analyse the running time of our algorithms in terms of three
parameters: the row dimension, the column dimension and the number
of nonzero rows in the output matrix.

The generic algorithms are applied to the problem of computing the
Hermite and Smith form of an integer matrix. Here the complexity anal-
ysis is in terms of number of bit operations. Some additional techniques
are developed to avoid intermediate expression swell. New algorithms
are demonstrated to construct transformation matrices which have good
bounds on the size of entries. These algorithms recover transforms in
essentially the same time as required by our algorithms to compute only
the form itself.



Kurzfassung

Kanonischen Formen von Matrizen iiber Ringen zu berechnen, ist
ein klassisches mathematisches Problem mit vielen Anwendungen zur
konstruktiven linearen Algebra. Diese Formen umfassen die Frobenius
Form iiber einem Korper und die Hermite-, Howell- und Smith-Form
iiber einem Hauptidealring. Wir studieren die Berechnung dieser Formen
aus der Sicht von sequentiellen deterministischen Komplexitatsschranken
im schlimmsten Fall. Wir préasentieren Algorithmen fiir das Berechnen
aller dieser Formen sowie der dazugehorigen unimodularen Transforma-
tionsmatrizen — samt Analyse der Anzahl benédtigten Ringoperationen.
Die Howell-, Hermite- Smith- und Frobenius-Form einer quadratischen
Matrix kann mit ungefdhr gleich vielen Operationen wie die Matrixmul-
tiplikation berechnet werden.

Ein Schwerpunkt liegt hier bei der effizienten Berechnung der Hermite-
und Smith-Form sowie der dazugehorigen Transformationsmatrizen im
Falle einer nichtquadratischen Eingabematrix. In diesem Fall analysieren
wir die Laufzeit unserer Algorithmen abhénhig von drei Parametern: die
Anzahl der Zeilen, die Anzahl der Spalten und die Anzahl der Zeilen in
der berechneten Form, die mindestens ein Element ungleich Null enthal-
ten.

Die generische Algorithmen werden auf das Problem des Aufstellens
der Hermite- und Smith-Form einer ganzzahligen Matrix angewendet.
Hier wird die Komplizitit des Verfahren in der Anzahl der benétigten
Bitoperationen ausgedriickt. Einige zusatzliche Techniken wurden en-
twickelt, um das iiberméssige Wachsen von Zwischenergebnissen zu ver-
meiden. Neue Verfahren zur Konstruktion von Transformationsmatrizen
fiir die Hermite- und Smith-Form einer ganzzahligen Matrix wurden en-
twickelt. Ziel der Bemiihungen bei der Entwicklung dieser Verfahren
war im Wesentlichen das erreichen der gleichen obere Schranke fiir die
Laufzeit, die unsere Algorithmen bendétigen, um nur die Form selbst zu
berechnen.
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Chapter 1

Introduction

This thesis presents algorithms for computing canonical forms of matri-
ces over rings. For a matrix A over a principal ideal ring R, these include
the triangular Howell form H = U A and diagonal Smith form S = VAW
— and for a square matrix A over a field the block diagonal Frobe-
nius form F = PAP~'. These forms are canonical representatives of
the equivalence classes of matrices under unimodular pre-multiplication,
unimodular pre- and post-multiplication, and similarity.

Below we describe each of these forms in more detail. To best show
the particular structure of a matrix — the shape induced by the nonzero
entries — entries which are zero are simply left blank, possibly nonzero
entries are labelled with *, and entries which satisfy some additional
property (depending on the context) are labelled with *. The * notation
is used also to indicate a generic integer index, the range of which will
be clear from the context.

The Howell form is an echelon form of a matrix A over a principal
ideal ring R — nonzero rows proceed zero rows and the first nonzero
entry h, in each nonzero row is to the right of the first nonzero entry in
previous rows. The following example is for a 6 x 9 input matrix.
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The transforming matrix U is unimodular — this simply means that U
is invertible over R. To ensure uniqueness the nonzero rows of H must
satisfy some conditions in addition to being in echelon form. When R
is a field, the matrix U should be nonsingular and H coincides with the
classical Gauss Jordan canonical form — entries h, are one and entries *
are zero. When R is a principal ideal domain the Howell form coincides
with the better known Hermite canonical form. We wait until Section 1.4
to give more precise definitions of these forms over the different rings.
A primary use of the Howell form is to solve systems of linear equations
over the domain of entries.

The Smith form

S1
S2

S=VAW =

Sr

is a canonical form (under unimodular pre- and post-multiplication) for
matrices over a principal ideal ring. Each s; is nonzero and s; is a divisor
of s;y1 for 1 < i < r — 1. The diagonal entries of S are unique up to
multiplication by an invertible element from the ring. The Smith form of
an integer matrix is a fundamental tool of abelian group theory. See the
text by Cohen (1996) and the monograph and survey paper by Newman
(1972, 1997).

Now let A be an n x n matrix over a field K. The Frobenius form

Cr,

c
F =PAP™ ! = f2

Cf 1

has each diagonal block C', the companion matrix of a monic f; € K[z]
and f;|fi41 for 1 < i <1 —1 (see Chapter 9 for more details). This
form compactly displays all geometric and algebraic invariants of the
input matrix. The minimal polynomial of A is f; and the characteristic
polynomial is the product fifs -+ fi — of which the constant coefficient
is the determinant of A. The rank is the equal to n minus the number

of blocks with zero constant coefficient. The Frobenius form has many
uses in addition to recovering these invariants, for example to exponen-
tiate and evaluate polynomials at A and to compute related forms like
the rational Jordan form. See Giesbrecht’s (1993) thesis for a thorough
treatment.

Our programme is to reduce the problem of computing each of the
matrix canonical forms described above to performing a number of op-
erations from the ring. The algorithms we present are generic — they
are designed for and analysed over an abstract ring R. For the Frobenius
form this means a field. For the other forms the most general ring we
work over is a principal ideal ring — a commutative ring with identity
in which every ideal is principal. Over fields the arithmetic operations
{+, —, x, divide by a nonzero } will be sufficient. Over more general
rings, we will have to augment this list with additional operations. Chief
among these is the “operation” of transforming a 2 x 1 matrix to echelon
form: given a,b € R, return s, t,u,v, g € R such that

el ]=1)

where sv — tu is a unit from R, and if b is divisible by a then s =v =1
and ¢ = 0. We call this operation Gedex.

Consider for a moment the problems of computing unimodular matri-
ces to transform an input matrix to echelon form (under pre-multiplication)
and to diagonal form (under pre- and post-multiplication). Well known
constructive proofs of existence reduce these problems to operations of
type {+, —, x, Gedex}. For the echelon form it is well known that O(n?)
such operations are sufficient (see Chapter 3). For the diagonal form
over an asbtract ring, it is impossible to derive such an a priori bound.
As an example, let us attempt to diagonalize the 2 X 2 input matrix

a N

b
where N is nonzero. First we might apply a transformation of type
Gedex as described above to achieve

Y ]

where ¢; is the ged of @ and b. If sV is nonzero, we can apply a transfor-
mation of type Gedex (now via post-multiplication) to compute the ged
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g2 of g and sN and make the entry in the upper right corner zero. We
arrive quickly at the approach of repeatedly triangularizing the input
matrix to upper and lower triangular form:

MR AN CHES

The question is: How many iterations will be required before the matrix
is diagonalized? This question is impossible to answer over an abstract
ring. All we can say is that, over a principal ideal ring, the procedure
is finite. Our solution to this dilemma is to allow the following addi-
tional operation: return a ring element ¢ such that the greatest common
divisor of the two elements {a + ¢b, N} is equal to that of the three
elements {a,b, N}. We call this operations Stab, and show that for a
wide class of principal ideal rings (including all principal ideal domains)
it can be reduced constructively to a finite number of operations of type
{x, Gedex}. By first “conditioning” the matrix by adding ¢ times the
second row to the first row, a diagonalization can be accomplished in a
constant number of operations of type {4, —, x, Gedex}.

To transform the diagonal and echelon forms to canonical form will
require some operations in addition to {4+, —, x, Gedex, Stab}: all such
operations that are required — we call them basic operations — are
defined and studied in Section 1.1. From now on we will give running
time estimates in terms of number of basic operations.

Our algorithms will often allow the use of fast matrix multiplication.
Because a lower bound for the cost of this problem is still unknown, we
take the approach (following many others) of giving bounds in terms of
a parameter 6 such that two n x n matrices over a commutative ring
can be multiplied together in O(n?) operations of type {+, —, x} from
the ring. Thus, our algorithms allow use of any available algorithm for
matrix multiplication. The standard method has § = 3 whereas the
currently asymptotically fastest algorithm allows a 6 about 2.376. We
assume throughout that 6 satisfies 2 < 6§ < 3. There are some minor
quibbles with this approach, and with the assumption that 6 > 2, but
see Section 1.2.

In a nutshell, the main theoretical contribution of this thesis is to
reduce the problems of computing the Howell, Smith and Frobenius form
to matrix multiplication. Given an n X n matrix A over a principal ideal
ring, the Howell form H = U A can be computed in O(n?) and the Smith
form S = VAW in O(nf(logn)) basic operations from the ring. Given

an n X n matrix A over a field, the Frobenius form F = P~1AP can be
computed in O(n?(logn)(loglogn)) field operations. The reductions are
deterministic and the respective unimodular transforms U, V., W and P
are recovered in the same time.

The canonical Howell form was originally described by Howell (1986)
for matrices over Z/(N) but generalizes readily to matrices over an ar-
bitrary principal ideal ring R. Howell’s proof of existence is constructive
and leads to an O(n?) basic operations algorithm. When R is a field, the
Howell form resolves to the reduced row echelon form and the Smith form
to the rank normal form (all % entries zero and h;’s and s;’s one). Re-
duction to matrix multiplication for these problems over fields is known.
The rank normal form can be recovered using the LS P-decomposition
algorithm of Ibarra et al. (1982). Echelon form computation over a field
is a key step in Keller-Gehrig’s (1985) algorithm for the charactersitic
polynomial. Biirgisser et al. (1996, Chapter 16) give a survey of fast al-
gorithms for matrices over fields. We show that computing these forms
over a principal ideal ring is essentially no more difficult than over a
field.

Now consider the problem of computing the Frobenius form of an
n X n matrix over a field. Many algorithms have been proposed for this
problem. First consider deterministic algorithms. Liineburg (1987) and
Ozello (1987) give algorithms with running times bounded by O(n?) field
operations in the worst case. We decrease the running time bound to
O(n?) in (Storjohann and Villard, 2000). In Chapter 9 we establish that
a transform can be computed in O(n?(logn)(loglogn)) field operations.

Now consider randomized algorithms. That the Frobenius form can
be computed in about the same number of field operations as required
for matrix multiplication was first shown by Giesbrecht (1995b). Gies-
brecht’s algorithm requires an expected number of O(nf(logn)) field
operations; this bound assumes that the field has at least n? distinct
elements. Over a small field, say with only two elements, the expected
running time bound for Giesbrecht’s asymptotically fast algorithm in-
creases to about O(n? (logn)?) and the transform matrix produced might
be over a algebraic extension of the ground field. More recently, Eberly
(2000) gives an algorithm, applicable over any field, and especially in-
teresting in the small field case, that requires an expected number of
O(n’(logn)) field operations to produce a transform.

The problem of computing the Frobenius form has been well studied.
Our concern here is sequential deterministic complexity, but much atten-
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tion has focused also on randomized and fast parallel algorithms. Very
recently, Eberly (2000) and Villard (2000) propose and analyse new al-
gorithms for sparse input. We give a more detailed survey in Chapter 9.
The algorithms we develop here use ideas from Keller-Gehrig (1985),
Ozello (1987), Kaltofen et al. (1990), Giesbrecht (1993), Villard (1997)
and Liibeck (2002).

A complexity bound given in terms of number of basic operations
leaves open the question of how to compute the basic operations them-
selves. (For example, although greatest common divisors always exists
in a principal ideal ring, we might have no effective procedure to com-
pute them.) Fortunately, there are many concrete examples of rings
over which we can compute. The definitive example is Z (a principal
ideal domain). The design, analysis and implementation of very fast
algorithms to perform basic operations such as multiplication or com-
putation of greatest common divisors over Z (and many other rings) is
the subject of intense study. Bernstein (1998) gives a survey of integer
multiplication algorithms.

Complexity bounds given in terms of number of basic operations must
be taken cum grano salis for another reason: the assumption that a single
basic operations has unit cost might be unrealistic. When R = Z, for
example, we must take care to bound the magnitudes of intermediate
integers — intermediate expression swell. An often used technique to
avoid expression swell is to compute over a residue class ring R/(N)
(which might be finite compared to R). In many cases, a canonical form
over a principal ideal ring R can be recovered by computing over R/(N)
for a well chosen N. Such ideas are well developed in the literature,
and part of our contribution here is to explore them further — with
emphasis on genericity. To this end, we show in Section 1.1 that all basic
operations over a residue class ring of R can be implemented in terms
of basic operations from R. Chapter 5 is devoted to the special case
R a principal ideal domain and exposes and further develops techniques
(many well known) for recovering matrix invariants over R by computing
either over the fraction field or over a residue class ring of R.

Tri-parameter Complexity Analysis

While the Frobenius form is defined only for square matrices, the most
interesting input matrices for the other forms are often rectangular. For
this reason, following the approach of many previous authors, we analyse
our algorithms for an n X m input matrix in terms of the two parameters

n and m. Our algorithm for recovering U when n > m uses ideas from
(Hafner and McCurley, 1991), where an O (nmf~!) basic operations
algorithm to recover a non-canonical unimodular triangularization T =
Y A is given. Figure 1.1 shows the situation when n > m. We also

- A _f_—m’% L
}r
U A = H

Figure 1.1: Tri-parameter analysis

consider a third parameter » — the number of nonzero rows in the output
matrix. The complexity bound for computing the Howell and Smith form
becomes O (nmr?~2) basic operations. Our goal is to provide simple
algorithms witnessing this running time bound which handle uniformly

all the possible input situations — these are
{n>m,n=m,n <m} x {r=min(n,m),r < min(n,m)}.

One of our contributions is that we develop most of our algorithms to
work over rings which may have zero divisors. We will have more to say
about this in Section 1.4 where we give a primer on computing echelon
form over various rings. Here we give some examples which point out
the subtleties of doing a tri-parameter analysis.

Over a principal ideal ring with zero divisors we must eschew the use
of useful facts which hold over an integral domain — for example the
notion of rank as holds over a field. Consider the 4 x 4 input matrix

8§ 12 14 7

A:841013
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over Z/(16). On the one hand, we have

A
1 8 12 14 7 8 12 14 7
3 1 8 4 10 13 _ mod 16
1
1
On the other hand, we have
A
1 8 12 14 7 8 12 14 7
11 8 4 10 13 _ 8 mod 16
1
1

In both cases we have transformed A to echelon form using a unimodular
transformation. Recall that we use the paramater r to mean the number
of nonzero rows in the output matrix. The first echelon form has r =1
and the second echelon form has r = 2. We call the first echelon form a
minimal echelon form of A since r is minimum over all possible echelon
forms of A. But the the canonical Howell and Smith form of A over
Z/(16) are

8 4 2 1 1
8 4 2
H = and S =
8 4
8

with r = 4 and r = 1 respectively. (And when computing the Howell
form we must assume that the input matrix has been augmented with
zero rows, if necessary, so that n > r.) We defer until Section 1.4 to
define the Howell form more carefully. For now, we just note that what
is demonstrated by the above example holds in general:

e The Howell form of A is an echelon form with a maximal number
of rows.

e A minimal echelon form will have the same number of nonzero rows
as the Smith form.

One of our contributions is to establish that the Smith form together with
transform matrices can be recovered in O (nmr®=2) basic operations.
This result for the Smith form depends on an algorithm for computing
a minimal echelon form which also has running time O™ (nmr?~2) basic
operations. When the ring is an integral domain r coincides with the
unique rank of the input matrix — in this case every echelon and diagonal
form will have the same number of nonzero rows. But our point is that,
over a ring with zero divisors, the parameter r for the Smith and minimal
echelon form can be smaller than that for the Howell form.

This “tri-parameter” model is not a new idea, being inspired by the
classical O(nmr) field operations algorithm for computing the Gauss
Jordan canonical form over a field.

Canonical Forms of Integer Matrices

We apply our generic algorithms to the problem of computing the How-
ell, Hermite and Smith form over the concrete rings Z and Z/(N). Al-
gorithms for the case R = Z/(N) will follow directly from the generic
versions by “plugging in” an implementation for the basic operations
over Z/(N). More interesting is the case R = Z, where some additional
techniques are required to keep the size of numbers bounded. We sum-
marize our main results for computing the Hermite and Smith form of
an integer matrix by giving running time estimates in terms of bit oper-
ations. The complexity model is defined more precisely in Section 1.2.
For now, we give results in terms of a function M (k) such that O(M(k))
bit operations are sufficient to multiply two integers bounded in magni-
tude by 2¥. The standard method has M(k) = k? whereas FFT-based
methods allow M(k) = klogkloglogk. Note that O(k) bits of storage
are sufficient to represent a number bounded in magnitude by 2¢*0(1)
and we say such a number has length bounded by O(k) bits.

Let A € Z™*™ have rank r. Let ||A|| denote the maximum magnitude
of entries in A. We show how to recover the Hermite and Smith form of
Ain

O (nmr®=2(rlog|| Al]) + nm M(r log || A]|))
bit operations. This significantly improves on previous bounds (see be-
low). Unimodular transformation matrices are recovered in the same

time. Although the Hermite and Smith form are canonical, the trans-
forms to achieve them may be highly non unique'. The goal is to produce

1N0tethat[17f][11}[1 ]:[11]foranyu.

—u 1
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transforms with good size bounds on the entries. Our algorithms pro-
duce transforms with entries bounded in length by O(rlogr||A||) bits.
(Later we derive explicit bounds.) Moreover, when A has maximal rank,
one of the transforms for the Smith form will be guaranteed to be very
small. For example, in the special case where A has full column rank,
the total size (sum of the bit lengths of the entries) of the postmultiplier
for the Smith form will be O(m?logm||A|]) — note that the total size
of the input matrix A might already be more than m? log, || A||.

The problems of computing the Hermite and Smith form of an integer
matrix have been very well studied. We will give a more thorough survey
later. Here we recall the best previously established worst case complex-
ity bounds for these problems under the assumption that M(k) = O™ (k).
(Most of the previously analysed algorithms make heavy use of large
integer arithmetic.) We also assume n > m. (Many previous algorithms
for the Hermite form assume full column rank and the Smith form is in-
variant under transpose anyway.) Under these simplifying assumptions,
the algorithms we present here require O™ (nm?log||A||) bit operations
to recover the forms together with transforms which will have entries
bounded in length by O(mlogm]|A]||) bits. The total size of postmulti-
plier for the Smith form will be O(m?logm||A]|).

The transform U for the Hermite form H = U A is unique when A is
square nonsingular and can be recovered in O™ (n?*!log || A||) bit opera-
tions from A and H using standard techniques. The essential problem is
to recover a U when n is significantly larger than m, see Figure 1.1. One
goal is to get a running time pseudo-linear in n. We first accomplished
this in (Storjohann and Labahn, 1996) by adapting the triangularization
algorithm of Hafner and McCurley (1991). The algorithm we present
here achieves this goal too, but takes a new approach which allows us to
more easily derive explicit bounds for the magnitude ||U]| (and asymp-
totically better bounds for the bit-length log ||U]|).

The derivation of good worst case running time bounds for recov-
ering transforms for the Smith form is a more difficult problem. The
algorithm of Iliopoulos (1989a) for this case uses O™ (n?*3(log || A||)?) bit
operations. The bound established for the lengths of the entries in the
transform matrices is O™ (n%log||A||) bits. These bounds are almost
certainly pessimistic — note that the bound for a single entry of the
postmultipler matches our bound for the total size of the postmultipler.

Now consider previous complexity results for only recover the canon-
ical form itself but not transforming matrices. From Hafner and McCur-
ley (1991) follows an algorithm for Hermite form that requires O™((nm?+

1.1. BASIC OPERATIONS OVER RINGS 11

m*)log ||A||) bit operations, see also (Domich et al., 1987) and (Iliopou-
los, 1989a). The Smith form algorithm of Iliopoulos (1989a) requires
O~ (nm*(log || A]|)?) bit operations. Bach (1992) proposes a method based
on integer factor refinement which seems to require only O™ (nm?(log || A[|)?)
bit operations (under our assumption here of fast integer arithemtic).
The running times mentioned so far are all deterministic. Much recent
work has focused also on randomized algorithms. A very fast Monte
Carlo algorithm for the Smith form of a nonsingular matrix has recently
been presented by Eberly et al. (2000); we give a more detailed survey
in Chapter 8.

Preliminary versions of the results summarized above appear in (Stor-
johann, 1996¢, 1997, 1998b), (Storjohann and Labahn 1996, 1997) and
(Storjohann and Mulders 1998). New here is the focus on genericity, the
analysis in terms of r, and the algorithms for computing transforms.

1.1 Basic Operations over Rings

Our goal is to reduce the computation of the matrix canonical forms de-
scribed above to the computation of operations from the ring. Over some
rings (such as fields) the operations {4, —, x, divide by a nonzero } will
be sufficient. Over more general rings we will need some additional op-
erations such as to compute greatest common divisors. This section lists
and defines all the operations — we call them basic operations from R
— that our algorithms require.

First we define some notation. By PIR (principal ideal ring) we mean
a commutative ring with identity in which every ideal is principal. Let
R be a PIR. The set of all units of R is denoted by R*. For a,b € R,
we write (a,b) to mean the ideal generated by a and b. The (-) notation
extends naturally to an arbitrary number of arguments. If (¢) = (a,b)
we call ¢ a ged of a and b. An element c is said to annihilate a if ac = 0.
If R has no zero divisors then R is a PID (a principal ideal domain).
Be aware that some authors use PIR to mean what we call a PID (for
example Newman (1972)).

Two elements a,b € R are said to be associates if a = ub for u € R*.
In a principal ideal ring, two elements are associates precisely when each
divides the other. The relation “a is an associate of b” is an equivalence
relation on R. A set of elements of R, one from each associate class, is
called a prescribed complete set of nonassociates; we denote such a set

by A(R).
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Two elements a and c¢ are said to be congruent modulo a nonzero
element b if b divides a — ¢. Congruence is also an equivalence relation
over R. A set of elements, one from each such equivalence class, is said
to be a prescribed complete set of residues with respect to b; we denote
such a set by R(R,b). By stipulating that R(R,b) = R(R, Ass(b)), where
Ass(b) is the unique associate of b which is contained in A(R), it will be
sufficient to choose R(R,b) for b € A(R).

We choose A(Z) ={0,1,2,...} and R(Z,b) = {0,1,...,]b] — 1}.

List of Basic Operations

Let R be a commutative ring with identity. We will express the cost
of algorithms in terms of number of basic operations from R. Over an
abstract ring, the reader is encouraged to think of these operations as
oracles which take as input and return as output a finite number of ring
elements.

Let a,b, N € R. We will always need to be able to perform at least
the following: a+b, a—b, ab, decide if a is zero. For convenience we have
grouped these together under the name Arith (abusing notation slightly
since the “comparison with zero” operation is unitary).

e Arithy _ . _(a,b): return a + b, a — b, ab, true if a = 0 and false
otherwise

e Gcedex(a,b): return g, s,t,u,v € R with sv — tu € R* and

s t al| |g
u v b |
whereby s =v =1 and t = 0 in case b is divisible by a.
e Ass(a): return the prescribed associate of a

e Rem(a,b): return the prescribed residue of @ with respect to Ass(b)

e Ann(a): return a principal generator of the ideal {b | ba = 0}

e Gced(a,b): return a principal generator of (a,b)
e Div(a,b): return a v € R such that bv = a (if a = 0 choose v = 0)

e Unit(a): return a u € R such that ua € A(R)
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e Quo(a,b): return a g € R such a — gb € R(R,b)
e Stab(a,b, N): return a ¢ € R such that (a + ¢b, N) = (a,b,N)

We will take care to only use operation Div(a,b) in cases b divides
a. If R is a field, and a € R is nonzero, then Div(1,a) is the unique
inverse of a. If we are working over a field, the operations Arith and
Div are sufficient — we simply say “field operatons” in this case. If R is
an integral domain, then we may unambiguously write a/b for Div(a,b).
Note that each of {Gced, Div, Unit, Quo} can be implemented in terms
of the previous operations; the rest of this section is devoted to showing
the same for operation Stab when N is nonzero (at least for a wide class
of rings including any PID or homomorphic image thereof.)

Lemma 1.1. Let R be a PIR and a,b, N € R with N # 0. There exists
a ¢ € R such that (a + ¢b, N) = (a,b,N).

Proof. From Krull (1924) (see also (Brown, 1993) or (Kaplansky, 1949))
we know that every PIR is the direct sum of a finite number of integral
domains and valuation rings.? If R is a valuation ring then either a
divides b (choose ¢ = 0) or b divides a (choose ¢ = 1 — Div(a,b)).

Now consider the case R is a PID. We may assume that at least one
of a or b is nonzero. Let g = Ged(a,b, N) and g = Ged(a/g,b/g). Then
(a/(99) + ¢b/(99),N/g) = (1) if and only if (a + ¢b,N) = (g). This
shows we may assume without loss of generality that (a,b) = (1). Now
use the fact that R is a unique factorization domain. Choose ¢ to be a
principal generator of the ideal generated by {N/Ged(a’, N)) | i € N}.
Then (¢, (N/c)) = (1) and (a,c¢) = 1. Moreover, every prime divisor of
N/c is also a prime divisor of a. It is now easy to show that ¢ satisfies
the requirements of the lemma. O

The proof of Lemma 1.1 suggests how we may compute Stab(a, b, N)
when R is a PID. As in the proof assume (a,b) = 1. Define f(a) =
Rem(a?, N). Then set ¢ = N/Ged(f'°82*%1(a)) where k is as in the fol-
lowing corollary. (We could also define f(a) = a?, but the Rem operation
will be useful to avoid expression swell over some rings.)

Corollary 1.2. Let R be a PID and a,b,N € R with N #0. A c€R
that satisfies (a + be, N) = (a,b, N) can be recovered in O(logk) basic
operations of type { Arith, Rem} plus O(1) operations of type {Ged, Div}
where k > max{l € N | 3 a prime p € R\ R* with p'|N}.

2Kaplansky (1949) writes that “With this structure theorem on hand, commuta-
tive principal ideal rings may be considered to be fully under control.”
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R is said to be stable if for any a,b € R we can find a ¢ € R with
(a + ¢b) = (a,b). Note that this corresponds to basic operations Stab
when N = 0. We get the following as a corollary to Lemma 1.1. We say
a residue class ring R/(N) of R is proper if N # 0.

Corollary 1.3. Any proper residue class ring of a PIR is a stable ring.

Operation Stab needs to be used with care. Either the ring should
be stable or we need to guarantee that the third argument N does not
vanish.

Notes Howell’s 1986 constructive proof of existence of the Howell form
uses the fact that Z/(N) is a stable ring. The construction of the ¢ in
the proof of Lemma 1.1 is similar the algorithm for Stab proposed by
Bach (1992). Corollary 1.2 is due to Mulders. The operation Stab is a
research problem in it’s own right, see (Mulders and Storjohann, 1998)
and (Storjohann, 1997) for variations.

Basic Operations over a Residue Class Ring

Let N # 0. Then R/(N) is a residue class ring of R. If we have an
“implementation” of the ring R, that is if we can represent ring elements
and perform basic operations, then we can implement basic operations
over R/(N) in terms of basic operations over R. The key is to choose the
sets A(-) and R(-,-) over R/(N) consistently (defined below) with the
choices over R. In other words, the definitions of these sets over R/(N)
should be inherited from the definitions over R. Basic operations over
R/(N) can then be implemented in terms of basic operations over R.

The primary application is when R is a Euclidean domain. Then
we can use the Fuclidean algorithm to compute geds in terms of oper-
ations {Arith, Rem}. Provided we can also compute Ann over R, the
computability of all basic operation over R/(N') will follow as a corollary.

Let ¢ = ¢n denote the canonical homomorphism ¢ : R — R/(N).
Abusing notation slightly, define ¢~! : R/(IN) — R to satisfy ¢~!(a) €
R(R,N) for @ € R/(N). Then R/(N) and R(R,N) are isomorphic.
Assuming elements from R/(N) are represented by their unique pre-
image in R(R, N), it is reasonable to make the assumption that the map
¢ costs one basic operation of type Rem, while ¢! is free.

Definition 1.4. For a,b € R/(N), let a = ¢~ (@) and b = ¢~ *(b). If
e Ass(b) = ¢(Ass(Ged(b, N))).
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e Rem(a, b) = ¢(Rem(a, Ass(Ged(b, N)))

the definitions of A(-) and R(-,-) over R/(N) are said to be consistent
with those over R.

Let @,b,d € R/(N) and a = ¢~ (a), b = ¢~1(b) and d = ¢~1(d).
Below we show how to perform the other basic operations over R/(N)
(indicated using overline) using operations from R.

e Arithy _ .(a,b) := ¢(Arithy _ .(a,b))
e Gedex(a,b) := ¢(Gedex(a, b))

Froi= 7y . | (9,8 % %, %) := Gedex(b, N);
Div(a,b) = [ return ¢(sDiv(a, g))

(%, 8,%,u, *) := Gedex(a, N);

o Amn(a) := [ return ¢(Ged(Ann(s), u))

Ged(a, b) == ¢(Ged(a, b))

(g, 8, %, u, %) := Gedex(a, N);
e Unit(a) := | t:= Unit(g);
return ¢(t(s + Stab(s,u, N)u))

Quo(a, b) := Div(a — Rem(a, b), b)
e Stab(a, b, d) := ¢(Stab(a, b, Ged(d, N))

1.2 Model of Computation

Most of our algorithms are designed to work over an abstract ring R. We
estimate their cost by bounding the number of required basic operations
from R.

The analyses are performed on an arithmetic RAM under the unit
cost model. By arithmetic RAM we mean the RAM machine as defined
in (Aho et al., 1974) but with a second set of algebraic memory locations
used to store ring elements. By unit cost we mean that each basic
operations has unit cost. The usual binary memory locations are used
to store integers corresponding to loop variables, array indices, pointers,
etc. Cost analysis on the arithmetic RAM ignores operations performed
with integers in the binary RAM and counts only the number of basic
operations performed with elements stored in the algebraic memory.



16 CHAPTER 1. INTRODUCTION

Computing Basic Operations over Z or Zy

When working on an arithmetic RAM where R = Z or R = Z/(N) we
measure the cost of our algorithms in number of bit operations. This
is obtained simply by summing the cost in bit operations required by
a straight line program in the bitwise computation model, as defined in
(Aho et al., 1974), to compute each basic operation.

To this end we assign a function M(k) : N — N to be the cost of the
basic operations of type Arith and Quo: given a,b € Z with |al, |b| < 2%,
each of Arith,(a,b) and Quo(a,b) can be computed in Og(M(n)) bit
operations. The standard methods have M(k) = k2. The currently
fastest algorithms allows M(k) = klog kloglogk. For a discussion and
comparison of various integer multiplication algorithms, as well as a
more detailed exposition of many the ideas to follow below, see von zur
Gathen and Gerhard (2003).

Theorem 1.5. Let integers a,b, N € Z all have magnitude bounded by
2k Then each of

e Arithy _ —(a,b), Unit(a), Ass(a), determine if a <b
can be performed in Op(k) bit operations. Each of

e Arith,, Div(a,b), Rem(a,b), Quo(a,b),
can be performed in Op(M(k)) bit operations. Each of

e Ged(a,b), Gedex(a,b), Stab(a,b, N)
can be performed in Op(M(k)logk) bit operations.

Proof. An exposition and analysis of algorithms witnessing these bounds
can be found in (Aho et al., 1974). The result for Arith, is due to
Schonhage and Strassen (1971) and the Gedex operation is accomplished
using the half-ged approach of Schonhage (1971). The result for Stab
follow from Mulders — Corollary 1.2. O

In the sequel we will give complexity results in terms of the function
B(k) = M(k)logk = O(k(log k)?(loglog k)).

Every complexity result for algorithms over Z or Zy will be given in
terms of a parameter 3, a bound on the magnitudes of integers occurring
during the algorithm. (This is not quite correct — the bit-length of
integers will be bounded by O(log 5).)
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It is a feature of the problems we study that the integers can become
large — both intermediate integers as well as those appearing in the
final output. Typically, the bit-length increases about linearly with the
dimension of the matrix. For many problems we have 8 = (\/r||A||)"
where ||A|| bounds the magnitudes of entries in the input matrix A of
rank . For example, a 1000 x 1000 input matrix with entries between
—99 and 99 might lead to integers with 3500 decimal digits.

To considerably speed up computation with these large integers in
practice, we perform the lion’s share of computation modulo a basis of
small primes, also called a RNS (Residue Number System). A collection
of s distinct odd primes p, gives us a RNS which can represent signed
integers bounded in magnitude by p1ps - - - ps/2. The RNS representation
of such an integer a is the list (Rem(a, p1), Rem(a, p2), ..., Rem(a, ps)).

Giesbrecht (1993) shows, using bounds from Rosser and Schoenfeld
(1962), that we can choose [ > 6+loglog 3. In other words, for such an [,
there exist at least s = 2[(log, 23)/(I—1)] primes p, with 2/~ < p, < 2,
and the product of s such primes will be greater than 25. (Recall that
we use the paramater 8 as a bound on magnitudes of integers that arise
during a given computation.) A typical scheme in practice is to choose [
to be the number of bits in the machine word of a given binary computer.
For example, there are more than 2 - 10!7 64-bit primes, and more than
98 million 32-bit primes.

From Aho et al. (1974), Theorem 8.12, we know that the mapping
between standard and RNS representation (the isomorphism implied by
the Chinese remainder theorem) can be performed in either direction in
time Op(B(log 8)). Two integers in the RNS can be multiplied in time
Op(s-M(l)). We are going to make the assumption that the multiplica-
tion table for integers in the range [0, 2! — 1] has been precomputed. This
table can be built in time Og((log )% M(l)). Using the multiplication
table, two integers in the RNS can be multiplied in time Op(log 3). Cost
estimates using this table will be given in terms of word operations.

Complexity estimates in terms of word operations may be trans-
formed to obtain the true asymptotic bit complexity (i.e. without as-
suming linear multiplication time for I-bit words) by replacing terms
log B not occuring as arguments to B(-) as follows

(log 8) — (log B) M(log log )/ (log log j3)
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Matrix Computations

Let R be a commutative ring with identity (the most general ring that
we work with). Let MM(a, b, ¢) be the number of basic operation of type
Arith required to multiply an a x b matrix together with a b x ¢ matrix
over R. For brevity we write MM (n) to mean MM(n,n,n). Standard
matrix multiplication has MM(n) < 2n3. Better asymptotic bounds are
available, see the notes below. Using an obvious block decomposition we
get:

Fact 1.6. We have
MM(a,b,c) < [a/r] - [b/r] - [c¢/r] - (MM(r) +7"2)
where r = min(a, b, c).

Our algorithms will often reduce a given problem to that of multi-
plying a number of matrices of smaller dimension. To give complexity
results in terms of the function MM(-) would be most cumbersome. In-
stead, we use a parameter § such that MM(n) = O(n?) and make the
assumption in our analysis that 2 < § < 3. As an example of how we
use this assumption, let n = 2¥. Then the bound

k
S =Y 4'MM(n/2") = O(n)
i=0

is easily derived. But note, for example, that if MM (n) = ©(n?(logn)®)
for some integer constant ¢, then S = O(MM(n)(logn)). That is, we get
an extra log factor. On the one hand, we will be very concerned with
logarithmic factors appearing in the complexity bounds of our generic
algorithms (and try to expel them whenever possible). On the other
hand, we choose not to quibble about such factors that might arise under
the assumption that the cost of matrix multiplication is softly quadratic;
if this is shown to be the case the analysis of our algorithms can be
redone.

Now consider the case R = Z. Let A € Z%*® and B € Z"*¢. We will
write ||A|| to denote the maximum magnitude of all entries in A. Then
[|AB|| <b-||A]|l-||B]|- By passing over the residue number system we
get the following:

Lemma 1.7. The product AB can be computed in
O(MM(a, b, c)(log B) + (ab + be + ac) B(log B))
word operations where 5 =b-||Al| - ||B|.
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Notes

The currently best known upper bound for 6 is about 2.376, due to
Coppersmith and Winograd (1990). The derivation of upper and lower
bounds for MM(-) is an important topic in algebraic complexity the-
ory, see the text by Biirgisser et al. (1996). Note that Fact 1.6 implies
MM(n,n,n") = O(n?>t7(=2)) for 0 < r < 1. This bound for rectangu-
lar matrix multiplication can be substantially improved. For example,
(Coppersmith96) shows that MM(n,n,n") = O(n?*¢) for any € > 0 if
r < 0.294, n — oco. For recent work and a survey of result on rectangular
matrix multiplication, see Huang and Pan (1997).

1.3 Analysis of algorithms

Throughout this section, the variables n and m will be positive integers
(corresponding to a row and column dimensions respectively) and r will
be a nonnegative integer (corresponding, for example, to the number of
nonzero rows in the output matrix). We assume that 6 satisfies 2 < 6 <
3.

Many of the algorithms we develop are recursive and the analysis will
involve bounding a function that is defined via a recurrence relation. For
example, if

ifm=1
J(m) = { 2, (fm/2]) +m® " ifm > 1

then f,(m) = O(ym?~!). Note that the big O estimate also applies to
the parameter ~.

On the one hand, techniques for solving such recurrences, especially
also in the presence of “floor” and “ceiling” functions, is an interesting
topic in it’s own right, see the text by Cormen et al. (1989). On the
other hand, it will not be edifying to burden our proofs with this topic.
In subsequent chapters, we will content ourselves with establishing the
recurrence together with the base cases. The claimed bounds for recur-
rences that arise will either follow as special cases of the Lemmas 1.8
and 1.9 below, or from Cormen et al. (1989), Theorem 4.1 (or can be
derived using the techniques described there).

Lemma 1.8. Let ¢ be an absolute constant. The nondeterministic func-
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tion f : Zzzo — R>¢ defined by

if m =1 or r =0 then return vycm
else
fy(m,r) = Choose nonngative r1 and ro which satisfy r; + 79 = r;
return f.,(|m/2],r1) + fy([m/2],72) +yem
fi

satisfies f(m,r) = O(ymlogr).

Proof. Tt will be sufficient to prove the result for the case v = 1. Assume
for now that m is a power of two (we will see later that we may make
this assumption).

Consider any particular execution tree of the function. The root is
labelled (m,r) and, if m > 1 and r > 0, the root has two children
labelled (m/2,71) and (m/2,72). In general, level i (0 < ¢ < log, m) has
at most 2¢ nodes labelled (m/2%, ). All nodes at level i have associated
cost cm /2% and if either i = log, m or the second argument of the label
is zero the node is a leaf (one of the base cases). The return value of
f(m,r) with this execution tree is obtained by adding all the costs.

The cost of all the leaves is at most ¢m. It remains to bound the
“merging cost” associated with the internal nodes. The key observation
is that there can be at most r internal nodes at each level of the tree.
The result follows by summing separately the costs of all internal nodes
up to and including level [log2r] (yielding O(mlogr)), and after level
[log, 7] (vielding O(m)).

Now consider the general case, when m may not a power of two.
Let m be the smallest power of two greater than or equal m. Then
[m/2] < m/2 implies [[m/2]/2] < m/4 and so on. Thus any tree with
root (m,r) can be embedded in some execution tree with root (m,r)
such that the corresponding nodes in (1, r) have cost greater or equal
to the associated node in (m,r). O

Lemma 1.9. Let r,r1,ro > 0 satisfy r1 +ro = r. Then rffz + r2972 <

23—97.0—2

Lemma 1.10. Let ¢ be a an absolute constant. The nondeterministic
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function f, : Zzzo — R>¢ defined by

if m =1 or r =0 then return yem
else
fy(m,r) = Choose nonngative r1 and ro which satisfy r; + 1o = 7;
return f,(|m/2],r1) + fy([m/2],r2) + yemr? =2
fi

satisfies f(m,r) = O(ymrf=2).

Proof. It will be sufficient to consider the case when m is a power of
two, say m = 2. (The same “tree embedding” argument used in the
proof of Lemma 1.8 works here as well.) Induction on k, together with
Lemma 1.9, shows that f.(m,r) < 3¢/(1 — 2279)ymrf=2. O

1.4 A Primer on Echelon Forms over Rings

Of the remaining eight chapters of this thesis, five are concerned with
the problem of transforming an input matrix A over a ring to echelon
form under unimodular pre-multiplication. This section gives a primer
on this topic. The most familiar situation is matrices over a field. Our
purpose here is to point out the key differences when computing echelon
forms over more general rings and thus to motivate the work done in
subsequent chapters.

H S1

UA= VAW =

Figure 1.2: Transformation to echelon and diagonal form

We begin with some definitions. Let R be a commutative ring with
identity. A square matrix U over R is unimodular if there exists a matrix
V over R such that UV = I. Such a V| if it exists, is unique and
also satisfies VU = I. Thus, unimodularity is precisely the notion of
invertibility over a field extended to a ring. Two matrices A, H € R"*™
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are left equivalent to each other if there exists a unimodular matrix U
such that UA = H. Two matrices A, S € R"™™ are equivalent to each
other if there exists unimodular matrices V and W such that VAW = S.
Equivalence and left equivalence are equivalence relations over R™*™.

Following the historical line, we first consider the case of matrices
over field, then a PID and finally a PIR. Note that a field is a PID and
a PID is a PIR. We will focus our discussion on the echelon form.

Echelon forms over fields Consider the matrix
-10 35 =10 2
A= -16 56 —-17 3 (1.1)
54 —-189 58 10

to be over the field Q of rational numbers. Applying Gaussian elimina-
tion to A yields

1 00 —1035—102}
.
—8/5 1 0 |A= -1 -1/5
-1 41

where the transforming matrix on the left is nonsingular and the matrix
on the right is an echelon form of A. The number r of nonzero rows in
the echelon form is the rank of A. The last n—r rows of the transforming
matrix comprise a basis for the null space of A over Q. Continuing with
some elementary row operations (which are invertible over Q) we get

U H
0o -2 -1 1 —7/2 0 =2/5
0 2 85 | A= 1 1/5
1 -4 -1

with H the Gauss Jordan canonical form of A and det U = —121/50 (i.e.
U is nonsingular). Given another matrix B € Q**™, we can assay if the
vector space generated by the rows of A is equal to that generated by
the rows of B by comparing the Gauss Jordan forms of A and B. Note
that if A is square nonsingular, the the Gauss Jordan form of H of A
is the identity matrix, and the transform U such that UA = H is the
unique inverse of A.
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Echelon forms over PIDs Now let R be a PID. A canonical form for
left equivalence over R is the Hermite form — a natural generalization of
the Gauss Jordan form over a field. The Hermite form of an A € R®»*™
is the H € R™*"™ which is left equivalent to A and which satisfies:

(r1) H is in echelon form, see Figure 1.4.
(r2) Each h, € A(R) and entries % above h, satisfy * € R(R, h.).
As a concrete example of the form, consider the matrix

~10 35 —10 2
A=| -16 56 —17 3 (1.2)
54 —189 58 —10

to be over the ring of integers. We will transform A to echelon form
via unimodular row transformations in two stages. Note that over Z the
unimodular matrices are precisely those with determinant +1. Gaussian
elimination (as over Q) might begin by zeroing out the second entry in
the first column by adding an appropriate multiple of the first row to
the second row. Over the PID Z this is not possible since —16 is not
divisible by —10. First multiplying the second row by 5 would solve this
problem but this row operation is not invertible over Z. The solution is
to replace the division operation with Gedex. Note that (—2,-3,2,8,5)
is a valid return tuple for the basic operation Gedex(—10,—16). This
gives

A
-3 2 —-10 35 -2 7
8 =5 —-16 56 = 0
1 54  —189 54  —189

The next step is to apply a similar transformation to zero out en-
try 54. A valid return tuple for the basic operation Gedex(—2,54) is
(—2,1,0,27,1). This gives

1 -2 7 -2 7
1 0 = 0
27 1 o4 —189 0
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Note that the first two columns (as opposed to only one column) of the
matrix on the right hand side are now in echelon form. This is because,
for this input matrix, the first two columns happen to have rank one.
Continuing in this fashion, from left to right, using transformation of
type Gedex, and multiplying all the transforms together, we get the
echelon form

-3 2 0 -2 7 -4 0
8§ =5 0 |A= 5 1
-1 4 1

The transforming matrix has determinant —1 (and so is unimodular
over 7). This completes the first stage. The second stage applies some
elementary row operations (which are invertible over Z) to ensure that
each h, is positive and entries % are reduced modulo the diagonal entry
in the same column (thus satisfying condition (r2)). For this example
we only need to multiply the first row by —1. We get

U H
3 -2 0 2 -7 4 0
8 —5 0| A= 5 1 (1.3)
-1 4 1

where H is now in Hermite form. This two stage algorithm for transfor-
mation to Hermite form is given explicitly in the introduction of Chap-
ter 3.

Let us remark on some similarities and differences between echelon
forms over a field and over a PID. For an input matrix A over a PID R,
let A denote the embedding of A into the fraction field R of R (eg. R = Z
and R = Q). The similarity is that every echelon form of A (over R) or
A (over R) will have the same rank profile, that is, the same number
of nonzero rows and the entries h, will be located in the same columns.
The essential difference is that any r linearly independent rows in the
row space of A constitute a basis for the row space of A. For A this
is not the case?. The construction of a basis for the set of all R-linear
combinations of rows of A depends essentially on the basic operation
Gedex.

3For example, neither row of [%} € Z2*1 generates the rowspace, which is Z'.
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A primary use of the Hermite form is to solve a system of linear
diophantine equations over a PID R. Continuing with the same example
over 7Z, let us determine if the vector b = [ 4 —-14 23 3 ] can be
expressed as a Z-linear combination of the rows of the matrix A in (1.2).
In other words, does there exists an integer vector = such that zA = b7
We can answer this question as follows. First augment an echelon form
of A (we choose the Hermite form H) with the vector b as follows

Because H is left equivalent to A, the answer to our question will be
affirmative if and only if we can express b as an R-linear combination of
the rows of H. (The last claim is true over any commutative ring R.)
Now transform the augmented matrix so that the off-diagonal entries in
the first row satisfy condition (r2). We get

1|-2 =3 0 1]4 —14 23 3
1 2 -7 40
1 5 1

We have considered here a particular example, but in general there are
two conclusions we may now make:

o If all off-diagonal entries in the first row of the transformed matrix
are zero, then the answer to our question is affirmative.

e Otherwise, the the answer to our question is negative.

On our example, we may conclude, comparing with (1.3), that the vector

3 -2 0
8§ =5 0

z=12 3][

]—[30 -16 0 |

satisfies ©A = b. This method for solving a linear diophantine system is
applicable over any PID.
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Echelon forms over PIRs Now consider the input matrix A of (1.2)
as being over the PIR Z/(4). Note that

2 3 2 2
A=|[0 0 3 3 | mod4
2 3 2 2

so the the transformation of A to echelon form is easy:

100 2 3 2 2 2 3 2 2
0 10 0 0 3 3 |= 3 3 | mod4.
3 01 2 3 2 2

In general, the same procedure as sketched above to compute an echelon
form over a PID will work here as well. But there are some subtleties
since Z/(4) is a ring with zero divisors. We have already seen, with the
example on page 8, that different echelon forms of A can have different
numbers of nonzero rows. For our example here we could also obtain

12072 3 2 2 2 300
030|003 3 1 1 |modd  (1.4)
301 )[23 22

and
U A H
0 2 3 2 3 2 2 21 00
1 01 00 3 3 |= 2 0 0 | mod4 (1.5)
0 3 0 2 3 2 2 11

Both of these echelon forms satisfy condition (r2) and so are in Hermite
form. Obviously, we may conclude that the Hermite form is not a canon-
ical form for left equivalence of matrices over a PIR. We need another
condition, which we develop now. By S(A) we mean the set of all R-linear
combinations of rows of A, and by S;(A) the subset of S(A) comprised
of all rows which have first j entries zero. The echelon form H in (1.5)
satisfies the Howell property: Si(A) is generated by the last two rows
and So(A) is generated by the last row. The Howell property is defined
more precisely in Chapter 4. For now, we just point out that, for an
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echelon form that satisfies the Howell property, the procedure sketched
above for solving a linear system is applicable. (In fact, a Hermite form
of A is in Howell form precisely when this procedure works correctly for
every b € R™.) The echelon form in (1.4) is not suitable for this task.
Note that

L]

0 2 00
2 3 00
1 1

is in Hermite form, but [ 02 00 ] is equal, modulo 4, to 2 times
[2 3 0 0].

An echelon form which satisifes the Howell property has the maxi-
mum number of nonzero rows that an echelon form can have. For com-
plexity theoretic purposes, it will be useful also to recover an echelon
form as in (1.4) which has a minimum number of nonzero rows.

We have just established and motivated four conditions which we
might want an echelon form H of an input matrix A over a PIR to
possess. Using these conditions we distinguish in Table 1.4 a number of
intermediate echelon forms which arise in the subsequent chapters.

(r1) H is in echelon form,
see Figure 1.4.

Conditions

Form r1[r2]r3]r4 (r2) Each h. € A(R) and
echelon . ¥ € R(R hy) for *
minimal echelon ° . above h,.
Hermite he (r3) H has a minimum
minimal Hermite || o ° number of nonzero
weak Howell ° LOWS.
Howell o | o

(r4) H satisfies the How-
ell property.

Table 1.1: Echelon forms over PIRs
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1.5 Synopsis and Guide

The remaining eight chapters of this thesis can be divided intro three
parts:

Left equivalence: Chapters 2, 3, 4, 5, 6.
Equivalence: Chapters 7 and 8.
Similarity: Chapter 9.

Chapters 2 through 6 are concerned primarily with computing various
echelon forms of matrices over a field, a PID or a PIR. Figure 1.3 recalls
the relationship between these and some other rings. At the start of

field

.
\
[
[
[

|

|

|

| Y

| PID—+—ID
| | l

| |

\ y | commutative
|

PIR +— _ With
L identity

Figure 1.3: Relationship between rings

each chapter we give a high level synopsis which summarizes the main
results of the chapter and exposes the links and differences to previous
chapters. For convenience, we collect these eight synopsis together here.

Chapter 2: Echelon Forms over a Field Our starting point, ap-
propriately, is the classical Gauss and Gauss Jordan echelon forms for a
matrix over a field. We present simple to state and implement algorithms
for these forms, essentially recursive versions of fraction free Gaussian
elimination, and also develop some variations which will be useful to
recover some additional matrix invariants. These variations include a
modification of fraction free Gaussian elimination which conditions the
pivot entries in a user defined way, and the triangularizing adjoint, which
can be used to recover all leading minors of an input matrix. All the al-
gorithms are fraction free and hence applicable over an integral domain.
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Complexity results in the bit complexity model for matrices over Z are
also stated. The remaining chapters will call upon the algorithms here
many times to recover invariants of an input matrix over a PID such as
the rank, rank profile, adjoint and determinant.

Chapter 3: Triangularization over Rings The previous chapter
considered the fraction free computation of echelon forms over a field.
The algorithms there exploit a feature special to fields — every nonzero
element is a divisor of one. In this chapter we turn our attention to
computing various echelon forms over a PIR, including the Hermite form
which is canonical over a PID. Here we need to replace the division op-
eration with Gedex. This makes the computation of a single unimodular
transform for achieving the form more challenging. An additional issue,
especially from a complexity theoretic point of view, is that over a PIR
an echelon form might not have a unique number of nonzero rows — this
is handled by recovering echelon and Hermite forms with minimal num-
bers of nonzero rows. The primary purpose of this chapter is to establish
sundry complexity results in a general setting — the algorithms return a
single unimodular transform and are applicable for any input matrix over
any PIR (of course, provided we can compute the basic operations).

Chapter 4: Howell Form over a PIR This chapter, like the pre-
vious chapter, is about computing echelon forms over a PIR. The main
battle fought in the previous chapter was to return a single unimodular
transform matrix to achieve a minimal echelon form. This chapter takes
a more practical approach and presents a simple to state and implement
algorithm — along the lines of those presented in Chapter 2 for echelon
forms over fields — for producing the canonical Howell form over a PIR.
The algorithm is developed especially for the case of a stable PIR (such
as any residue class ring of a PID). Over a general PIR we might have
to augment the input matrix to have some additional zero rows. Also,
instead of producing a single unimodular transform matrix, we express
the transform as a product of structured matrices. The usefulness of this
approach is exposed by demonstating solutions to various linear algebra
problems over a PIR.

Chapter 5: Echelon Forms over PIDs The last three chapters gave
algorithms for computing echelon forms of matrices over rings. The focus
of Chapter 2 was matrices over fields while in Chapter 3 all the algorithms
are applicable over a PIR. This chapter focuses on the case of matrices
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over a PID. We explore the relationship — with respect to computation
of echelon forms — between the fraction field of a PID and the residue
class ring of a PID for a well chosen residue. The primary motivation for
this exercise is to develop techniques for avoiding the potential problem
of intermediate expression swell when working over a PID such as Z or
Q[x]. Sundry useful facts are recalled and their usefulness to the design
of effective algorithms is exposed. The main result is to show how to
recover an echelon form over a PID by computing, in a fraction free way,
an echelon form over the fraction field thereof. This leads to an efficient
method for solving a system of linear diophantine equations over Q[x],
a ring with potentially nasty expression swell.

Chapter 6: Hermite Form over Z An asymptotically fast algorithm
is described and analysed under the bit complexity model for recovering
a transformation matrix to the Hermite form of an integer matrix. The
transform is constructed in two parts: the first r rows (what we call a
solution to the extended matrix ged problem) and last r rows (a basis
for the row null space) where r is the rank of the input matrix. The
algorithms here are based on the fraction free echelon form algorithms
of Chapter 2 and the algorithm for modular computation of a Hermite
form of a square nonsingular integer matrix developed in Chapter 5.

Chapter 7: Diagonalization over Rings An asymptotically fast al-
gorithm is described for recovering the canonical Smith form of a matrix
over PIR. The reduction proceeds in several phases. The result is first
given for a square input matrix and then extended to rectangular. There
is an important link between this chapter and chapter 3. On the one
hand, the extension of the Smith form algorithm to rectangular matrices
depends essentially on the algorithm for minimal echelon form presented
in Chapter 3. On the other hand, the algorithm for minimal echelon
form depends essentially on the square matrix Smith form algorithm
presented here.

Chapter 8: Smith Form over Z An asymptotically fast algorithm
is presented and analysed under the bit complexity model for recover-
ing pre- and post-multipliers for the Smith form of an integer matrix.
The theory of algebraic preconditioning — already well exposed in the
literature — is adpated to get an asymptotically fast method of con-
structing a small post-multipler for an input matrix with full column
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rank. The algorithms here make use of the fraction free echelon form al-
gorithms of Chapter 2, the integer Hermite form algorithm of Chapter 6
and the algorithm for modular computation of a Smith form of a square
nonsingular integer matrix of Chapter 7.

Chapter 9: Similarity over a Field Fast algorithms for recovering
a transform matrix for the Frobenius form are described. This chapter
is essentially self contained. Some of the techniques are analogous to the
diagonalization algorithm of Chapter 7.

to

Susanna Balfego Vergés
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Chapter 2

Echelon Forms over Fields

Our starting point, appropriately, is the classical Gauss and
Gauss Jordan echelon forms for a matrix over a field. We
present simple to state and implement algorithms for these
forms, essentially recursive versions of fraction free Gaussian
elimination, and also develop some variations which will be
useful to recover some additional matrix invariants. These
variations include a modification of fraction free Gaussian
elimination which conditions the pivot entries in a user de-
fined way, and the triangularizing adjoint, which can be used
to recover all leading minors of an input matrix. All the algo-
rithms are fraction free and hence applicable over an integral
domain. Complexity results in the bit complexity model for
matrices over Z are also stated. The remaining chapters will
call upon the algorithms here many times to recover invari-
ants of an input matrix over a PID such as the rank, rank
profile, adjoint and determinant.

Let K be a field. Every A € K"*™ can be transformed using elementary
row operations to an R € K"*™ which satisfies the following:

(r1) Let r be the number of nonzero rows of R. Then the first r rows of
R are nonzero. For 1 < i < r let RJ[i,j;| be the first nonzero entry
in row ¢. Then j; < joa < -+ < jp.

(r2) R[i,j;] =1and R[k,j;] =0for 1 <k <i<r.

33
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R is the unique reduced row echelon form of A, also called the GaussJor-
dan canonical form of A. The sequence (j1,...,J,) is the rank profile of
A — the lexicographically smallest subsequence of (1,...,m) such that
columns ji,...,J, of A have rank r. The following example has rank
profile (1,4, 5).

1 % % x % % %
1 * ok kX
1 * *x *x x%

It is a classical result that entries in R can be expressed as quotients
of minors of the input matrix A. Let P € K"*" be a permutation
matrix such that the first » rows of PA are linearly independent. Let
Ay € K™ and Ay € K("~")*" he the submatrix of PA comprised of
columns ji,...,j, and first 7 and last n — r rows respectively. Now let
Up = A3 and Uy = — 4,439, Then

U PA dR
d * *
Uy

U2 dIn—'r

* X K| X X ¥
* X K| X X ¥
* X K| X ¥ ¥
* X K| X ¥ ¥
* X K| X ¥ ¥
* X K| X ¥ ¥
* X K| X ¥ ¥
* X K| X X ¥
* X K| X ¥ ¥
U

where d is the determinant of A;. The key point is that all entries
in U and dR are minors of A bounded in dimension by r. We call
(U, P,r,d) a fraction free GaussJordan transform of A. The transform
exists over an integral domain R. In Section 2.2 we give an algorithm for
fraction free GaussJordan transform that requires O(nmr?=2) multipli-
cations and subtractions plus O(nmlogr) exact divisions from R. When
R = Z the cost of the algorithm is O(nmr?~2(log 8) +nm(logr) B(log 3))
word operations where 8 = (\/r||A]])".

In Section 2.3 we modify the algorithm to compute a fraction free
Gauss transform of A. This is a tuple (U, P,r,d) where P, r and d are
as before but the principal r x r submatrix of U is lower triangular. For
example

35

PA
1 k ok ok ok ok ok ok k% di % % * ok ok ok ¥ ok
* dq * % ok ok x ok k¥ ok do * * % % x
* x do ok ok koK ok ok ok ok | ds * % % %
k ok ok ok ok ok ok ok ok |
Us dl,_, * ok ok ok ok ok ok ok ok
¥ % ok ok ok ok ok k%

where d; is the determinant of the ith principal submatrix ot A; (whereby
d = d3). This is the form obtained using fraction free Gaussian elim-
ination. The last row of the ith principal submatrix of U is the last
row in the adjoint of the ith principal submatrix of A;. The principal
r X r submatrix of U is called the triangularizing adjoint of A; (see
Section 2.5).

Section 2.5 an algorithm is given for computing a modified fraction
free Gauss transform of A. The only difference from the Gauss transform
is that the role of P is played by a unit upper triangular “conditioning”
matrix C'. This form gives a simple and efficient algorithm for computing
a solution to a system of linear diophantine equations over Q[z] (see
Section 5.3).

Finally, Section 2.5 gives an algorithm for computing the triangular-
izing adjoint of a square matrix in the general case, when the leading
minors might not all be nonzero.

Notes

The classical algorithm — GaussJordan elimination — requires O(nmr)
field operations. By recording row operations during the reduction,
transformation matrices U and P can be recovered in the same time.
Fraction free versions of Gaussian elimination are given by Bareiss (1968,
1972) and Edmonds (1967) (see also (Geddes et al., 1992)). The algo-
rithms we present here are nothing more than recursive versions of frac-
tion free Gaussian elimination. The essential idea is straightforward; our
purpose here is to provide simple-to-state (and implement) algorithms
which handle uniformly an input matrix of arbitrary shape and rank
profile. The algorithms in this chapter will be called upon many times
in the rest of this thesis.

A O(nm?~2) field operations algorithm (where m > n) for the eche-
lon form has been given already by Keller-Gehrig (1985). Better known
is the LU P-decomposition algorithm of Bunch and Hopcroft (1974) (see



36 CHAPTER 2. ECHELON FORMS OVER FIELDS

also the texts by Aho et al. (1974) and Cormen et al. (1989)) and the
more general LSP-decomposition of Ibarra et al. (1982). The LSP de-
composition is well suited to solving many liner algebra problems (system
solving, determinant and inverse) but has the drawback that the rank
profile of A is not recovered, nor is S a canonical form. Many asymptot-
ically fast algorithms for linear algebra problems over fields have been
given previously. For a survey we refer to the text by Biirgisser et al.
(1996), chapter 16.

2.1 Preliminaries

In this section we recall fraction free Gaussian elimination and give an
example motivating the main idea of the asymptotically fast algorithms
to follow.

The following simplified version of fraction free Gauss Jordan elim-
ination assumes that all leading minors of A are nonsingular. In this
case no permutations of rows will be necessary to ensure that pivots
are nonzero. The reader is encouraged to examine the algorithm and
subsequent lemma together with the worked example below.

B := a copy of A;

ep = 1;
for k£ to m do
er := Blk, K]
Ey :=erl,; Ex[x k] == —B[xk];  Eglk, k] == egx_1;
B:= —1_FE.B:
€r—1
od;

Lemma 2.1. Let A € R™*™ have all leading minors nonsingular. Let ey,
and Ey be as produced by the code given above with input A, 1 < k < m,
eo = 1. Then ey, is the kth principal minor of A and

1 11
By —Ey,—F, (2.3)
€L—1 €1 €0

is the first component of a fraction free GaussJordan transform of the
submatriz comprised of the first k columns of A. Moreover, for any
1 <1 <k, the matrix

1 1
Ey---—Ein E;
€k—1 €;
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has columns 1,2,...,1—1,k+1,k+2,...,m equal to the same columns in
erxl, and columns i,i+1,...,k equal to the same columns of the matriz

Consider the input matrix

4 5 0 3
1 3 3 2
A=1|2 4 3 4
0 2 3 3
5 4 0 0

The leading minors of A are (eg, €1, e2,€3,e4) = (1,4,7,3,9). We get

By
1 45 0 3 4 5 0 3
1 4 13 3 2 7 12 5
2 4 9 4 3 4 |= 6 12 10
0 1 0 2 3 3 8 12 12
5 405 40 0 9 0 -15
Ey
7 -5 4 5 0 3 7 15 -1
. 1 7 12 5 7 12 5
- 6 7 6 12 10 | = 310
4 8 7 8 12 12 3 11
9 7 9 0 -15 27 —15
Es
3 15 7 —15 -1 3 21
| 3 12 7 12 5 3 —15
- 7 310 | = 310
7 3 3 3 11 9
o7 3 27 —15 45
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Ey
9 _91 3 21 9
. 9 15 3 15 9
- 9 —10 3 10 | = 9
3 3 9 9
45 9 45

Combining the F;s gives the fraction free Gauss transform for A.

-9 -3 24 =21
1 1 1 1 9 6 —21 15
—Ey(—E3(—Ex(—Ey))=| -6 2 11 -10
G e a  © 0 -6 3 3
9 -9 -3 45 9

The recursive algorithm of the next section works by dividing the in-
put matrix into slices of contiguous columns. These slices are recursively
divided until the base case (one column) is reached. Each base case is
precisely the computation of one of the E;’s and e;’s as in the algorithm
above. As an example we give the top level of the recursion. The input
matrix A is divided into two slices: the first two columns A; and second
two columns B.

First the fraction free GuassJordan transform éEgEl is computed
for A;. Then we premultiply B by this transform to get our second
subproblem As.

LBy By A, B As
3 -5 4 510 3 7 —-15 -1
—1 4 1 3|3 2 7 12 5
-2 -6 7 2 413 4 = 3 10
2 —8 7 0 213 3 -3 11
—-11 9 7 5 410 0 27  —15

The second subproblem starts with Ao and e; and continues Gauss Jor-
dan elimination to get iE4E3.

9 24 =21 7 -15 -1 9
9 —-21 15 7T 12 5 9
11 -10 3 10 = 9
3 3 -3 11 9
=36 45 9 2T —15
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The combining phase produces the complete GaussJordan transform by
multiplying the transforms of the two subproblems together.

-9 -3 24 =21
— 9 6 —-21 15

171 1
— (=E4BE3)(—EE))=| =6 2 11 =10
3 €1

& ¢ 0 -6 3 3
9 -9 -36 45 9

Lemma 2.1 assures us that all entries in each of the matrices correspond-
ing to a bracketed subexpression will be (up to sign) minors of A bounded
in dimension by m. As a further example, we could also combine the

E;’s as follows:
——

iE4(i(iEsEz)El)

€3 €1 €2

The algorithms of the next sections are based on matrix multiplica-
tion with structured matrices (as in the worked example above.) In the
rest of this section we study these matrix multiplications with respect
to cost and structure preservation. Above we assumed that all leading
minors of A were nonsingular. When this is not the case we will need to
introduce a permutation P or unit upper triangular conditioning matrix
C.

Correctness of the lemmas is easily verified. The cost estimates follow
from Fact 1.6.

Lemma 2.2. Let Py, U; € K"*" with Py nonsingular have the shape

I dll *
P, = I and Uy = *
* * dll

where the block decomposition is conformal. Then P2U1P§1 has the same
shape as Uy and PoU Pyt = Po(Uy — dy 1) 4 dy 1.

Lemma 2.3. Let Cy,Cy € K"*™ be unit upper triangular with the shape
shown. Then

Cy & Cy+C1 -1

I, c11 | €12 | 13 c11 | €12 | 13
C22 | C23 I, = C22 | C23

I I I

where the block decomposition is conformal.
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Lemma 2.4. Let C7 € K®™ ™ be as in Lemma 2.3 and B € K"*™2,
Then the product C1 B can be computed in O(nmgfl) basic operations of
type Arith.

The next lemma is used to construct the second subproblem.

Lemma 2.5. Let dy,d; € K be nonzero. If PB € K"*™2 qgnd

dil | a e
U = u and P\B=| f
c dlln—k—rl g

where e and f have row dimension k and ry respectively, then d—loUlplB =
Ag where

€9 ey = %(dle —+ af)
Az = | f2 with — fo = Zuf
92 g2 = g (dig+cf)

The computation of Ay requires at most O(n max(r1, mo) min(ry, ms)?=2)
basic operations of type Arith plus at most O(n(r1+ms)) basic operations
of type Div.

The next lemma is used to combine the results of the two subprob-
lems.

Lemma 2.6. Let P, P, € K™*™ with P, nonsingular and let di,d € K
be nonzero. If

d[k as dlfk aq
_ d[rl a2 -1 _ U1
U2 = Uy and P2U1P2 = & dllrz
cy | dI C1 di1

then dilUQPgUlpl = UP where P = PP, and

1
dli | a11 | as ayl = a(dal + ascr)
= 1 _
uyy | Go ) ur = - (dup + aacy
U= with df( )
U1 | U2 U21 = g U201
1
c11 | cg | dI c11 = ng(dCl + cac1)

The computation of U and P requires at most O(nmax(ry,r9) min(ry, ro)?=2)

basic operations of type Arith plus at most O(n(r1+r2)) basic operations
of type Div.
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2.2 The GaussJordan Transform

For now all matrices are over a field K. For convenience we extend the
notion of determinant to handle also rectangular matrices as follows: if
B € K™*™ has rank less than n, then det B = 0, otherwise, if B € K"*™
has rank profile (j1,...,J,) with 7 = n, then det B is the determinant of
the submatrix of B comprised of columns ji,..., 7, and first r rows. If
B has zero rows or columns then det B = 1.

We continue by defining a generalization of the fraction free GaussJor-
dan transform.

Definition 2.7. Let A € K"*™ dy € K be nonzero, and k be such that
0 < k < n. A fraction free index GaussJordan transform of (A, k,do)
is a 5-tuple (U, P,r,h,d) with U € K™*™ nonsingular and P € K"*" q
permutation which satisfy and can be written as

Iy | % * * I
x| = % with P = *
Infkfr T o Ih

(2.4)
and where the block decomposition for éU, dLOPA and R is conformal
and:

e 1 is the rank of rows k+ 1,k +2,...,n of A;

e h is mazximal such that rows k+1,k+2,...,n—h of A have rank

ry

d is equal to dy times the determinant of the middle block of %PA;

The middle blocks of dLOPA and R have full row rank r. The middle
block of R is in reduced row echelon form. FEntries in columns
J1s---,Jr of the upper block of R are zero, where (ji1,...,j.) is the
rank profile of the middle block of R.

We call R the index k Gauss Jordan form of %A. For brevity, we will say
“index transform” to mean “fraction free index GaussJordan transform”.

Theorem 2.9. Algorithm 2.8 is correct.
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Algorithm 2.8. GaussJordan(A4,k,dy)
Input: (A, k,dy) with A € K"*™ 0 < k <n and dy € K nonzero.
Output: (U, P,r, h,d), a fraction free index Gauss transform.
if (Afi,*] =0 for k < i <n) then
(U, P,r,h,d) := (doI,I,0,n—k,dp)
else if m =1 then
i := minimal index with ¢ > k and A[i, 1] # 0;
P := the permutation matrix which interchanges rows k and ;
(ryh,d) :==(1,n —1i,(PA)[k,1]);
U:=dl,; Ulxkl:=—(PA)x1]; Ulk,k]:=do;
else
Choose positive my and mgy with mi + mgy = m;
A := the first m; columns of A;
B := the last my columns of A;
(Uy, P1,7r1,h1,dy) := GaussJordan(Ay, k, do);
AQ = %UlplB,
(Ua, Py, r9, ho,d) := GaussJordan(As, k + r1,d1);
(U, P, r, h, d) = (iUQ(PQ(Ul —d1[)+1), P2P17 71 —|—’I”2, HliIl(hl7 h2), d),
fi;
return (U, P,r, h,d);

Proof. We need to show that the tuple (U, P,r, h,d) returned by the
algorithm satisfies Definition 2.7. Use induction on (m,r). It is easy
to verify by comparison with this definition that the two base cases are
correct (when r = 0 and/or m = 1).

Now assume m > 1 and r > 0 and choose positive m; and mgy
with mi + mo = m. Let B, (U17P177"1,h1,d1), (UQ,P27T27h27d) and

(U, P,r, h,d) be as computed in the algorithm. By induction (Uy, Py, 71, hi,d1)

and (Us, Py, 19, h1,dq) are computed correctly. Then

1 1 1

%Al dT)B R1 EAQ
1 * * * *
—UlPl *

d *
1 * | *x

= * | ok

*

where R; is the index k& Gauss Jordan form of diAl and the matrices
written in block decomposition have upper block with k£ rows and center
block with r; rows.

Because of the structure of Us, P, and Ry, we have UyPo Ry = Ry.
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Then )
Ry 342 Ry R,
* * * *
1 1 1 1
—UsPyo—U P —A = -UsyP. =
d22d111d0 d22 *: *i

where Rs is the index k + r1 echelon form of iAQ. By Lemma 2.2 we
have éUP = éUngiUlPl where U and P have the shape required by
Definition 2.7. It is easy to see that h and r are correct. Correctness of
d is also not difficult to show. O

Theorem 2.10. Assume the choices m1 = |m/2| and ms = [m/2].
Then the cost of Algorithm 2.8 is O(nmr%=2) basic operations of type
Arith plus O(nmlogr) basic operations of type Div.

Proof. Let f,, x(m,r) to be the number of basic operations of type Arith
required. Recall that “comparison with zero” is counted as a basic
operation of type Arith. The two base cases of the algorithm yields
fn,k(mvo) = O(nm) and fn,k(la 1) = O(”)

Similarly, let g, x(m,r) be the number of basic operations of type
Div required. Then g, x(m,0) = 0 and g, x(1,1) = 0.

Now assume m > 1 and » > 0. By Lemmas 2.5 and 2.6 we get
fn,k(mv 7”) < fn,k(mlv T1)+fn,k+7‘1 (mQ’ r2)+0(nmr0*2) and gn,k(mv T) <
Ik (M1,71) + Gn ktr, (M2,72) + O(nm) for some nonnegative ry and ry
with 7y +r9 = r.

The result now follows from Section 1.3. O

Note that if (U, P,r,h,d) is an index transform for (A,0,1) then

(U, P,r,d) is a fraction free GaussJordan transform for A. As discussed
in the previous section, on input with (4,0, 1) all intermediate entries
in the algorithm will be (up to sign) minors of A bounded in dimension
by r. This gives:
Proposition 2.11. Let A € R"*™ R an integral domain. A fraction
free GaussJordan transform (U, P) for A can be recovered in O(nmr?=2)
basic operations of type Arith plus O(nmlogr) basic operations of type
Div.

When R = Z, Hadamard’s inequality bounds the magnitude of every
r x r minor of A by 8 = (/r||A|])".

Corollary 2.12. Let R =Z. The complexity bound of Proposition 2.11
becomes O(nmr?=2(log B) + nm(logr) B(log 8)) word operations where

p=/rllAlD"
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2.3 The Gauss Transform

Let R be an integral domain. Let A be an n x n nonsingular matrix over
R. Assume for now that all leading minors of A are nonzero. Then we
can apply fraction free Gaussian elimination to recover

F A T
do * ok ee. % dy %
*  dy * ok * do
* * e dp_q kookeee K dn

where d; is the principal i-th minor of A (dg = 1). If we have a B € R"*™
with rank profile (j1, jo, ..., jn), and A is the submatrix of B comprised
of columns ji, jo, ..., Jn, then F' is also the triangularizing adjoint of B.

We can now defining a generalization of the fraction free Gauss trans-
form. For now, all matrices are over a field K.

Definition 2.13. Let A € K"*™ dy € K be nonzero. A fraction free
Gauss transform of (A, dp) is a 5-tuple (U, P,r, h,d) with U € K"™*™ non-
singular and P € K"*™ a permutation which satisfy and can be written
as

1
U L PA

L] e[l e

and where the block decomposition for éU, d%PA and R is conformal
and:

r s the rank of A;

e h is maximal such that first n — h row of A have rank r;

d is equal to dy times the determinant of the principal block of
1

—PA;

d() ’

The principal block of d%PA has full row rank r. F is equal to dy
times the triangularizing adjoint of this block.

Algorithm 2.14 (Gauss) is almost identical to Algorithm 2.8 (GaussJordan).

Note that if (U, P,r, h,d) is a fraction free index Gauss transform for
(A4,0,1) then (U, P,r,d) is a fraction free Gauss transform for A.
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Algorithm 2.14. Gauss(A,dy)
Input: (A,dy) with A € K"*™ and dy € K nonzero.
Output: (U, P,r, h,d), a fraction free index GaussJordan transform.
if A=0 then
(U,P,r,h,d) := (doI,I,0,n,do)
else if m =1 then
(U, P,r, h,d) := GaussJordan(A4, 0, dy)
else
Choose positive mq and mo with my + mo = m;
A1 := the first m; columns of A;
(U, P1,7r1,h1,dy) := Gauss(Aq,dp);
As := the trailing (n — 1) X mg submatrix of %UlPlA;
(UQ, PQ, T2, hQ, d) = GallSS(Ag, dl);
p2 = diag(ImvPZ);
Us := diag(di1,,, Us);
(U,P,T,h,d) = (iﬁg(ﬁg(Ul — d1]) + dll,pQPhT‘l +
Tr9, min(hl, hz), d),
fi;

return (U, P,r, h,d);

Proposition 2.15. Let A € R"*™ R an integral domain. A fraction
free Gauss transform (U, P) for A can be recovered in O(nmr®=2) basic
operations of type Arith plus O(nmlogr) basic operations of type Div.

Corollary 2.16. Let R =7Z. The complezity bound of Proposition 2.15
becomes O(nmr?=2(log B) + nmr(logr) B(log 3)) word operations where

p=/rllAlD"

2.4 The Modified Gauss Transform

Algorithms 2.8 (GaussJordan) and 2.14 (Gauss) used permutation ma-
trices (i.e. row interchanges) during the elimination to ensure that pivots
would be nonzero. In some applications it is desirable to actually “con-
dition” the pivot. For this purpose we use a subroutine Cond that takes
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as input a nonzero A € K™*! and returns a unit upper triangular

A
1 ¢ c3 Cn, a a1
1 as an
1 as | = | as (2.6)
1 an, an

with @1 = a1 + cea2 + -+ + cpa, nonzero and possibly satisfying an
additional property. What the additional property should be will depend
on application (see Section 5.3).

The next definition is identical to Definition 2.13 except that the role
of the permutation matrix P is replaced by a unit upper triangular C
and the paramater h is omitted.

Definition 2.17. Let A € K"*™, dy € K be nonzero. A modified
fraction-free Gauss transform of (A, dy) is a 4-tuple (U,C,r,d) with U €
K™*" nonsingular and C' € K™ unit upper triangular which satisfy and
can be written using a conformal block decomposition as

U zCA R

[ (ﬁF T, ] {:}:[*} with C = [ * I:_r ] (2.7)

and where:

e 1 is the rank of A;

e d is equal to dy times the determinant of the principal block of
1
—C'A;
do ’

e The principal block of %CA has full row rank r. F is equal to dy
times the triangularizing adjoint of this block.

Algorithm 2.18 (CondGauss) is a straightforward modification of Al-
gorithm 2.14 (Gauss). The merging of the two subproblems is now based
on Lemmas 2.3 and 2.4 instead of Lemma 2.5. Note that if (U, C,r,d)
is a modified fraction free index Gauss transform for (A4,0,1), then r is
the rank of A and (U, I) is a fraction free Gauss transform for C' A.

Proposition 2.19. Let A € R"*™ R an integral domain. Not counting
the calls to subroutind Cond, a modified fraction free Gauss transform
(U,C) for A can be recovered in O(nmr?=2) basic operations of type
Arith plus O(nmlogr) basic operations of type Div.
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Algorithm 2.18. CondGauss(A4, dp)
Input: (A,dy) with A € K"*™ and dy € K nonzero.
Output: (U, C,r,d) a modified fraction free index Gauss transform.
if A=0 then
(U,C,r, h,d) :== (doI,1,0,n,dp)
else if m =1 then

C := Cond(A);
(U, *,7,%,d) :== GaussJordan(C'A, 0, dy)
else

Choose positive mq and mo with my + mo = m;

A1 := the first m; columns of A;

(U1,C1,71,d1) := CondGauss(A1,dp);

As := the trailing (n — 1) X mg submatrix of %Ulc'lA;

(Ua, Ca,719,d) := CondGauss(Asg, d1);

02 = diag(Im?CQ);

Uy := diag(di 1y, Us);

(U, C,r, d) = (iUQ(C’Q(Ul - dll) + dll), Ci+Cy— 1,11 419, d),
fi;

return (U,C,r,d);

Triangular Factorization over a Stable PIR

In this subsection we show how to apply algorithm CondGauss to a prob-
lem over a stable PIR R. Given a unimodular V' € R"*", we want to
recover a unit lower triangular L such that V can be expressed as the
product L % *o for some upper triangular *; and lower triangular and
x9. (We neglect to name the matrices %; and % because we won’t need
them.) The algorithm makes use of Subroutine 2.20 (Cond).

Subroutine 2.20. Cond(A)
Input: Nonzero A € R"*! R a stable PIR.
Output: C € R"*" asin (2.6) with (a1, ..., a,) = (a1+caas+- - -+cpay).
C:=1,;
a:= A[l,1];
for ¢ from 2 to n do
CI1,4] := Stab(a, Ai, 1],0);
a:=a+ C[1,i Ali, 1]
od;
return C;
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Lemma 2.21. Let V € R™*"™ be unimodular, R a stable ring. Then V
can be expressed as the product L 1 xo where L is unit lower triangular,
x1 1S upper triangular and %o is lower triangular. A matriz L satisfying

these requirements can be computed in O(n%) basic operations of type
{Arith, Stab, Unit}.

Corollary 2.22. Let R =Z/(N). The complexity bound of Lemma 2.21
becomes O(n?(log B) + n?(logn) B(log B)) word operations where 3 =
nN.

Proof. Compute a modified Gauss transform (F, R, *, *, ) of AT and let
T = FRAT. Let D be the diagonal matrices with same diagonal entries
as T. Then

L *q *9

———
A=(D~'T) (D~ FD)" ) (DR)T) L.

2.5 The Triangularizing Adjoint

Let A € R™", R an integral domain. It is a classical result that the
determinant of A can be computed in O(n?) ring operations. Here we
show that all leading minors of A can be recovered in the same time.

Recall that the adjoint of A is the matrix A% with entry A?;U equal
to (—1)**7 times the determinant of the submatrix obtained from A by
deleting row j and column i. The adjoint satisfies A*IA = AA4 = 4T
where d = det A. The point is that the adjoint is defined even when A
is singular and might even be nonzero in this case.

We define the triangularizing adjoint F of A to be the lower triangular
matrix with first ¢ entries in row 7 equal to the last row of the adjoint
of the principal i-th submatrix of A. F and the corresponding adjoint
triangularization T of A satsify

A T
do . dy  *
% d1 d2
x % dp—1 x % * dn

where d; is the principal i-th minor of A (dy = 1).
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We present an algorithm that requires O(n?) multiplication and sub-
tractions plus O(n?logn) exact divisions from R to compute F. In ad-
dition to solving the “all leading minors” problem, recovering F' and T
is the main computational step in randomized algorithms for comput-
ing normal forms of matrices over various rings, including the integer
Smith form algorithm of Giesbrecht (1995a), the parallel algorithms for
polynomial matrices by Kaltofen et al. (1987) and the sequential version
thereof for the ring Q[z] given by Storjohann and Labahn (1997).

Notes

In the special case when all the d;’s are nonzero, F' and T can be recov-
ered using standard techniques like Gaussian elimination, asymptotically
fast LU decomposition described in Aho et al. (1974) or the algorithm
for Gauss transform of the previous chapter. In the general case these
algorithms are not applicable since the d;’s, which correspond to piv-
ots during the elimination, are required to be nonzero. The obvious
approach to deal with the general case is to compute the adjoint of all
leading submatrices of A. This costs O(n’*!) ring operations, and, as
far as we know, is the best previous complexity for recovering all leading
minors of A.

Algorithms which require O(n?) operations for computing the adjoint
of A in the general case (when A may be singular) have been given by
Shapiro (1963) and Cabay (1971). There, the application was to avoid
the problem of bad primes when solving a nonsingular linear system. In-
spired by these results, we developed in (Storjohann and Labahn, 1997)
an O(n?) field operations algorithm for computing the triangularizing
adjoint. In (Storjohann, 1996b) we reduce this to O(n? logn) ring oper-
ations, but the algorithm is not fraction free.

The Adjoint Transform

Let K be a field. Given a square matrix A over K and dy € F nonzero,
we define the adjoint transform of (A, dp) to be the matrix obtained by
multiplying the triangularizing adjoint of d%A by dp. Note that the trian-
gularizing adjoint of A is given by the adjoint transform of (A,1). Our
recursive algorithm for computing the adjoint transform is completely
described by the following technical lemma.

Lemma 2.23. For A € K"™" and dy € K nonzero, let F' be the ad-
joint transform of (A,dy). Let Ay be the first m columns of A, and let
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(U, P,r,h,d) be a fraction-free Gauss transform for (Ay,dy). Let Fy be
the adjoint transform of (B1, do) where By is the principal min(m, r+1)th
submatriz of A.

1) The principal min(m,r 4+ 1)th submatriz of F' equals F7.

2) If P = I,, then the principal min(m, r + 1)th submatriz of U equals
F.

3) If r < m then the last n —r — 1 rows of F are zero.

Assume henceforth that r = m. Let Fy be the adjoint transform of (Ba, d)
where By is the trailing (n —m) x (n —m) submatriz of UPA. Then:

4) Rowsm+1,m+2,....,n—h—1 of F are zero.

5) The last min(n —m, h+ 1) rows of F' are given by the last min(n —
m,h—+1) rows of Fy [ %4 ‘ 1 ] Pdet P where V is the submatrixz of
éU comprised of the last n — m rows and first m columns.

Proof. We prove each statement of the lemma in turn.

1 & 2) Obvious

3) If r < m, then for i = m+1,...,n the principal i x (i—1) submatrix
of d—loA is rank deficient; since entries in row ¢ of %F are (i—1) x (i—1)
minors of these submatrices, they must be zero.

4) Now assume that » = m. By definition 2.13, the principal (n —
h — 1) x m submatrix of A is rank deficient. Now apply the argument
used to prove statement 3).

5) By definition of an index echelon transform, we have

PA
I, ‘ * ‘ x| | % ‘ *
V‘I *‘*7 ‘(1/6[)32 ’
Since éFg is the triangularizing adjoint of éBQ and d is dp times the
determinant of the upper left block of PA, we may deduce that

SB[ VI] (2.8)
0

is equal to the last n — m rows of the triangularizing adjoint of %PA.
Now fix some 7 with n —h —1 < i < n, and let A and P be the principal
i x ¢ submatrices of A and P respectively. Since P = diag(x, I},) we have
that PA is equal to principal ith submatrix of PA. By definition, the
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first i entries in row i of the triangularizing adjoint of PA is given by
the last row of (PA)2Y. Similarly, the first i entries in row i of %F are

given by the last row of A4, The result now follows from the claim
about (2.8) and by noting that (PA)*4 P det P = A2, O

Note that if A € KX1, then the adjoint transform of (A, dg) is [d].
Correctness of Algorithm 2.24 (AdjointTransform) follows as a corollary
to Lemma 2.23. The analysis of the algorithm is straightforward.

Algorithm 2.24. AdjointTransform(A4,dy)
Input: (A,dg) with A € K™ and dy € K nonzero.
Output: F € K"*" the adjoint transform of (A, dp).
if m =1 then

F = [do];
else

F := the n x n zero matrix;

Choose m satisfying 1 < m < n;

A; := the first m columns of A;

(U, P,r, h,d) := Gauss(Ay, dp);

if P =1, then

Fy := the principal min(m, r + 1)th submatrix of U;

else
Bj := the principal min(m, r + 1)th submatrix of A;
Fy := AdjointTransform(B,dy);
fi;
Set principal min(m, r 4+ 1)th submatrix of F' equal to F7;
if r = m then

By := the trailing (n — m)th submatrix of UPA;

F, := AdjointTransform(Bs, d);

k := min(n — m, h + 1);

Set last k rows of F' to last k rows of Ldiag(0, F2)UP det P;
fi;
fi;
return F;
Proposition 2.25. Let A € R"*" R an integral domain. The triangu-
larizing adjoint of A can can be computed in O(n’) basic operations of
type Arith plus O(n?logn) basic operations of type Div.

Corollary 2.26. Let R = Z. The complexity bound of Proposition 2.25
becomes O(n?(log B) + n?(logn) B(log B)) word operations where 3 =

(VrllAl)"-
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Chapter 3

Triangularizaton over
Rings

The previous chapter considered the fraction free computa-
tion of echelon forms over a field. The algorithms there ex-
ploit a feature special to fields — every nonzero element is
a divisor of one. In this chapter we turn our attention to
computing various echelon forms over a PIR, including the
Hermite form which is canonical over a PID. Here we need to
replace the division operation with Gedex. This makes the
computation of a single unimodular transform for achieving
the form more challenging. An additional issue, especially
from a complexity theoretic point of view, is that over a PIR
an echelon form might not have a unique number of nonzero
rows — this is handled by recovering echelon and Hermite
forms with minimal numbers of nonzero rows. The primary
purpose of this chapter is to establish sundry complexity re-
sults in a general setting — the algorithms return a single
unimodular transform and are applicable for any input ma-
trix over any PIR (of course, provided we can compute the
basic operations).

Let R be a PIR. Every A € R"*™ is left equivalent to an H € R™*™
that satisfies:

(r1) Let r be the number of nonzero rows of H. Then the first r rows

93
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of H are nonzero. For 0 < i < r let H[i,j;] be the first nonzero
entry in row ¢. Then 0 = jp < j1 < j2 < ... < Jp.

(r2) H[i,ji) € AR) and Hlk, j;) € R(R, H[i,j;]) for 1 <k <i<r.
(r3) H has a minimal number of nonzero rows.

Using these conditions we can distinguish between four forms as in Ta-
ble 3. This chapter gives algorithms to compute each of these forms.
The cost estimates are given in terms of number of basic operations and

Form H rl \ r2 \ r3 \ Cost ‘
echelon . nmr?=2 + nr®=2(log 2n/r)
minimal echelon . o | nmr?=2 + nrf=2(logn)
Hermite o | o nmr?=2 + nr®=2(log 2n/r)
minimal Hermite || o o | nmr?=2 + nrf=2(logn)

Table 3.1: Non canonical echelon forms over a PIR

include the time to recover a unimodular transform matrix U € R**™

such that UA = H. Some of our effort is devoted to expelling some or
all of the logorithmic factors in the cost estimates in case a complete
transform matrix is not required.

Section 3.1 shows how to transform A to echelon or minimal echelon
form. Section 3.2 shows how to transform an echelon form to satisfy also
(r2). Section 3.3 simply combines the results of the previous two sections
and gives algorithms for the Hermite and minimal Hermite form.

The Hermite form — the classical canonical form for left equivalence
of matrices over a PID — is a natural generalization of the Gauss Jordon
form over a field. If R is a field, and we choose A(R) = {1} and R(R, x) =
{0}, then H is the GaussJordan form of A. Over a PIR the Hermite
form is not a canonical, and condition (r3) is motivated because different
echelon forms can have different number of nonzero rows.

Notes

Existence and uniqueness of the Hermite form over a PID is a classical
result, see (Newman, 1972). The following code, applicable over a PIR,
uses O(nmr) basic operations of type {Arith, Gedex} to transform an
n X m matrix A to echelon form in place.
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r = 0;
for k to m do
forifromr+2t0nd0
(9,8, t,u,v) ;== Gedex(A[r + 1, ],A
Afr+1,% | | s 7’+1>f< .
= [
od;
if Alr +1,k] #0thenr:=r+11i
od;

Condition (r2) can be satisified using an additional O(mr?) operation of
type {Unit, Quo} by continuing with the following code fragment.

r:=1;
for k to m do
if Alr,k] # 0 then
Alr, %] := Unit(A[r, k]) A[r, %];
for i tor —1 do
q := Quo(Ali, k], A[r, k]);
Ali, %] := Ali, %] — qA[r, %]
od;
r=r+4+1;
fi
od;

)

A transform U can be recovered by working with the augmented matrix
[ A| I, ]. Unfortunately, the cost increases (when n > m) to O(nmr+
n?r) basic operations.

Asymptotically fast algorithms for transforming A to upper trian-
gular form (but not necesarily echelon form) are given by Hafner and
McCurley (1991). An important feature of the algorithms there is that
a unimodular transformation matrix U is also recovered. When n > m
the cost estimate is O(nm?~2(log2n/m)) which is almost linear in n
(compare with the bound O(nmr + n?r) derived above). On the one
hand, the details of obtaining an echelon form (as opposed to only up-
per triangular) are not dealt with in (Hafner and McCurley, 1991). On
the other hand, with modest effort the echelon form algorithm of Keller-
Gehrig (1985), see also (Biirgisser et al., 1996, Section 16.5), for matries
over fields can be modified to work over more general rings. Essentially,
section 3.1 synthesises all these results and incorporates some new ideas
to get an algorithm for echelon form over a principal ideal ring that
admits a good complexity bound in terms of also r.
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A different solution for the problem in Section 3.2 is given in (Stor-
johann and Labahn, 1996).

Left Transforms

Let A € R™™™. A unimodular U € R"*™ is called a left transform for
A. Assume now that A has trailing ny rows zero, n, chosen maximal. If
U can be written as
%
U= ,
Ny

then we call U a principal left transform for A. Note that if U is a
principal left transform for A, then the principal n; x ny submatrix of
U is a principal transform for the principal n; X m submatrix of A.

3.1 Transformation to Echelon Form

Let R be a PIR and A € R®*™. Our goal is to compute an echelon
form T of A. We begin by outlining the approach. The first result
we need is a subroutine transforming to echelon form an input matrix
which has a special shape and at most twice as many rows as columns.
This is shown in Figure 3.1. A complexity of O(m’) basic operations

S
~

*
*
*1
*

k]

K% K% %
K% ¥ KK *
* K KK KK
* K KK KK

*1
* 1%

|
|

*
X%

Figure 3.1: Subroutine for transformation to echelon form

is achieved by using a divide and conquer paradigm — the problem is
reduced to four subproblems of half the size. Next we give an algorithm
that sweeps across an input matrix from left to right using the subroutine
sketched in Figure 3.1. This is shown in Figure 3.2. The complexity of
the left-to-right method is O(nm?~1) basic operations. Finally, we give
an algorithm the sweeps across the input matrix from bottom to top,
applying the left-to-right method on a contiguous slice of rows. This
is shown in Figure 3.3. By carefully specifying the number of rows to
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Figure 3.2: Left-to-right transformation to echelon form

consider for each slice, we can derive a complexity O(nmr?=2) basic
A T

-k k sk ke —k k k ko Mk 3k 3k kT — -
¥ ¥ % k%% Xxxx EE
* sk sk %k k 3k ok ok kok ok ok *
%k % % * ok kK *okok ok *
Kok ok % Kok ok ok ollololo

* % ok ok ok ok ok Xrxx

¥k ok * * ok ok ok Kok ok ok

* o kK * Ok ok ok Frxx

TR — |5s kx| — [Hxx| — ... —

* ok k ok oloBolo FEXxE

ok k ok * ok k% Frxx

* sk k k k >k ok ok * ok ok ok

* ok k k KKK E * ok ok ok

* ok % % * 3k ckok * %

FEREF * % ok k *

L% % % x| L ol L |

Figure 3.3: Bottom-to-top transformation to echelon form

operations for the bottom-to-top method. A subtlety we face is that r
may not unique with respect to A but only with respect to the exact
method used to compute T. (This subtlety disappears when R is an
integral domain since then r is the unique rank of A.) We deal with this
problem by ensuring that, when applying the bottom-to-top method,
the number of nonzero rows the succesive echelon forms we compute is
nondecreasing. Furthermore, if we want a minimal echelon form then we
ensure that each echelon form computed is minimal.
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Now we present the algorithms and fill in all the details, including
the recovery of transformation matrices. Lemma 3.1 gives the algo-
rithm sketched in Figure 3.1. The proof is similar to (Biirgisser et al.,
1996, Proposition 16.8) for a matrix over a field, attributed to Schonhage
(1973).

Lemma 3.1. Let A € REERX™ haye last k rows nonzero and in echelon
form, 0 <t <m, 0<k<m. An echelon form T of A with at least k
nonzero rows together with a principal left transform U such that UA =
T can be recovered in O(m?) basic operation of type {Arith, Gedex}.

Corollary 3.2. Let R = Z/(N). The complezity bound of Lemma 3.1
becomes O(m?(log B) + m?(logm) B(log B)) word operations where 3 =
mN.

Proof. Let f(m) be the number of basic operations required to compute
a U and T which satisfy the requirements of the lemma. By augmenting
the input matrix with at most m—1 zero columns we may assume without
loss of generality that m is a power of two. This shows it will be sufficient
to bound f(m) for m a power of two. If m =1 then t + k < 2 and the
problem reduces to at most a single basic operation of type Gedex. This
shows f(1) = 1.

Now assume m > 1, m a power of two. Partition the input matrix as

*\*‘*‘*

where each block has column dimension m/2, the principal horizontal
slice comprises the first |¢/2]| rows of A, the middle horizontal slice the
next [t/2] rows and % denotes a block which is in echelon form with
no zero rows. (One of the % blocks is subscripted to allow refering to it
later.) Recursively compute a principal left transform U; such that

U1 A Al
I * | * *
% x| ok _ %o | %
il * *1
I * *

with % having at least as many rows as *1. Recover the last m/2 columns
of Ay in O(m?) arithmetic operations by premultiplying by U;. Partition
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A; anew as

Since the row dimension of %5 in As is at least that of *; in Ay, the block
*1 has at most [¢/2] rows. In particular, since t < m and m is even also
[t/2] < m/2.

Recursively compute a principal left transform Us such that

U, Ay Ay

At this point the sum of the row dimensions of the blocks labelled *
in As is at least k. The next two transformations are analogous. The
complete transformation sequence is:

A Ay A A

* *

I

*1

¥ % %

no
*1 % *

w
¥ % %

9 %

*I%x ¥ *
*1 % X% X

T is in echelon form with at least k& nonzero rows. Recover U as U,U3UsU; .
This shows that f(m) < 4f(m/2) + O(m?). The result follows. O

Now we extend the previous result to handle efficiently the case when
m > n. This situation is sketched in Figure 3.2. The next lemma
and subsequent proposition actually present two algorithms which re-
cover an echelon form satisfying one of two conditions (a) or (b). The
“(b)” algorithms will depend on the “(a)” algorithms but not vice versa.
Lemma 3.3 is similar to (Biirgisser et al., 1996, Proposition 16.11) for a
matrix over a field, attributed to Keller-Gehrig (1985).

Lemma 3.3. Let A € R"™™ ™. An echelon form T of A together with
a principal left transform U such that UA = T can be recovered in
O(mn®~1) basic operations of type {Arith, Gedex}. The user may choose

to have either (but not necessarily both) of the following conditions sat-
isfied:
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e (a) T will have at least k nonzero rows where k is mazimal such
that the last k rows of A are nonzero and in echelon form.

o (b) T will be a minimal echelon form of A.

Achieving condition (b) incurs an additional cost of O(n®(logn)) basic
operations of type {Arith, Gedex, Stab}.

Corollary 3.4. Let R=2Z/(N). The complezity bounds of Lemma 3.8
become O(mn?~1(log B) + mn(logn)B(log 8)) and O(n’(logn)(log B))
word operations where = nN.

Proof. We first demonstrate an algorithm to achieve condition (a). By
augmenting the input matrix with at most m — 1 columns of zeroes we
may assume that m is a multiple of n, say m = In. Partition the input
matrix as A = [ Ay Ay - A ] where each block is n x n. Perform
the following.

z:=mn; U:=1I;
for i from 1 to [ do

B := the last z rows of UA;;

V .= a principal left transform such that V' B is in echelon form;

‘[77/72

U := v U;

z := the number of trailing zero rows in V B;

# Now the first n columns of UA are in echelon form.
od;

k)

Upon completion, U is a principal left transform such that UA is in
echelon form. By Lemma 3.1, each iteration of the loop costs O(nf)
basic operations. The cost bound follows. The claim about the number
of nonzero rows can be shown using a similar argument as in Lemma 3.1.

We now demonstrate an algorithm to achieve condition (b). Trans-
form AT to echelon form R by repeatedly applying Lemma 3.1 to the
maximal number of trailing nonzero rows (maximal so that the subma-
trix is a valid input for the Lemma). This costs at most O(mn?~1)
basic operations. Use Lemma 7.14 to recover a principal right trans-
form V such that ATV is left equivalent to Smith form!'. This costs
O(n?(logn)) basic operations. Then ATV has a maximal number of
trailing zero columns. Compute U using the algorithm described above
for achieving condition (a) with input V7 A and return UV'T. O

1To expel this forward reference would require heroic efforts.
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Now we put everything together to get the algorithm sketched in
Figure 3.3.

Proposition 3.5. Let A € R*™*™. An echelon form T of A can be
recovered in O(nmr®=2) basic operations of type {Arith, Gedex} where
r s the number of monzero rows in T. An E € R"™"™ such that EA
equals the first r rows of T can be recovered in the same time. The user
may choose to have either (but not necessarily both) of the following
conditions satisfied:

e (a) r > k where k is mazimal such that the last k rows of A are
nonzero and in echelon form.

o (b) T will be a minimal echelon form of A.

Achieving condition (b) incurs an additional cost of O(nr?~(logr)) ba-
sic operations of type {Arith, Gedex, Stab}.

Corollary 3.6. Let R = Z/(N). The complexity bounds of Proposi-
tion 3.5 become O(nmr?~2(log 3) + nm(logr) B(log 8)) and
O(nr?~1(logr)(log B)) word operations where 3 =rN.

Proof. Perform the following:

T:=acopyof A; z:=1; r:=1,;
for ¢ from 1 do
d := min(max(r,1),n — z);
# Let (T;,7i, 2:,d;) be a copy of (T,r,z,d) at this point.
z:=z+d,
B := the last z rows of T';
V .= a principal left transform such that V B is in echelon form;

In—z .
!

T:=UT,
r := the number of nonzero rows in V B;
if z = n then break fi;

od;
Induction on 7 shows that
Ui T; Tita
! S
« * | %
7 O
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where the label ¥ denotes a block which is in echelon form with no zero
rows and

e the principal slice of T; and T;11 has max(0,n — z — d;) rows,

the middle slice of T; has row dimension d; + 7;
e x in T; has r; rows,
e xin T;41 has r;4; rows.

Note that d; +r; < 2d;. By Lemma 3.3, there exists an absolute constant
¢ such that U; and T;y; can be recovered in fewer than cmalf*1 basic
operations. Both the algorithm supporting Lemma 3.3a and Lemma 3.3b
ensure that r;41 > r;.

On termination 7T is in echelon form with = nonzero rows. The
amount of progress made during each loop iteration is d;. The aver-
age cost per unit of progress (per row zeroed out) is thus cmd?‘Q. Since
d; <, and the loop terminates when ), d; = n— 1, the overall running
time is as stated.

Finally, F can be recovered in the allotted time by computing the
product [ I, ‘ 0 ] U; ---UsU; from left to right. O

The proof of Propsosition 3.7 is similar to (Hafner and McCurley,
1991, Theroem 3.1). Here we return an echelon form (instead of just tri-
angular as they do) and analyse under the tri-paramater model (instead
of just n and m).

Proposition 3.7. Let A € R"*™. An echelon form T € R™*™ together
with a principal left transform U € R™*™ such that UA =T can be re-
covered in O(nr?=1(log 2n/r) +nmr?=2) basic operations of type {Arith,
Gedex} where r is the number of nonzero rows in T. The condition that
T should be a minimal echelon form can be achieved at an additional cost
of of O(nr®~1(logr)) basic operations of type {Arith, Gedex, Stab}.

Corollary 3.8. Let R = Z/(N). The complexity bounds of Proposi-
tion 3.7 become O(nmr?~2(log2n/r)(log 3) + nm(logn)B(log B)) and
O(nr?~1(logr)(log B)) word operations where 3 =rN.

Proof. Below we describe an algorithm for recovering a U and T which
satisfy the requirements of the proposition. For A € R™*™ let r(A)
denote the number of nonzero rows in the echelon form produced by the
aformentioned algorithm on input A € R"*™. The function r(A) is well
defined because the algorithm is deterministic.

3.2. THE INDEX REDUCTION TRANSFORM 63

For r > 0, let f,, »(n) be a bound on the number of basic operations
required by the algorithm with input from {4 € R"*™ | r(A) < r}. By
augmenting A with at most n — 1 rows of zeroes, we may assume that n
is a power of two. This shows it will be sufficient to bound f,, .(n) for
n a power of two. If n = 1 there is nothing to do; choose U = I;. This
shows f, «(1) = 0.

Now assume n > 1, n a power of two. Let A; be the first and A, the
last n/2 rows of A. Recursively (two recursive calls) compute a principal
left transform U; such that

Ui
* Al Tl
|1 0
| T
* A 2
Ik

where T; is in echelon form with r(A;) rows, i = 1,2. By permuting the
blocks T and T3 (if necessary) we may assume that T has at least as
many rows as T7. Use Lemma 3.3 to compute a principal left transform
U, such that

U,
* * T1
I 0
* * T | T
I 0

where T is in echelon form. If T should be a minimal echelon form,
then use the algorithm supporting Lemma 3.3b. Otherwise, use the
algorithm supporting Lemma 3.3a. In either case, T will have at least
max(r(A1),r(Az)) rows.

This shows that fo, »(n) < 2fm.(n/2) + O((n +m)r®=1). This re-
solves to f r(n) < /7 fo.r(F) + O(nrf=t(log2n/r) + nmr?=2) where
7 is the smallest power of two such that ¥ > r. From Lemma 3.3a
we may deduce that f, ,.(7) < O(mr®~!) and from Lemma 3.3b that
fmr () <O(mr?=t +1%(logr)). The result follows. O

3.2 The Index Reduction Transform

Let A € R"™™™ be upper triangular with diagonal entries nonzero and
in A(R). The motivating application of the algorithm developed in this
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section to compute a unit upper triangular U € R™*™ such that UA is
in Hermite form.

For 1 <i < j < mn, let ¢; j(a) be a prescribed function on R which
satisfies ¢; j(a + ¢; ;(a)Alj, j]) = 0 for all a € R. Different applications
of the index reduction transform will call for different choices of the ¢, ..

Definition 3.9. An index k reduction transform for A with respect to
a function family ¢. . is a unit upper triangular matriz U which satisfies
and can be written as

U A H
Ik ‘ * * ‘ x| | % ‘ *
ERIEN R
where the block decomposition is conformal and ¢; ;(H[i,j]) =0 for 1 <
i1<j,n—k<j3<n.

We say “reduction transform” to mean “index 0 reduction trans-
form”.

Proposition 3.10. A reduction transform for A € Z™*™ with respect to
b« can be computed in O(n?) basic operations of type Arith plus fewer
than nm calls to ¢y ..

Corollary 3.11. Let R = Z/(N). If the cost of one call to ¢, . is
bounded by O(B(log N)) bit operations, the complexity bound of Pro-
postion 3.10 becomes O(n?(log B) + n?(logn) B(log 3)) word operations
where 8 = nN.

Proof. Computing an index k reduction transform for an n x 1 matrix
requires n — k < n applications of ¢, .. Let f,(k) be the number of
basic operations (not counting applications of ¢, .) required to compute
an index k transform for an m x m matrix A where m < n. Then
fn(1) = 0. The result will follow if we show that for any indices k1, ko
with k1 + ko = k > 1, we have f,(k) < fn(kl) + fo(ke) + O(nk9_2).

Compute an index k; transform U; for the principal (n — k3) % (n —
k2) submatrix of A. Let Ay be the last my columns of diag(Uy, Iy, ) A.
Compute an index ko transform Us for A,. Then

Uy diag(Uy, Ik,) A H
I * I | % K | % | * | %
I | % * x| % | =

* Iy, *
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Note that computing the product UyU; requires no basic operations. It is
clear that A can be recovered in the allotted time (cf. Lemma 2.5). O

Our first example is the Hermite reduction.

Example 3.12. Let T € R™ ™ be upper triangular with diagonal entries
in A(R). For 1 <1i < j<n, define ¢; ; by ¢; ;(a) — —Quo(a,T[j,]]).
If U is a reduction transform for T, then UA is in Hermite form. The
following example is over Z.

U A H
1 -1 14 138 1 5 38 31 1010
1 =26 239 5 79 85 5 1 1
1 -10 3 63 N 3 3
1 6 6

The reductions of the next two examples are used in Section 8.1.
In the Hermite reduction off-diagonal entries were reduced modulo the
diagonal entry in the same column. The next examples perform more
general reductions: off-diagonal entry A; ; will be reduced modulo E; ;
where F is a specified matrix over R. The next example shows how
to effect a certain reduction of a lower triangular matrix via column
operations by passing over the transpose.

Example 3.13. Let L € R™™™ be unit lower triangular and E € R™*"
have each entry from A(R). For 1 <i < j <mn, define ¢;; by ¢; j(a) —
—EZjQuo(a, EZTJ) If VT is a reduction transform for LT, then

o V is unit lower triangular with V; ; a multiple of E; ;, and
o LV is unit lower triangular with (LV); ; € R(R, E; ;).

The next example shows how to effect a certain reduction of an upper
triangular matrix via column. Allowing ourselves the introduction of one
more Greek letter, we write ¥(A) to mean the matrix obtained from A be
reversing the order of rows and columns and transposing. For example,
U(T(A)) = A, and if A is upper triangular, then ¥(A) will also be upper
triangular with W(A); ; = Ap—i n—j.

Example 3.14. Let T' € R™ ™ be unit upper triangular and E € R"*"
have each entry from A(R). For 1 <i< j <mn, define ¢;; by ¢; j(a) —
—¢(E); jQuo(a, U(E); ;). If ¥(V) is a reduction transform for ¥(T),
then
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o V is unit upper triangular with V; ; a multiple of F; ;, and

o TV is unit upper triangular with (T'V); ; € R(R, E; ;).

3.3 Transformation to Hermite Form

Proposition 3.15. Let A € R™ ™. There exists an algorithm that
recovers a Hermite form H of A together with an E € R™™ such that
EA equals the nonzero rows of A. The algorithm uses basic operations
of type {Arith, Gedex, Unit, Quo}.

1. The cost of producing H and E is O(nmr?=2) basic operations.
2. A unimodular U € R™ "™ that satisfies UA = H can be recovered
in O(nr?=1(log2n/r) + nmr?=2) basic operations.
The condition that v should be minimal can met at an additional cost of
O(nr?=1(logr)) basic operations of type { Arith, Gedex, Stab}.

Corollary 3.16. Let R = Z/(N). The complexity bounds of Proposi-
tion 8.15 become O(nmr?=2(log B) + nm(logr) B(log 3)),
O(nmr?=2(log 2n/r)(log B) +nm(logn) B(log 3)) and O(nmr®~*(logr))
word operations where 3 = rN.

Proof. The algorithm works by computing a number of intermediate
matrices Uy, Us, Uz from which U and H will be recovered. These

satsify
U3‘ U2‘ *U‘H* é:i .
[ In_rH In_}{**][*} [ } (3.1)

where the block decompostion is conformal. For part 1. of the propo-
sition only the first r rows of U; are recovered. The algorithm has five
steps:

1. Recover an echelon form 7" € R™ ™ together with a unimodular
U; € R"*"™ such that U1A =T.

2. Let (j1,j2; .-, jr) be such that T'[q, j;] is the first nonzero entry in
row i of T, 1 < i < r. Let T be the submatrix of 7" comprised of
first r rows and columns j1, jo,. .., jr-

3. Set Uz € R™" to be the diagonal matrix which has Us[i,i] =
Unit(7T[é,4]) for 1 < ¢ < r. Then each diagonal entry in UsT
belongs to assoc(R).
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4. Recover a unit upper triangular Us € R"™" such that UsU,T in
Hermite form.

5. Set U = diag(UsUs, I,—,)U;. Then UA = H with H in Hermite
form.

Correctness is obvious. The cost bound for steps 2, 3 and 5 is clear;
that for step 1 follows from Propositions 3.5 and 3.7 and for step 4 from
Prospostion 3.10 and Example 3.12. O
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Chapter 4

The Howell Form over a
PIR

This chapter, like the previous chapter, is about comput-
ing echelon forms over a PIR. The main battle fought in the
previous chapter was to return a single unimodular transform
matrix to achieve a minimal echelon form. This chapter takes
a more practical approach and presents a simple to state and
implement algorithm — along the lines of those presented
in Chapter 2 for echelon forms over fields — for producing
the canonical Howell form over a PIR. The algorithm is de-
veloped especially for the case of a stable PIR (such as any
residue class ring of a PID). Over a general PIR we might
have to augment the input matrix to have some additional
zero rows. Also, instead of producing a single unimodular
transform matrix, we express the transform as a product of
structured matrices. The usefulness of this approach is ex-
posed by demonstating solutions to various linear algebra
problems over a PIR.

Let R be a PIR. For a matrix A € R"*™ we write S(A) to mean the set
of all R-linear combinations of rows of A and S;(A) to mean the subset of
S(A) comprised of all rows which have first j entries zero. Corresponding
to every A € R**™ is an H € R**™ that satisfies:

(r1) Let r be the number of nonzero rows of H. Then the first r rows

69
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of H are nonzero. For 0 < i < r let H[i,j;] be the first nonzero
entry in row ¢. Then 0 = jp < j1 < j2 < ... < Jp.

(r2) H[i,j;) € AR) and Hlk,j;] € R(R, H[i,j;]) for 1 <k <i<r.
(r4) Rows i+ 1,i+2,...,r of H generate Sj,(A).

H is the Howell canonical form of A. The first r rows of H — the Howell
basis of A — give a canonical generating set for S(A).

Assume that n > r. A Howell transform for A is a tuple (Q, U, C, W, r)
which satisfies and can be written using a conformal block decomposition

as
W Q C A T
* * * *

S e F AR e
with U € R™*™ unimodular, H the Howell basis for A and W a kernel for
T, that is W € R™*™ and S(W) = {v € R” | vA = 0}. In this chapter we
give an algorithm for Howell transform that requires O(nmr?=2) basic
operations of type {Arith, Gedex, Unit, Quo Stab}. This assumes that
A has been augmented (if necessary) to have at least r zero rows. The
need for r zero rows disappears if R is a stable ring.

Being able to compute a Howell transform leads directly to fast al-
gorithms for solving a variety of linear algebra problems over R. To
motivate the definition of the Howell transform we consider some of
these now. Let A; € R™*™ be given for i = 1,2. By augmenting with
0-rows we may assume without loss of generality that n = n; > no > m.
Let (Q;,U;, C;, Wi, r;) be a Howell transform for A; and H; the Howell
basis of A; for ¢ = 1,2. For convenience, let (4,Q,U,C, W,r) denote
(A1,Q1,Ur, Cy, Wy, ).

|
|1

Kernel computation [Find a kernel Y € R"*" for A.]

WQUC is a kernel for A, but this product may be dense and requires
O(n?mf=2) operations to compute. Alternatively, return the decompo-
sition

Y = . (4.2)

71

Equality of spans. [Determine if S(A4;) = S(As).]

The spans will be equal precisely when Hi; = H,. If this is the case,
a transformation matrix P such that A; = PAs and P~1A; = A, is
given by P = (Q1U1C1)71Q2U2Cs. A straightforward multiplication
will verify that

21 - C1) (Qa— QUL+ 1) U v, C
L |  x I, | * | L | =
P= Lo o | L, L., L

Sum of modules. [Find the Howell basis for S(A;) + S(A3).]

Return the Howell basis for { il } .
2

Intersection of modules. [Find the Howell basis for S(A;) N S(As).]

Compute a kernel Y for { ﬁl } . Return the Howell basis for Y [ A1
2

Testing containment. [Determine whether or not b € S(A4).]
Recover a row vector y such that

Ly (16 ] [1]V
EERRR N
with the right hand side in Howell form. Then b € S(A) if and only if
b =0. If b e S(A), then zA = b where z < [y|0]UC.

Notes

Existence and uniqueness of the Howell form was first proven by Howell
(1986) for matrices over Z/(NN). Howell (1986)’s proof is constructive
and leads to an O(n?) basic operations algorithm. Buchmann and Neis
(1996) give a proof of uniqueness over an arbitrary PIR and propose
efficient algorithms for solving a variety of linear algebra problems over
rings. Buchmann and Neis call the first r rows of H a standardized
generating set for S(A).

This chapter is joint work with Thom Mulders. An earlier version
appears in (Mulders and Storjohann, 1998).
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4.1 Preliminaries

Let A € R™*™. We say A is in weak Howell form if A satisfies (rl) and
(r3) but not necessarily (r2).

Lemma 4.1. Let

[ H | F [ Ki]-S
ne ] e [

where K; is a kernel for H;, 1 = 1,2. If K1 F = SH> then K is a kernel
for H. If in addition Hy and Hy are in weak Howell form and Hy has
no zero row, then H is in weak Howell form.

Lemma 4.2. If (Q,U,C}) =

1y, Iy, Iy,
I, Uy c [ Iy | di | dy
61 I’I'2 ’ 17'2 7 Irz
n I I 1

and (QQ, UQ, CQ) =
Ik Ik Ik

1

I,

g | 1 T T

and
Ik w1

w1

Wy = i

1

are all in R™™™ and the block decomposition is conformal, then
QQUQ((CQ - I)W1 + I)Q1U101 =QUC
where (Q,U,C) =

Iy, Iy Iy
Irl Uy | Uiz Ci1 Irl C12
I, ’ U | U2 ’ Co I, | do
q | q |1 I I
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with
i1 = (1 — chz
ciz = di —didy
ugr = uz(q1 + daqr + cowy + Cot1 )uy
Uiz = uljl
Uz = Uz +ugdy

Moreover, there exists a subrouting Combine that takes as input (Q1, U1,
Cy, Q2, Us, Cs), produces as output (Q,U,C), and has cost bounded by
O(nmax(ry,m2) min(ry,72)?~1) arithmetic operations.

4.2 The Howell Transform

We begin by defining a generalization of the Howell transform.

Definition 4.3. Let A € R™™™ and k € N satisfy 0 < k < n and
n —k > r where r is the number of nonzero rows in the Howell form of
A. Anindex weak Howell transform of (A, k) is an 5-tuple (Q,U, C, W, r)
which satisfies and can be written using a conformal block decomposition
as

W Q U C A T
I|-S I I I A A
K and I * x| 1| * x |=| H
I x| 1 I T|| % o

(4.3)
with U unimodular, A the first k rows of A, H a weak Howell basis for
A, W a kernel for T, K a kernel for H and S such that A = SH.

Algorithm 4.4 (Weak Howell) is given on page 76.
Theorem 4.5. Algorithm 4.4 is correct.

Proof. Assume for now that R is a stable ring. We need to show that the
tuple (Q,U, C,W,r) returned by the algorithm satisfies Definition 4.3.
Use induction on (m,r). It is easy to verify by comparing with Defini-
tion 4.3 that the two base cases are correct (when r = 0 and/or m = 1).

Now assume m > 1 and r > 0 and choose positive m; and meo
with my + me = m. Let B, (Ql, Uy, Ch, Wl,Tl), (Qz, UQ,CQ,WQ,T’Q)
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and (Q,U,C,W,r) be as computed in the algorithm. By induction
(Q1,U1,C1,W1,m1) and (Q2, U, Ca, Wa, 19) are computed correctly. Then

A1 B Wy Q1U,C1 A A,
A | E I|-5 A | E E—-S5F
W1Q1U101 * * = Kl H1 F = KlF
* | ok 1 * *
(4.4)

where H; is in weak Howell form with no zero rows and E and F' are
new labels.
W7 and W5 can be partitioned conformally and satisfy

Wo Wi Wi+ Wy —1
1 —S91 I -5 I| =51 | =S5
I —522 K1 - Kl —-522
Ky I o Ky
I 1 1
Let
H1 F Kl _S22
H:[ H2:|,K:|: K2:|aHdS:[51521].

Then SH = A (direct computation). Let T be the matrix in (4.3). From
Lemma 4.1 we get that H is a weak Howell basis for T', K is a kernel for
H and W is a kernel for T'.

Note that (Co —I)Wi+1 has the same block structure as Cy and thus
is unimodular. A straightforward multiplication verifies that Q2Us((Ca—
DWWy +1)Q1U1C1A =T. Then T is left equivalent to A hence H is a
weak Howell basis also for A. This also shows that 1 +7ry = 7.

Now assume that the input matrix A hasrows k+ 1, k+2,..., k+7r
zero. Using induction we can show that all subproblems will satisfy the
same condition and hence A[k + 1,0] will also be zero. In this case no
operations of type Stab will be required. O

Theorem 4.6. Let A € R™™ and k be such that (A, k) is valid in-
put to algorithm WeakHowell. The algorithm requires O(nmr®=2) basic
operations of type {Arith, Gedex, Ann, Stab}.

Proof. Similar to the proof of Theorem 2.10. O

Corollary 4.7. Let R = Zy. The complexity bound of Theorem 4.6
becomes O(nmr?~2(log B) 4+ nm(logr) B(log B)) word operations where
B =rN.

4.2. THE HOWELL TRANSFORM [0)

Proposition 4.8. Let A € R"*™. [f either R is a stable ring or A has at
least first r rows zero (where r is the number of rows in the Howell basis
of A) then a Howell transform for A can be computed in O(nmr?=2)
basic operations of type {Arith, Gedex, Ann, Quo, Stab}.

Proof. Compute an index weak Howell transform (Q, U, C, W, r) for (A, 0).
Now recover an upper triangular and unimodular

-

such that RQUCA is in Hermite (and Howell) form. (See the proof of
Theorem 3.15.) Then (RQR™!, RU,C,WR~!, r) is a Howell transform
for A. The inverse of R can be computed in the allotted time using
Theorem 3.15. O

Corollary 4.9. Let A € Z*™ have n > r where r is the number of rows
in the Howell basis of A. A Howell transform (Q,U,C,W,r) for A can
be recovered in O(nmr?=—2(log B) + nm(logr) B(log 8)) word operations
where 8 =rN.
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Algorithm 4.4. WeakHowell(A4,k)
Input: (A, k) with A € R™*™ and 0 < k < n.
Output: (Q,U,C,W,r), an index weak Howell transform for (A, k).
Caveat: The inequality k+r < n must be satisfied. Either R should be
stable ring or A have rows k+ 1,k +2,...,k + r zero.
if A=0 then Chapter 5%
(Qv U, Ca W, T) = (In; I, In7 I, 0)7
else if m =1 then
Q, U, C, W, r, a:=1Iy, Iy, In, In, 1, A[k +1, 1];
it Alk+ 1,1] 0 then Echelon Forms over PIDs
FE := the 1 X n matrix as in Proposition 3.5
fi;
for i to n do
if i = k 4+ 1 then next fi;

if Ak +1,1] = 0 then The last three chapters gave algorithms for computing eche-

¢ := EJi] lon forms of matrices over rings. The focus of Chapter 2 was
else matrices over fields while in Chapter 3 all the algorithms are

¢ := Stab(a, A[i, 1],0) applicable over a PIR. This chapter focuses on the case of

fi; matrices over a PID. We explore the relationship — with
Clk +1,i] == ¢; respect to computation of echelon forms — between the frac-
a:=a+ cAli,1]; tion field of a PID and the residue class ring of a PID for a
od; well chosen residue. The primary motivation for this exercise
Wk + 1,k + 1] := Ann(a); is to develop techniques for avoiding the potential problem
for i to k do Wi,k + 1] := —Div(A[, 1], a) od; of intermediate expression swell when working over a PID
for i from k + 2 to n do Q[i, k + 1] := —Div(A[i, 1], a) od; such as Z or Q[z]. Sundry useful facts are recalled and their

usefulness to the design of effective algorithms is exposed.
The main result is to show how to recover an echelon form
A; := the first m; columns of A: over a PID by computing, in a fraction free way, an echelon
B := the last ms columns of A; form over the fraction field thereof. This leads to an efficient
(Q1,U1, C1, Wh,71) := WeakHowell(Ay, k); method for sqlving.a system .Of linear diophanti.ne equations
Ay = W,Q,U,C, B:; over Q[z], a ring with potentially nasty expression swell.
(Q2,Us, Oy, Wo,19) := WeakHowell(Ag, k + 11);

(Q,U,C) := Combine(Q1, U1, C1, Q2, Uz, Ca, Wh);
W =Wy + Wy —1I; Throughout the chapter:

. ri=1r1 + 79 e Ris a PID,

return (Q,U,C, W, r);

else
Choose positive my and mo with my + mo = m;

e A € R™ ™ has rank profile (j1, jo, ..., Jjr), and

e H is the Hermite form of A.

T
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Let R denote the fraction field of R. Note that for nonzero N € R, the
residue class ring R/(N) will be a PIR but not, in general, a PID. Recall
the relationship between these rings in Figure 5. We are going to explore

R | field |
|
| |
v | \ |
R | PID—+— ID
| |
| | l
4 [ \ [ comm}ltative
R/(N) | PIR—— id\:evrll?ilty

Figure 5.1: Relationship between rings

the relationship between these rings from the point of view of recovering
various matrix invariants over R. The concrete rings which will most
interest us are R = Z (whereby R = Q and N is composite) and R = Q|x]
(whereby R = Q(z) and N € Q[z] has a nontrivial factorization).

The rest of this chapter is organised as follows. First we establish
some notation and recall sundry useful facts about vector spaces and
lattices. Then in Section 5.1 we give a self contained treatment of the well
known modular determinant method for computing the Hermite basis H
over the residue class ring R/(N) for well chosen N. In Section 5.2 we
show how to recover H by computing, in a fraction free way, over the
fraction field R. In other words, we view R as an ID (in other words
we don’t use operation Gedex) and compute an echelon form of A as
considered over the fraction field of R. The algorithm of Section 5.2
is then applied in Section 5.3 to get an efficient algorithm for solving
systems of linear diophantine equations over a PID such as Q[z].

We begin with some definitions. The lattice £(A) is the set of all
R-linear combinations of rows of A. A notion of lattice for matrices
over PIDs is analogous to that of vector spaces for matrices over fields.
Some more discussion about lattices can be found in (Newman, 1972),
but the presentation here is self contained. Let B over R have the same
dimension as A. B is a (left) multiple of A if there exists an M € R"*"
such that MA = B. Note that M need not be unimodular or even
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nonsingular. But it is easy to show that
Lemma 5.1. If A and B are multiples of each other then L(A) = L(B).

In what follows we will write A = B to mean that A and B have the
same dimension and £(A) = L£(B). In other words, A and B are left
equivalent to each other.

Lattice Determinant

Define det £(A) f [[<i<, H[1,ji]. Then L(A) = R™ precisely when
r = m and det L(A) = 1. The following facts will also be useful.

Lemma 5.2. det L(A) is the ged of all r X r minors of A comprised of
columns j1,J2,. -, Jr-

Lemma 5.3. If B is a multiple of A, then B = A if and only ifrank B =
rank A and det L(B) = det L(A).

Extended Matrix GCD

If the rows of G € R"™™ provide a basis for the lattice of A (i.e. if
L(G) = L(A)) then we simply say that G is a basis for A. For example,
the nonzero rows of H are the canonical “Hermite basis” for A. Also:

Lemma 5.4. The first r rows of any echelon form of A are a basis for
A.

A basis G for A is sometimes called a (right) matrix ged.

Lemma 5.5. Ifr =m, and G is a basis for A, then all entries in AG2d
are divisible by det G, and L(AG*H(1/det G)) = R™.

Consider for the moment that n = 2m, r = m, and A can be written

Ay

Ay
where both A; and A, are square nonsingular. Let E € R™™ be such
that FA = G. Then E is called a solution to the extended matrix
ged problem. If Ej is the first m and Fs the last m colums of E then

E1A1 4+ B> Ay = G. We will use “extended matrix GCD” to mean, more
generally, the problem of recovering the first r rows of a unimodular

as
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transforming matrix which transforms to echelon form an A € R®"*™
with rank 7.

Consider the scalar case of the extended matrix GCD problem, when
m = 1. Then

A
ay
E as G
fev e o en]| ¥ |=l9]
an
with g = ged(ag, ag, ..., a,). Proposition 3.5 (transformation to echelon

form) gives an O(n) basic operations algorithm to recover the vecotr E.
(It is already know that O(n) operations suffice, see for example (Ma-
jewski and Havas, 1994).)

The analogy between a basis G € R™™ and scalar ged g is closest
when 7 = m. But assume r < m and we have the matrix G € R™"
comprised of only the r columns ji,js,...,7 of G. Then the other
columns of G can be reconstructed from any r linearly independent rows
in £(A). For example, in the next lemma B could be any r linearly
independent rows of A.

Lemma 5.6. Let B € R™™ have rank r and satisfy L(B) C L(A). Let
B € R™7 be comprised of the rank profile columns of B. If G € R™"
is the submatriz comprised of the rank profile columns of a basis for A,

then (1/det B)GB*B is a basis for A.

Many Hermite form algorithms require that A have full column rank
(cf. Section 5.1). Lemma 5.6 shows that this is no essential difficulty.
Compute a fraction free GaussJordan transform (U, P, r,d) for A and let
B be the first 7 rows of UPA. Compute G € R™*" to be the Hermite
basis of the full column rank submatrix comprised of the rank profile
columns of A. Then a Hermite basis for A is given by (1/d)GB.

Nullspaces

The (left) nullspace of A is the lattice {v € R1*™ | vA = 0}. We say
simply that a matrix N € R(»=")*™ ig a basis for the nullspace for A
if £L(N) equals the nullspace of A. Any basis for the nullspace of A
necessarily has full row rank n — r.
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Lemma 5.7. Let M € R"=")%" have rank n — r and satisfy MA = 0.
Then M is a basis for the nullspace of A if and only if L(MT) = R"~".

We get the following as a corollary to Lemma 5.5.

Corollary 5.8. Let M € R("=")%" have rank n—r and satisfy MA=0.
Let GT € R=x(v=") be q basis for MT. Then (1/det G)GIM is a
nullspace for A.

Corollary 5.5 says that we may deduce a basis for the nullspace of A
given any full rank multiple of such a basis. The essential point is that
such a multiple can be recovered by computing over the fraction field
of R. For example, choose M to be the last n — r rows of UP where
(U, P,r, %) is a GaussJordan transform for A.

Or consider the case when A is large and sparse. A suitable M can be
constructed by computing random vectors in the left nullspace of A using
iterative methods as proposed by (Kaltofen and Saunders, 1991). This
should be efficient when n — r is small compared to n. An alternative
solution to this problem, that of construcing a nullspace for a sparse
matrix when n — r is small compared to n, is proposed and analysed
by Squirrel (1999).

The Pasting Lemma

Let G € R™™ be a basis for A. Consider matrices U € R™"*" which can
be partitioned as and satisfy

U A
I R N . e
v .= (5.1)

where FA =G and MA = 0.

Lemma 5.9. The matriz U of (5.1) is unimodular if and only if M is
a basis for the nullspace for A.

We call Lemma 5.9 the “pasting lemma”. Any E € R™*™ such that
EA is a basis for A and any basis M € R("~")*" for the nullspace of A
can be pasted together to get a unimodular matrix.
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5.1 Modular Computation of an Echelon Form

Assume that A € R™*™ has full column rank. Then an echelon basis
for A (eg. the Hermite basis) can be recovered by computing modulo a
carefully chosen d € R.

Lemma 5.10. Let A € R"*™ have full column rank. If det L(A)|d then

RG]

Let B over R have the same dimension as A. For d € R nonzero we
write A =, B if there exists a U € R"*" with detU 1L d and UA =
B mod d. This condition on the determinant of U means that there also
exists a V € R"*" with detV L d and VB = A mod d.

A B
nxm ~ >~
Lemma 5.11. Let A,B € R 'IfA_dBthen{dI}_[dI}
The next two observations captures the essential subtlety involved in

computing the Hermite form “modulo d”.

Lemma 5.12. Let a,d,h € R be such that a|ld and h only has prime
divisors which are also divisors of d. If (d?,h) = (a) then (h) = (a).

Lemma 5.13. Let a,d,h € R be such that a|d and h only has prime
divisors which are also divisors of d. If (d,h) = (a) then we may not
conclude that (h) = (a). An example over Z isa =2, d=2 and h =4.

Recall that ¢ = ¢42 is used to denote the canonical homomorphism
from R to R/(d?). In what follows we assume the choices of A(-) and
R(-,-) over R/(d?) are made consistently with the choices over R (see
Section 1.1). This assumption is crucial.

Proposition 5.14. Let A € R®*™ have full column rank and let d € R
satisfy det L(A)|d, d € R\ R*. If H is a Hermite form of ¢qz2(A) over

R/(d?), then ¢—1(H) is the Hermite form of A over R.

Proof. Let H = ¢~ '(H). Then H is in Hermite form over R. We need
to show that H is the Hermite form of A. By Lemmas 5.10 and 5.11

][]

Thus H is left multiple of A. By Lemma 5.3 it will suffice to show that
det L(A) = det L(H).
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From (5.2) and Lemma 5.2 we have that det £(A) is equal to the ged
of all m x m minors of the matrix on the right hand side of (5.2). All
such minors which involve a row from d?I will be a multiple of d?. We
may deduce that H has rank m and that (d?,det L(H)) = (det L(A)).
By construction each diagonal entry of H is a divisor of d2. The result
now follows from Lemma 5.12. [

As a corollary to Proposition 5.14 and Corollary 3.16 (computation
of Hermite form over Z/(d?) with transforming matrix) we get the fol-
lowing.

Corollary 5.15. Let A € Z"*"™ be nonsingular and d be a positive
multiple of det A. Given d together with a matriz B € Z™*™ that satisfies
B =4 A, the Hermite form H of A together with a U € Z™*™ such that
UB = H mod d can be computed in O(n(loga) + n?(logn) B(log a))
word operations where o = || B|| + d.

Let d be as in Proposition 5.14. One quibble with the approach of
Proposition 5.14 is that we work with the more expensive modulus d? in-
stead of d. If we don’t require a transforming matrix as in Corollary 5.15
the approach can be modified to allow working modulo d.

Our eventual goal is to transform A to echelon form. Say we have

achieved
t| a
5[]

where t € R and B 2, A. For example, B could be obtained by applying
unimodular row operations and arbitrarily reducing entries of the work
matrix modulo d.

Compute (h, s,v, x, *) := Gedex(¢,d). Then

s v t| a h sa
I B’ B’

=ik d ="t/ (5.3)
I dl dl

where the transforming matrix on the left is unimodular by construction.
From Lemmas 5.10, 5.11 and equation (5.3) we get

h sa
— 5
LA)=L —W . (5.4)
dI
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The first row of the matrix on the right hand side must be the first
row of an echelon form for A. To compute the remaining rows we may
recursivley apply the steps just described (transformation of A to B) to
the (n+m — 1) x (m — 1) submatrix
B/
_(d/h)a_|. (5.5)
dl

We now describe an enhancement. From (5.4) we see that h is an
associate of the first diagonal entry in the Hermite basis of A, and thus
the lattice determinant of the submatrix (5.5) must be a divisor of d/h.
Applying Lemma 5.10 gives

B’ B’ B’
(d/h)a | =2 | (d/h)a | =
dl /M1 @/

Thus, we may neglect the middle row (d/h)a of (5.5) and find the re-
maining rows in the echelon form by recursing on the (n+m—2)x (m—1)

matrix B
[aror ]

The method just described has been called the “decreasing modulus”
method by Domich et al. (1987). Alternatively, compute an echelon form
B such that B =2; A. Then use the decreasing modulus approach just
described to transform B to echelon form T which satisfies T = A; the
reconstruction phase costs n basic operations of type Gedex and O(n?)
basic operations of type Arith.

Notes

Kannan and Bachem (1979) point out with an example that computing
the canonical form of an integer matrix modulo the determinant d does
not work. The subtleties are explained above. The key observation we
make (in Proposition 5.14) is that computing mod d? does work. This
is important since it allows us to recover a U such that UB = H mod d
where det U L d. This does not seem possible when working with the
modulus d.

All of the theory described above (except for Proposition 5.14) for
computing modulo d is exposed very nicely for integer matrices by Domich

5.2. FRACTION FREE COMPUTATION OF AN ECHELON FORMS5

et al. (1987). The “mod d” approach is used also by Domich (1989), Il-
iopoulos (1989a, 1989b) and Hafner and McCurley (1991).

5.2 Fraction Free Computation of an Eche-
lon Form

An echelon form of a full column rank A over R can be recovered from
a modified Gauss transform of A. The idea is to combine fraction free
Gaussian elimination with the decreasing modulus method discussed in
the previous section. This is useful when working over rings such as Q|[z]
where expression swell is nasty. Using the approach described here all
intermediate expressions will be minors of the input matrix.

Recall Subroutine 2.20 (Cond), used by Algorithm 2.18 (CondGauss).
We need to modify Subroutine 2.20 (Cond) slightly. Given a nonzero
A= [ ai Qg+ Qp ]T € R™*! the matrix C returned by Cond should
satisfy

(a1,ag,...,an,d?) = (a1 + coag + - - + cpan, d?). (5.6)

When R = Q[z] there exist choices for the ¢;’s which are nonnegative
integers bounded in magnitude by 1 4+ degd. When R = 7Z there exist
choices for the ¢;’s which are nonnegative integers with ¢; = O((log d)?).
Algorithm 5.16 (FFEchelon) requires such small choices for the ¢;’s. Ef-
ficient deterministic algorithms for computing minimal norm solutions
over Z and K[z] are given in (Storjohann, 1997) and (Mulders and Stor-
johann, 1998).

One thing we will need to show is that the division in step 3 are exact.
To prove the algorithm correct we need the following observation.

Lemma 5.17. Let A, B € R™™™ and h € R be nonzero. Then hA = hB
if and only if A= B.

For convenience let us make some observations. Consider the case
when A is square nonsingular. Then:

e d is the determinant of PA.
e U = U, is the adjoint of PA and 17 = dI.

e U = Us is the triangularizing adjoint and 75 the adjoint triangu-
larization of CPA.
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Algorithm 5.16. FFEchelon(A)

Input: A € R"*™ with rank r.

Output: (E,T), T an echelon basis T of A and E € R™"™ such that
EFEA=T.

1. Compute a fraction free GaussJordan transform (U, P,r,d) of A.
Let Uy be the first r rows of U and and T} the first » rows of UPA.
Let (j1,J2,--.,jr) be the rank profile of A.

2. Compute a modified fraction free Gauss transform (U, C,x,*) of
PA using a suitable subroutine Cond which produces output sat-
isfying 5.6. Let Uy be the first r rows of U and T5 be the first r
rows of UCPA.

3. Let S1,S52 € R™ ™ be diagonal with (h},S1[i,i], Sali, ], *,*%) :=
Gedex(d?, T1[i, j;]). Let D € R™" be diagonal with D[i,i] := h}_,
hg =1. Set F := D_l(SldUl + SQUQC)P and T := D_1<SldT1 +
SoT5). Return (E,T).

o T[i,i]=h}/hi_; for 1 <i<mn.

e All entries in row i of (S1dU; + SaUsC) P will be divisible by the
product of the first ¢ diagonal entries of any echelon basis of A.

Now consider when A has rank profile ji, jo, ..., .. On input with the
full column rank submatrix of A comprised of column ji, jo, ..., j. algo-
rithm FFEchelon will produce exactly the same FE.

Theorem 5.18. Algorithm 5.16 is correct.

Proof. We may assume without loss of generality that A has full column
rank. It is easy to verify that EA = T and T'[i,i] = h}/h;_;. The output
will be correct if and only if A is the product of the first ¢ diagonal entries
in some echelon basis of A. In this case we have that F is over R, and
thus T is a multiple A and the result follows from Lemma 5.3.

Note that (U, I) is a Gauss transform of CPA. Consider triangular-
izing CPA column by column using fraction free Gaussian elimination.
After the first £ columns have been eliminated the work matrix can be

written as
* *
B
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where the principal block is the principal & x k submatrix of 75 and
the trailing block B has dimension (n — k) x (m — k). Note that all
information required to construct h} for 1 < ¢ < k is now determined.
The construction of h} for ¢ > k depends essentially on the subsequent
triangularization of B. Now use induction on k to show that the h}’s
are correct.

Induction Hypothesis: There are two.

(a) Tz[i,i] = c;h} where ¢; L d and h is the product of the first ¢ entries
in some echelon form of A, 1 <i < k.

(b) The trailing (n — k) x (m — k) submatrix of an echelon form for A
can be found by transforming

2] o)

to echelon form and dividing by hj,.

Base Case: When k = 0 (a) is vacuous and (b) follows from Lemma 5.10.
Induction Step: By construction the principal entry of B is To[k+1, k+
1] and hj_ | = Ged(d?, To[k + 1,k + 1]). Because of the preconditioning
with €' we have hj, equal to the ged of all entries in the first column
of B. Using (b) we conclude that hj_  is the product of the first & + 1
entries in an echelon form of A. Let Ta[k + 1,k + 1] = cxy1hj, ;. Then
(d*/h 41, crg1) = (1). Since hj,, | d we may conclude that cpi1 L d.
This gives the inductive step for (a).

Using (a) we also have that Th[k, k] = cxh) with ¢z L d. Now
we are going to combine fraction free Gaussian elimination of B with
the decreasing modulus approach of the previous section. Let hy,, =
hi+1hy. The principal entry of éB is ¢x41hk4+1. Consider applying the
following sequence of row operations to ﬁB Multiply all but the first
row by ck41. Then add appropriate multiples of the first row to the
lower rows to zero out entries below the principal entry. Now multiply
all rows but the first row by 1/cg. Since cxi1 and ¢f are L d?/h} we
have (Lemma 5.11) that

1
Ck+1hr41 e d
wDB *hl;;B'
2 = T 12
el i
L 2T
R

Now proceed as in (5.3) using the decreasing modulus approach. This
gives that the remaining n — k — 1 rows of an echelon form for A can be
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found by transforming

)

to echelon form and dividing by hj. Multiply by hty1. By Lemma 5.17
the trailng (n — k — 1) X (m — k — 1) submatrix of an echelon form for
A can be found by transforming

[ (hk+(1i£;k)3’ }

to echelon form and dividing by Ay, ;. The key observation is now that
the principal block of this matrix is precisely what we would have ob-
tained by continuing fraction free Gaussian elimination for one column
on B. This gives the inductive step for (b). O

5.3 Solving Systems of Linear Diophantine
Equations

Given b € R™, the problem of solving a linear diophantine system is to
find a vector v € R™ such that vA = b or prove that no such vector
exists. This problem can be generalized somewhat using the following
observation.

Lemma 5.19. The set of all ¢ € R such that vA = cb admits a solution
for v is an ideal of R.

In (Mulders and Storjohann, 1999) we call a solution 2v which solves
%’UA = b in the sense of Lemma 5.19 a solution with minimal denomi-
nator. It is well known how to find such a solution by transforming the
(n+1) x (m+ 1) matrix

to echelon form, see for example Blankinship (1966b). Kannan (1985)
first showed the problem of solving linear systems over Q[z] was in
P using this approach. Here we observe that we can apply algorithm
FFEchelon to the problem at hand.

5.3. SOLVING SYSTEMS OF LINEAR DIOPHANTINE EQUATIONSS9

Proceed as follows. Let Uy, Us,T1,15,d,r be as produced by steps 1
and 2 of algorithm FFEchelon with input A. (But don’t perform step
3.) Then the system will be consistent only if the last row of T, has
first m entries zero. If this is the case then compute (c,s,t,*,%) :=
Ged(d?, Ta[r + 1,jr11) and construct the last row of E as in step 3.
Thus only a single operation of type Gedex is required.

Let us estimate the complexity of this approach when R = Q[x].
Assume A and b are over Z[z] and let d be a bound on the degrees
of polynomial coefficients and o a bound on the magnitudes of integer
coefficients in A and b. For simplicity consider the diagonal case: Let
s=n+m+d+loga.

The dominant cost will almost certainly be the fraction free Gaussian
elimination in steps 1 and 2. Not counting the calls to subroutine Cond
this is bounded by O (s*t?) word operations (assuming FFT-based in-
teger arithmetic). This estimate is obtained by noting that polynomials
over Z[z] can be represented as integers by writing the coefficients as a
binary lineup.

We show in (Mulders and Storjohann, 1998) that the cost of all calls
to Cond will be equivalent to computing computing O(s?) geds of poly-
nomials over Z[z] which have both degrees and magnitude integer coef-
ficients bounded by O(s?). If we allow randomization (Las Vegas) the
ged computations can be accomplished using the algorithm of Schonhage
(1988) in the time bound stated above for steps 1 and 2. The deriva-
tion of a good worst case deterministic complexity bounds for these gcd
computations is more challenging.

Let us compare the approach described above using FFEchelon with
the usual method which is to compute a solution to the matrix extended
ged problem, that is, compute a complete echelon form 7" of B together
with the first r rows F of a unimodular transform matrix. The total size
of such an E and T will be O7(s®) words; this bound is probably tight.
A detailed discussion is given in (Storjohann 1994, Chapter 4). An E
and T can be recovered in O (s?) bit operations (assuming FFT-based
integer arithmetic) by combining (Storjohann, 1994, Theorem 6.2) with
Proposition 3.15. This complexity for producing a solution to the matrix
extended ged problem is close to optimal, but considerably more than
the O"(n**?) bound derived for the alternative method sketched above.
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Chapter 6

Hermite Form over 7

An asymptotically fast algorithm is described and analysed
under the bit complexity model for recovering a transforma-
tion matrix to the Hermite form of an integer matrix. The
transform is constructed in two parts: the first r rows (what
we call a solution to the extended matrix ged problem) and
last r rows (a basis for the row null space) where r is the
rank of the input matrix. The algorithms here are based on
the fraction free echelon form algorithms of Chapter 2 and
the algorithm for modular computation of a Hermite form of
a square nonsingular integer matrix developed in Chapter 5.

Let A € Z™™ have rank r. Let G be the first r rows of the Hermite
form of A — the Hermite basis of A. Consider matrices U € Z"*™ with
the property that UA equals the Hermite form of A. Any such U can
be partitioned using a conformal block decomposition as

- (6.1)

where FA = G. Such a matrix U will be unimodular precisely when M
is a basis for the nullspace for A. Let 8 = (1/T||A||)". We show how to
recover G together with an E in O(nmr?=2(log 8) + nm(logr) B(log 5))
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word operations. A nullspace M can be recovered in
O(nmr?=2(log 2n/r)(log B) + nm(logn) B(log B)) word operations.

The main contribution here is to produce an F and M (in the time
stated above) with good size bounds on the entries. We get ||E|| <
and ||[M|| < rB2. Furthermore, E will have at most r + (r/2)log, 7 +
rlog, ||A]| nonzero columns. We also show that ||G|| < .

Preliminaries

The bounds claimed in the next lemma are easily verified.

Lemma 6.1. Let A € Z™*"™ be nonsingular with Hermite form H.
Then det H = [det A| and the unique U such that UA = H s given
by (1/det A)H A%, Moreover:

(a) max;{>_; Hi;} < detH.
(b) ||H|| < n™/?2det H.

(c) ||U]] < []4]|.

Notes

The form origninates with Hermite (1851). Early algorithms for triangu-
larizing integer matrices given by Barnette and Pace (1974), Blankinship
(1966a), Bodewig (1956), Bradley (1971) and Hu (1969) are not known
to admit polynomial time running bounds — the main problem being
the potential for rapid growth in the size of intermediate integer coeffi-
cients. Fang and Havas (1997) prove that a well defined variant of the
standard elimination algorithm — an example of such an algorithm was
given in the notes section of Chapter 3 — leads to exponential growth
when R = Z. A doubly exponential lower bound on the size (or norm)
of operands over certain Euclidean rings is demonstrated by Havas and
Wagner (1998).

Table 6.1 summarizes polynomial time complexity results for the case
of a nonsingular n X n input matrix A. The Time and Space columns
give the exponents e; and f; such that the corresponding algorithm
has running time bounded by O™ (n® (log ||A[|)¢?) bit operatons and in-
termediate space requirments bounded by O™ (n/*(log || A[|)/2) bits. We
neglect to give the exponents e; and fo (but remark that they are small
for all the algorithms, say on the order of 1.) We use this simplified
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(Time, Space) “one-paramter” complexity model only when summariz-
ing asymptotic complexity — our primary interest is the complexity in
the paramater n. Kannan and Bachem (1979) give the first (proven)

’ \ Citation \ Time \ Space ‘
Hermite form of dense square integer matrix
1 | Kannan and Bachem (1979) finite | finite
2 | Chou and Collins (1982) 6 3
3 | Domich (1985) 4 3
4 | Domich et al. (1987) 4 3
5 | Hiopoulos (1989a) 4 3
6 | Hafner and McCurley (1991) 4 3
7 | Storjohann and Labahn (1996) | 6 + 1 3
8 | Storjohann (200x) 4 2

Table 6.1: Complexity bounds for Hermite form computation

polynomial time algorithm. This is later improved by Chou and Collins
(1982), with an emphasis on the problem on solving a linear diophantine
system. Algorithms 1 and 2 perform the elimination directly over Z —
most of the effort is spent bounding the growth of entries. We sidestep
the problem of expression swell by working modulo the determinant of a
square nonsingular matrix; this is the technique used in Algorithms 3-7.
The Time bounds given for algorithms 3-6 assume M(k) = O™(k) while
that for algorithm 7 assumes M(k) = O™ (k?~1). Algorithm 8 assumes
M(k) = k2.

Although some of the algorithms cited in Table 6.1 are presented for
the general case, some assume the matrix has full column rank or even
that the input matrix is nonsingular. This is no essential difficulty, since
any algorithm for transforming a nonsingular matrix to Hermite form
may be adapted to handle the case of a rectangular input matrix and,
moreover, to recover also a transforming matrix. This is dealt with also
by Wagner (1998). We mention one method here. Let A € Z"*" have
rank r. Recover the rank profile [j1, jo, ..., j.| of A together with a per-
mutation matrix P such that PA has first r rows linearly independant.
Let A be the matrix obtained by augmenting columns [jy, ..., j,] of PA
with the last n — 7 columns of I,,. Then A is square nonsingular. Com-
pute the Hermite form H of A. Set U = (1/det A)HA*IP~1. Then U
is unimodular and H = U A is the Hermite form of A.

The method just sketched, which is mentioned also by Hafner and
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McCurley (1991), is fine when n < m, but does not lead to good run-
ning time bounds when n is significantly larger than m, cf. Figure 1.1 on
page 7. Table 6.2 summarizes results for this case. We assume that the

[ ] Citation | Time | log, ||U]]

|

Transform for rectangular integer matrix

1 | Hafner and McCurley (1991) n? mlogy(v/ml||Al])

Storjohann and Labahn (1996) | nm? | O((log2n/m)m(logm||A||))
3 | Storjohann (here) nm? | logy, m + 2mlog,(v/m||Al])

Table 6.2: Soft-Oh complexity bounds for transform computation

input matrix has full column rank m. The first citation is the method
sketched above. Algorithm 2 works by adapting Hafner and McCur-
ley’s (1991) algorithm for recovering a transform matrix over an abstract
ring to the case Z. Finally, the third citation is the asymptotically fast
method of this chapter. For Methods 1 and 3 we get good explicit bounds
on the bit-length of entries. In (Storjohann and Labahn, 1996) we gave
an asymptotic bound for the bit-length log, ||U]|.

Our primary goal here is to obtain a good worst case asymptotic
complexity bound under the tri-parameter model for producing a trans-
form. Our secondary goal is to get good explicit bounds on the sizes of
entries in the transform. We have chosen to make this secondary goal
subordinate to the first, but we remark that because the transform is
highly non-unique, there are many different directions that research can
take.

Different approaches include heuristic methods which attempt to
achieve much better bounds on the sizes of both intermediate numbers
and those appearing in the final output. See for example Havas and Ma-
jewski (1994). Moreover, since the last n — r rows of U are a nullspace
basis, these can be reduced using integer lattice basis reduction. This will
typically result in much smaller entries, but at the price of an increased
running time bound. See the discussion in the books by (Sims1984) and
Cohen (1996). More recently, Havas et al. (1998) show that the Her-
mite form can be deduced by reducing, via lattice basis reduction, a well
chosen integer lattice.

6.1. EXTENDED MATRIX GCD 95

6.1 Extended Matrix GCD

Let A € Z™*™ be nonsingular with Hermite form H. Assume A and H
can be written using a conformal block decomposition as

B H,y Hs

A= D I, and H = H, (6.2)

for some r, 1 < r < n. Let E be the first » and M the last n — r rows
of the unique U which satisfies UA = H. Our goal in this section is to
produce E. Solving for U gives

E (1/det B)(Hy — H3D)B* | Hy

U= M - —(1/ det BYH, DB H,

(6.3)
Note that entries in A*Y will be minors of A bounded in dimension by
r. This gives the bound ||U|| < (/r||A||)" using Lemma 6.1c. We are
going to construct E using (6.3). The main step is to recover H; and
Hs.
The key result of this chapter is:

Lemma 6.2. Let A € Z™ "™ be as in (6.2). Given det B, the matrices
Hy and H3 can be recovered in O(nr?~1(log ) +nr(logr) B(log B)) word
operations where = ||A|| + | det B].

Proof. By extending D with at most r—1 rows of zeroes, we may assume
without loss of generality that n is a multiple of r, say n = kr. All
indexed variables occuring henceforth will be r x r integer matrices.
Write A as

Dy I
Dy, I

We first give the algorithm and then bound the cost later. Let G, denote
B. Fori=k,k—1,...,2 in succesion, compute (S;,T;,V;, H;, B;) such
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that

Ui
-t
Vi | H; D; | I | H;
with U; unimodular and the right hand side in Hermite form. The prin-

cipal block G of the last Hermite form computed will be the Hermite

basis of A.
Expand each U; with identity matrices to get

Uz Us Uk A
Sy Th Sz T3 Sk Ty B
Vo Ho I I Do I
I V3  Hjs I Dy I
I I Vi . || Dy I
Gi1 *x % *
Hy x *
o Hs *
H,

where T is a unimodular triangularization of A. For any block * there
exists a unique solution (R;, E;) to

] ] - ]

such that the matrix on the right is in Hermite form. We are going to

compute (R;, E;) in succession for i = 1,2,...,k such that
Fi F3 F T
I Ry I Rs I Ry G1 % % --- %
I I I Ho x -+ %
I I I Hs - x
I I N Hy

Gy Ex E3 -+ Ej
2 ko oeee *

Hsz -+

i

with each F; reduced with respect to H;. Note that we cannot produce
all off-diagonal entries of T explicitly in the allotted time. To recover
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(R;, E;) we need to pipeline the computation. Proceed as follows. Ini-
tialize S to be the r x r identity. Compute

I|R ][I]ST
| 1 | Hi

} = [ ! fll ] and update S = 5,5+ R;V;
for i = 2,...,k. Induction on k (base case k = 2) shows that the first r
rows of Fy - F3FoUsUs - - - U A is equal to [ Gi Ey Es; --- Ej ]

The cost estimate follows from Corollary 5.15. (Note that it is suffi-
cient that the matrix equalities given above hold modulo 2| det B|.) O

Proposition 6.3. Let A € Z™*™ have rank r. An E € Z™*"™ such that
EA equals the Hermite basis of A can be recovered in O(nr®~1(log 8) +
nr(logr) B(log 8)) word operations where 8 = (\/r||A||)". At most r +
llogy 8| columns of E will be nonzero and ||E|| < B.

Proof. Extract those columns from A which don’t belong to the rank
profile of A. Premultiply A by a permutation matrix so that the princi-
pal r X r submatrix is nonsingular. (Later postmultiply the computed E
by this permutation matrix.) The augmented input matrix can now be
written as in (6.2). Recover B4 and det B. Everything so far is accom-
plished in one step by computing a fraction free GaussJordan transform
of A.

Now recover H; and Hj3 using Lemma 6.2. Finally, contruct the
principal r x r block of E as in (6.3) using matrix multiplication. O

Lemma 6.4. Let G be the Hermite basis of A € Z™*™. Then ||G|| <
(VT||A|)" where 1 is the rank of A.

Proof. Let B be the first r and D the last n — r rows of A. Without
loss of generality assume that B has rank r. Let A, B, D and G be the
submatrices of A, B, D and G respectively comprised of the columns
corresponding to the rank profile of A. Considering (6.3) we deduce
that G = (1/det B)H B3 B. The key observation is now that entries in
B4 B are r x r minors of B, and thus bounded in magnitude by 3. The
result now follows from Lemma 6.1a. O

We end this section by giving an application of Proposition 6.3 when
n=r=1.

Corollary 6.5. Let A € Z™*! be nonzero. An E € Z'*" with EA =
[ g ]. g the ged of entries in A, can be recovered in O(nB(log||All))

bit operations. At most 1 + log, ||A]| entries in E will be nonzero and
IIE] < [|A]]-
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6.2 Computing a Null Space

Let A € Z™*" with rank r be given. We are going to construct a nullspace
for A in a novel way. Assume that n > r and let n = n; + ny where
n1 > r. Assume we can partition A as

A
Ay A1

A= = || € z(mitna)xr (6.4)
Ay Az

where A is nq X r with rank r and A, is ne x r with rank r,. Assume
further that A; and A, can be partitioned as shown where A7 is r X r
nonsingular and Ay is ro X 7 with rank rs.

Let My € Z(" =% and M, € Z("2=72)%72 he nullspaces for A; and
Ao respectively. Partition M; and M, as as My = [ My ‘ Mo ] and
My = [ Moy ‘ Moo ] where My, is (n; —r) xr and My is (ng — 1) X 7.
Then M; can be completed to a unimodular matrix U; such that

Now let Ay € Z™*" be comprised of those columns of A, corre-
sponding to the rank profile of A;. Embedding U; and Us into an n X n
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matrix yields

A
I * * 1T All T i )
* * A21 Agl *
My Mo Az =
Moy Moo Ags | Asy

(6.5)
where the transforming matrix is unimodular by construction. It follows
that the trailing n — (r + r2) rows of this transforming matrix comprise
a nullspace for A. By Lemma 5.9, the transforming matrix will remain
unimodular if we replace the first r + 7 rows with any E € Z("tr2)xn

such that EA equals the Hermite basis of A. Partition such an F as

o En |En | Eiz | Ey
En | Exn| Es | Eau
Then
U A
[ E11 | Eio Eq3 Ey 7T An 1 [ H
Ly | Eao L3 Esy Aoy | Ay
My Mo Aqp _

My, Mo Agy | Aso

where U is unimodular and the right hand side is in Hermite form with
H the Hermite basis for A. We conclude that

Eoy

Eo3

Ea

Eay

Mll

M12

M21

M22
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is a nullspace for A.

Proposition 6.6. Let A € Z™** have column dimension bounded by m
and rank 7 bounded by r. Let B = (\/r||A]])". A nullspace M € Z(=T)*n
for A which satisfies || M|| < rB? can be recovered in

O(nmr%=2(log 2n/r)(log B) + nm(log n) B(log B)) word operations.

Proof. Let A be as in the statement of the proposition. We first do
some preprocessing. Recover the row rank profile of A and extract from
A those columns which are linearly dependent; we assume henceforth
that A has full column rank 7. Identify 7 linearly independent rows and
premultiply A by a suitable permutation matrix so that the principal
7 X 7 submatrix of A is nonsingular. (Later postmultiply the computed
nullspace by this permutation.) The steps so far are accomplished in the
allotted time by computing a fraction free Gauss transform of A. Because
of this preconditioning, it will be sufficient to prove the proposition for
those cases when m =7 < r.

Let T,.(n) be the number of bit operations required to compute a
nullspace M which satisfies the conditions of the proposition for an A €
Z™*T with rank 7, 7 < r.

The algorithm is recursive. The base case occurs when n < 2r;
assume this is the case. Extend A with I,,_ to get an n X n nonsingular
matrix

B —{ : T ] . (6.7)

Use Lemma 6.2 to compute an E € Z™*™ such that EB is in Hermite
form. Then ||M|] < S (Lemma 6.1c). Set M to be the last n —r rows of
E. This shows that

T,(n) = O(r?(log B) + r*(log 7) B(log 8))) if n < 2r.

Now assume that n > 2r. The result will follow if we show that

T,(n) = T.(|n/2))+T,([n/2])+O(nr’~* (log B)+nr B(log B)) if n > 2r.

Let ny = [n/2] and ny = [n/2]. Let A; be the first n; and A, the
last no rows of A. Let ry be the rank of As. Compute the column rank
profile of As to identify 79 linearly independent rows. Premultiply A by
a suitable permutation so that the principal 79 X r1 submatrix of A is
nonsingular. The input matrix A can now be written as in (6.4) and
satisfies the rank conditions stated there.
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Recursively compute nullspaces M; € Z("1~7)%m1 and M, € Z(n2—72)xn2
which satisfy the requirements of the proposition with respect to A; and
Ay. Construct the n x (7 + ro) matrix A shown in (6.5). Using Propo-
sition 6.3, compute an E € Z(+72)%" such that FA equals the Hermite
basis for A. Finally, construct the nullspace for A as in (6.6).

Let B be the nxn nonsingular extended matrix as in (6.7). Lemma 6.1c
bounds ||E|| by ||B24||. It is straightforward to derive the bound || B24|| <
r/3% by considering the two cases 1o = 7 and ry < 7. We don’t belabor
the details here. O
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Chapter 7

Diagonalization over
Rings

An asymptotically fast algorithm is described for recovering
the canonical Smith form of a matrix over PIR. The reduc-
tion proceeds in several phases. The result is first given for a
square input matrix and then extended to rectangular. There
is an important link between this chapter and chapter 3. On
the one hand, the extension of the Smith form algorithm to
rectangular matrices depends essentially on the algorithm for
minimal echelon form presented in Chapter 3. On the other
hand, the algorithm for minimal echelon form depends essen-
tially on the square matrix Smith form algorithm presented
here.

Let R be a PIR. Corresponding to any A € R™*" there exist unimodular
matrices U and V over R such that

S1
52

S=UAV =

Sp

103
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with each s; nonzero and s; a divisor of ;47 for 1 < ¢ < r—1. The matrix
S is the Smith canonical form of A. The diagonal entries of S are unique
up to associates. We show how to recover S together with unimodular
U € R™™ and V € R™™ such that UAV = S in O (nmr?~2) basic
operations of type {Arith, Gedex, Stab}.

The algorithm proceeds in two stages. The first stage, shown in
Figure 7.1, is transform an upper triangular input matrix to be upper bi-
diagonal. The algorithms for band reduction are presented in Section 7.1.
These are iterated O(logn) times until the input matrix is upper bi-
diagonal. The second stage is to transform the bi-diagonal matrix to

Figure 7.1: Banded Reduction

Smith form. This is presented in Section 7.3. The algorithm there
depends on a subroutine, presented in Section 7.2, for transforming an
already diagonal matrix to Smith form. Finally, Section 7.4 combines the
results of the previous 3 section, together the algorithms of the Chapter 3
for triangularizing matrices, to get the complete Smith form algorithm.

Notes

Existence of the form was first proven by Smith (1861) for integer matri-
ces. Existence and uniqueness over a PID is a classical result. Newman
(1972) gives a lucid treatmeant. Existence and uniqueness over a PIR
follows from Kaplansky (1949), see also (Brown, 1993).

Most work on computing Smith forms has focused on concrete rings
such as R = Z. We postpone the discussion of this until Chapter 8.

Transforms

Let A € R™*™, Let U € R"™™ and V € R™*™ be unimodular. We
call U a left transform, V' a right transform and (U, V') a transform for
A. The algorithms of the next section work by applying a sequence of
transforms to the work matrix A as follows: A < UAV.

Assume now that A has all entries in the last n; rows and m; columns
zero, ni and my chosen maximal. A principal transform for A is a
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transform (U, V') which can be written as

TON AR | |

Note that the principal n —n; submatrix of U is a left transform for the
principal n — n; submatrix of A. A similar comment applies to V.

7.1 Reduction of Banded Matrices

A square matrix A is upper b-banded if A;; =0 for j <iand j > i+ b,
that is, if A can be written as

*

In this section we develop an algorithm which transforms A to an equiv-
alent matrix, also upper banded, but with band about half the width of
the band of the input matrix.

Our result is the following.

Proposition 7.1. For b > 2, there exists an algorithm that takes as
input an upper b-banded A € R™ ™ and produces as output an upper
(|b/2] + 1)-banded matriz A’ that is equivalent to A.

1. The cost of producing A’ is bounded by O(n?b°=2) basic operations.

2. A principal transform (U, V) satisfying UAV = A’ can be recovered
in O(n?) basic operations.

The algorithm uses basic operations of type {Arith, Gedex}.

Corollary 7.2. Let R = Z/(N). The complexity bounds of Proposi-
tion 7.1 become O(n?b°~2(log 8) + n?(log b) B(log 3)) and O(n®(log B) +
n?(logn) B(log B)) word operations where 3 = nN.
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Proof. By augmenting A with at most 2b rows and columns we may
assume that A at least 2b trailing columns of zeroes. In what follows, we
write subli, k] = sub4[i, k] to denote the the symmetric k x k submatrix
of A comprised of rows and columns i + 1,...,7 + k. Our work matrix,
initially the input matrix A, has the form

Our approach is to transforms A to A’ by applying (in place) a sequence
of principal transforms to sub[isy, n1] and sub[(i + 1)s1 + jsz, na], where
i and j are nonnegative integer parameters and

S1 = Lb/2J7

ny = Lb/QJ +b— 17
Sy = b— 1,
ng = 2(b— 1)

The first step is to convert the work matrix to an equivalent matrix but
with first s; rows in correct form. This transformation is accomplished
using subroutine Triang, defined below by Lemma 7.3.

Lemma 7.3. For b > 2, there exists an algorithm Triang that takes as
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mput an ny X ny upper b-banded matrix

* e * * PP * *

*

where the principal block is s1 X s1, and produces as output an equivalent
matric

x| * *
* * % *
B =

The cost of the algorithm is O(b?) basic operations.

Proof. Write the input matrix as

[ B | B,
5= |

where By is s1 X so. Using the algorithm of Lemma 3.1, compute a
principal left transform W7 which triangularizes BZ. Set

, [ BB ][ L |
Since n; < 2b, the cost is as stated. O
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Apply subroutine Triang to subl0,n1] of our initial work matrix to
effect the following transformation:

At this stage we can write the work matrix as

where the focus of attention is now sub[si,n2]. Subsequent transfor-
mations will be limited to rows s; + 1,81 + 2,...,n — ¢t and columns
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s1+82+1,81+82+4+2,...,n—t. The next step is to transform the work
matrix back to an upper b-banded matrix. This is accomplished using
subroutine Shift, defined below by Lemma 7.4.

Lemma 7.4. For b > 2, there exits an algorithm Shift that takes as
mput an ne X Ny matrix

* * | %

* * *
O:

*

*

over R, where each block is sy X sa, and produces as output an equivalent
matric

* “ee *k

The cost of the algorithm is O(b?) basic operations.

Proof. Write the input matrix as

(oo
°- [

where each block is so X s5. Use the algorithm of Lemma 3.1 to com-
pute, in succession, a principal transform U7 such that C{ U7 is lower
triangular, and then a principal transform V such that (UC3)V is lower
triangular. Set

o] ] o

Since ny < 2b, the cost is as stated. O
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Apply subroutine Shift to sub[s; + jsa,ng] for j =0,1,2,..., [(n— +
s1)/n2]| to get the following sequence of transformations.

The procedure just described is now recursively applied to the trailing
N (n—s1) X (n—s1) submatrix of the work matrix, itself an upper b-banded
matrix. For example, the next step is to apply subroutine Triang to
sub[s1, n1] to get the following transformation.
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We have just shown correctness of the following algorithm supporting
Proposition 7.1.

Algorithm BandReduction(A4,b)
Input: An upper b-banded A € R™ ™ with b > 2 and last ¢ columns
zZero.
Output: An upper (|b/2] + 1)-banded matrix that is equivalent to A
and also has last ¢ columns zero.
s1:= |b/2];
ny = [b/2] +b—1;
S99 1= b— 1;
ng :=2(b—1);
B := a copy of A augmented with 2b — t rows and columns of zeroes;
fori=0to [(n—1t)/s1] — 1 do

Apply Triang to subg[isi, n];

for j=0to [(n—¢t—(i+1)s1)/s2] —1do

Apply Shift to subg[(i + 1)s1 + js2, nal;

od;
od;
return subg[0,n];

We now prove part 1 of Proposition 7.1. The number of iterations of

the outer loop is
2n
L;= —t < —
(= 0)/s1] < 7
while the number of iterations, for any fixed value of 7, of the inner loop
is
. n
Li=[(n—t—(i+1)s1)/s2] < 1

The number of applications of either subroutine Triang or Shift occur-
ring during algorithm BandReduction is seen to be bounded by L;(1 +
L;) = O(n?/b?). By Lemmas 7.3 and 7.4 the cost of one application of
either of these subroutines is bounded by O(b?) basic operations. The
result follows.

We now prove part 2 of Proposition 7.1. Fix 4 and consider a single
pass of the outer loop. For the single call to subroutine Triang, let W
be as in (7.2). For each call j = 0,...,L; — 1 to subroutine Shift in
the inner loop, let (U;, V;) be the (U, V) as in (7.3). Then the principal
transform applied to subg(0,n) during this pass of the outer loop is
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given by (U®, V1) =

I(iJrl)sl Isl
Uy w

Ur;—1 .
I.Sl VLj—l

A principal transform which transforms A to an upper (|b/2]41)-banded
matrix is then given by

(U= yWy© yOy @)y Ei=l)y (7.4)

Note that each U and V@ is b — 1 banded matrix. The product of
two b — 1 banded matrices is 2b — 1 banded; using an obvious block
decomposition two such matrices can be multiplied in O(nb?~1) ring
operations. It is easy to show that the multiplications in (7.4) can be

achieved in the allotted time if a binary tree paradigm is used. We don’t
belabor the details here. O

Corollary 7.5. There exists an algorithm that takes as input an upper
triangular A € R™*™  and produces as output an upper 2-banded matriz
A’ that is equivalent to A.

1. The cost of producing A’ is bounded by O(n?) basic operations.

2. A principal transform (U, V') satisfying UAV = A’ can be recovered
in O(n?(logn)) basic operations.

The algorithm uses basic operations of type {Arith, Gedex}.

Corollary 7.6. LetR =7Z/(N). The complezity bounds of Corollary 7.5
become O(n?(log 8) + n?(logn) B(log 3)) and
O(n?(logn)(log B) + n2(logn) B(log 3)) word operations where 3 = nN.

Proof. By augmenting the input matrix with at most n rows and columns
of zeroes, we may assume that n = 2* + 1 for some k € N.

We first show part 1. Let f,(b) be a bound on the number of basic
operations required to compute an upper 2-banded matrix equivalent to
an (n+1) x (n+ 1) upper (b+ 1)-banded matrix. Obviously, f,(1) = 0.
From Proposition 7.1 we have that f,,(b) < f,,(b/2) + O(n?b°=2) for b a
power of two.

Part 2 follows by noting that algorithm BandReduction needs to be
applied k times. Combining the n X n principal transforms produced by
each invocation requires O(kn?) basic operations. O
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7.2 From Diagonal to Smith Form

Proposition 7.7. Let D € R™™™ be diagonal. A principal transform
(U, V) such that UDV is in Smith form can be computed in O(n?) basic
operations of type {Arith, Gedex}.

Corollary 7.8. Let R = Z/(N). The complexity bound of Proposi-
tion 7.7 becomes O(n? (log B) +n?(logn) B(log B)) word operations where
B8 =nN.

Proof. Let f(n) be a bound on the number of basic operations required
to compute a principal transform which satisfies the requirements of the
theorem. Obviously, f(1) = 0. By augmenting an input matrix with at
most n— 1 rows and columns of zeroes, we may assume that n is a power
of two. The result will follow if we show that f(n) < 2f(n/2) + O(n?).

Let D € R™ ™ be diagonal, n > 1 a power of two. Partition D as
diag(D1, D2) where each of D and Ds has dimension n/2. Recursively
compute principal transforms (Uy, V1) and (Us, V) such that

e P ] = ]

with A and B in Smith form. If either of A or B is zero, then diag(A, B)
can be transformed to Smith form by applying a primary permutation
transform.

Otherwise, it remains to compute a principal transform (Us, V3) such
that Usdiag(A, B)V3 is in Smith form. The rest of this section is devoted
to showing that this merge step can be performed in the allotted time.

O

We begin with some definitions. If A is in Smith form, we write
first(A) and last(A) to denote the first and last nonzero entry in A re-
spectively. If A is the zero matrix then first(A) = 0 and last(A4) = 1.
If B is in Smith form, we write A < B to mean that last(A) divides
first(B).

Definition 7.9. Let A, B € R™*"™ be nonzero and in Smith form. A
merge transform for (A4, B) is a principal transform (U, V') which satisfies

where A’ and B’ are in Smith form and:
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1. A < B;
2. last(A’) divides last(A);
3. If B has no zero diagonal entries, then last(A’) divides last(B);

4. If A has no zero diagonal entries, then A’ has no zero diagonal
entries.

Let f(n) be the number of basic operations required to compute a
principal merge transform for (A, B).

Lemma 7.10. f(1) = O(1).

Proof. Let a,b € R both be nonzero. Compute (g, s, t, u,v) = Gedex(a, b)
and ¢ = —Div(tb, g). Then (U, V) is a merge transform for ([a], [b]) where

U Vv S

el W]

Theorem 7.11. For n a power of two, f(n) = O(n?).

Proof. The result will follow from Lemma 7.10 if we show that f(n) <
4f(n/2)+0(n?). Let A, B € R"*™ be nonzero and in Smith form, n > 1
a power of two. Let ¢ = n/2 and partition A and B into t-dimension
blocks as A = diag(A41, As) and B = diag(B, Bz). The work matrix can

be written as
Ay

A

5 (7.5)

By

Note that A; has no zero diagonal entries in case that As is nonzero.
Similarly, B; has no zero diagonal entries in case that By is nonzero.
We will modify the work matrix inplace by applying a finite sequence of
principal transforms. To begin, the work matrix satisfies A; < A, and
B; < Bsy. The algorithm has five steps:

1. Compute a merge transform (U,V) for (Ay,By). By inserting ¢
rows/columns after the tth and 2tth row/column, we can extend
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U and V to matrices in R¥*% ag follows:

* *
[* *} 1;
—

* |k * *

Apply the resulting principal transform to the work matrix as fol-
lows:

I

* * Ay * *
1 Aqy 1
* * B: * *
I B I

The blocks labelled As and By stay unchanged, but the work ma-
trix now satisfies A1 < Bj. By condition 2 of Definition 7.9, we
still have A; < As. Since B was in Smith form to start with, by
condition 3 we also have A; < Bs. Then last(A;) divides all entries
in diag(As, By, Bz)). This condition on last(A4;) will remain satis-
fied since all further unimodular transformations will be limited to
the trailing three blocks of the work matrix. Note that By < Bs
may no longer be satisfied. Also, B; may now have trailing zero
diagonal entries even if By is nonzero.

If either of A, or Bs is zero, skip this step. Compute a merge
transform for (As, Bs). Similar to above, this merge transform can
be expanded to obtain a principal transform which affects only
blocks Ay and Bj of the work matrix. Apply the merge transform
to diag(As, B2) so that Ay < Bs.

If either of Ay or Bj is zero, skip this step. Compute and ap-
ply a merge transform for (Ag, By) so that As < Bj. At this
point last(Az) divides all entries in diag(By, Bz); this condition on
last(As) will remain satisfied.

If either of By or Bs is zero, skip this step. Compute and apply
a merge transform for (Bp, Bz). The work matrix now satisfies
Ay <Ay < By < Bs.

If Bs is zero, skip this step. If By has some trailing diagonal entries
zero, apply a principal permutation transformation to the trailing
2t x 2t submatrix of the work matrix so that this submatrix is in
Smith form.
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Combining the at most five principal transforms constructed above can
be accompished in O(n?) basic operations.

It remains to show that the work matrix satisfies conditions 2, 3
and 4 of Definition 7.9. It is easy to see that condition 2 and 4 will
be satisfied. Now consider condition 3. Assume that B has no nonzero
diagonal entries. If A5 was zero to start with, then condition 3 is achieved
after step 1. Otherwise, condition 3 is achieved after step 2. O

7.3 From Upper 2-Banded to Smith Form

Proposition 7.12. Let A € R™ "™ be upper 2-banded. A transform
(U, V) such that UAV is in Smith form can be computed in O(n?) basic
operations of type {Gedex, Stab, Div}.

Corollary 7.13. Let R = Z/(N). The complexity bound of Proposi-
tion 7.12 becomes O(nf(log B) + n?(logn) B(log 8)) word operations.

Proof. Let f(n) be a bound on the number of basic operations required
to compute a transform which satisfies the requirements of the theorem.
Obviously, f(0) = f(1) = 0. The result will follow if we show that

fn) = f(lin=1)/2)) + f([(n = 1)/2]) + O(n").
Let A € R™*™ be upper 2-banded, n > 1.

*

We will transform A to Smith form by applying (in place) a sequence of
transforms to A. The algorithm has nine steps.

1. Apply a left transform as follows:
ny = [(n - 1)/2];
ny = [(n —1)/2];
for i from n by —1 to n; + 2 do
(9,8, t,u,v) := Gedex(A[i — 1,14], A[i, 4]);

ek =L e
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od;
for 7 from n; +2ton—1do
(g,8,t,u,v) = Gedex(A[s, 1], Ali + 1, 1]);

Laiei J= L o Lty

od;

The following diagrams show A at the start, after the first loop and
after completion. In each diagram, the principal block is ny X n
and the trailing block is ne X ns. Note that ny + 1+ no = n.

*
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m s .
*
*
* *
*
*
*
L * -

2. Recursively compute transforms (U, V1) and (Us, Va) which trans-

form the principal n; x n; and trailing ny X ns block of A respec-
tively to Smith form. This costs f(n1) + f(n2) basic operations.
Apply (diag(Us, I1, Uz), diag(Vh, I1, V2)) to get

*

3. Let P be a permutation matrix which maps rows (n; + 1,n1 +

2,...,n) torows (n,n1 +1,n1 +2,...,n—1). Apply (P,P(-V) to
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get
- . -
*
* *
* *
* *
* *
* *
* | %
L * -

4. Compute a transform (U, V') which transforms the principal (n —
1) x (n — 1) submatrix of A to Smith form; by Proposition 7.7
this costs O(n?) basic operations. Apply (diag(U, I1),diag(V, I))
to get

ai
az
asz

af—1

for some k € N, a;_1 nonzero.

5. Apply a left transform as follows:
for i from k£ ton—1do
(9,8, t,u,v) := Gedex(A[k, n], Ak + 1,n]);

Od[ A[f[iik}*] } = [ . Z ] [ A[é[iyi]*] ]

)
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After completion we have

ai
az
as

k-1

6. Let P be the n x n permutation which switches columns £+ 1 and
n. Apply P to get

a1 A[l,
a9 A[Q,
as A[3

}
}
}

IR T

)

anr Ak —1,K] . (76)
Alk, k]

The focus of attention from now on is the principal k£ x k submatrix
of A.

7. Apply a transform as follows:
for ¢ from £k —1 by —1to 1 do
¢ := Stab(Ali, k], Ali + 1, k], A, i]);
q = —Div(cA[i + 1,i + 1], A[i, 1]);
Add c times row i + 1 of A to row i of A;
Add ¢ times column i of A to column i + 1 of A;
od;
It is easy to verify that the matrix can still be written as in (7.6)
after each iteration of the loop. From the definition of Stab, it
follows that

(aj, Alj, k) = (aj, Alj, K], .., Alk, k) for I<j<k  (7.7)

holds for [ = ¢ — 1 after the loop completes for a given value of i.
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8. Apply a right transform as follows:

for : to k—1do
(84, 8, t,u,v) := Gedex(Ali, i], Als, k]);

[ A[%,i] Alx,k] ] := [ Alx,i] Alxk] ] [ 5o ]

t v
od;
After completion of the loop for a given value of ¢, we have
s -
* S9
S
* Q41 bit1
Qit2 bito
* % * b

For convenience, set sg = 1. We now prove that the following items
hold for I =0,1,...,k — 1.

(a) s; divides all entries in the trailing (n — [ 4+ 1)th submatrix of
A.
(b) (7.7) holds.

Note that (a) holds trivially for [ = 0, while (b) for I = 0 follows
from the preconditioning performed in the previous step. By induc-
tion, assume (a) and (b) hold for I = 4. After the loop completes
with i 4+ 1, we have

S1
* S92

8i

* St

*  thiys  Qito vbit2
x k... % thy vby,
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where s;41 is a ged of a;41 and b; 1. That (a) holds for I =i+ 1
follows from the assumption that (b) holds for [ = i. Using (b) for
[ =1 we also get

(@it2,vbiv2) = (@iy2,vai12,vbit2)
= (ai+27v(ai+2;bi+27' s 7bk‘))
= (@it2,vbiyo,...,vby)
which shows (b) for [ =i+ 1.

We have just shown (by induction) that after completion we have

S1
52
* S3
Sk—1
* Sk
with diag(si, ..., sk) in Smith form and with all off-diagonal entries

in row j divisible by s; for 1 < j <k — 1.

. Let P be the n x n permutation which reverses the order of first k

rows. Apply (P, P) to get
ST -
Sk—1

S3 *
52
S1

Compute an index 1 reduction transform U for the submatrix of
A comprised of rows 1,...,n and column 2,... k. (See Definition
3.9). By Proposition 3.10 this costs O(n?) basic operations. Apply
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(PU, P) to get

S1
52
53

Sk—1
Sk

We are finished.

By augmenting A with identity matrices as shown below, we can
automatically record all transforms applied to A and recover a final
transform (U, V') such that UAV = §S.

NTIE

I, | V|

The cost of each step is bounded by O(n?) basic operations plus the two
recursive calls in step 2. The result follows. O

7.4 Transformation to Smith Form

First the result for square matrices:

Lemma 7.14. Let A € R™*". The Smith form S of A can be com-
puted in O(n?) basic operations. A principal transform (U, V') such that
UAV = S can be computed in O(n’(logn)) basic operations. The algo-
rithms use basic operations of type {Arith, Gedex, Stab}.

Corollary 7.15. LetR =7Z/(N). The complexity bounds of Lemma 7.14
become O(n?(log 8) + n?(logn) B(log 3))) and

O(n?(logn)(log ) + n2(logn) B(log B)) bit operations respectively where
B =mN.

Proof. Compute an echelon form T of A using Lemma 3.1. Now apply
in succesion the algorithms of Propositions 7.1 and 7.12 to transform the
principal m x m block of T to Smith form. A principal transform can be
obtained by multiplying together the transforms produced by Lemma 3.1
and Propositions 7.1 and 7.12. O
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For rectangular matrices:

Proposition 7.16. Let A € R"*™. The Smith form S of A can be
computed in O(nmr®=2(logr)) basic operations. A principal transform
(U, V) such that UAV = S can be computed in O(nmr®~1(logn + m))
basic operations. The algorithms use basic operations of type {Arith,
Gedex, Stab}.

Corollary 7.17. Let R = Z/(N). The complexity bounds of Propo-
sition 7.16 become O(nmr?~2(logr)(log B) + nm(logr)B(log B))) and
O(nmr?=2(logn)(log 8)+nm(logn)(log r) B(log 8)) word operations where
B =mN.

Proof. If no transform is desired, compute a minimal echelon form B of
AT using Proposition 3.5b. Similarly, compute a minimal echelon form
T of BT. Then T has all entries outside the principal r x r submatrix
zero. Now use Lemma 7.14. If a transform is desired, use instead the
algorithm of Proposition 3.7 to produce B. A transform can be produced
by multiplying together the transforms produced by Propositions 3.7 and
Lemma 7.14. O

Modular Computation of the Smith Form

Let N € A(R). Recall that we use ¢ to denotes the canonical homomor-
phism from from R to R/(N).

The following lemma follows from the canonicity of the Smith form
over R and R/(N). Note that if (U, V) is a transform for A, then
(p(U), p(V)) is a transform for ¢(A).

Lemma 7.18. Let A € R™™™ have Smith form S with nonzero diagonal
entries s1,S2,...,5, € A(R). Let N € A(R) be such that s, divides N
but N does not divide s,. If the definition of A over R/(N) is consistent,
then ¢(S) is the Smith form of ¢(A).

Corollary 7.19. ¢~ 1(¢(S)) is the Smith form of A over R.

Now consider the case R = Z. A suitable N in the sense of Lemma 7.18
can be reovered by computing a fraction free Gauss transform A.

Proposition 7.20. The Smith form of an A € Z™*™ can be recovered
in O(nmr?~2(log B) + nm(logr) B(log 8)) bit operations where v is the
rank of A and g = (\/r||A||)".
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Chapter 8

Smith Form over 7

An asymptotically fast algorithm is presented and analysed
under the bit complexity model for recovering pre- and post-
multipliers for the Smith form of an integer matrix. The
theory of algebraic preconditioning — already well exposed
in the literature — is adpated to get an asymptotically fast
method of constructing a small post-multipler for an input
matrix with full column rank. The algorithms here make
use of the fraction free echelon form algorithms of Chapter
2, the integer Hermite form algorithm of Chapter 6 and the
algorithm for modular computation of a Smith form of a
square nonsingular integer matrix of Chapter 7.

Let A € Z™*™ have rank r. Let D € Z"™" be the principal r x r
submatrix of the Smith form of A. Consider matrices U € Z™*"™ and
V e Z™*™ such that UAV equals the Smith form of A. Any such U
and V can be partitioned using a conformal block decomposition as

U A
FE * * Vv D

F N —

127
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where FAF = D. The matrices U and V will be unimodular precisely
when M is a basis for the left and N a basis for the right nullspace
of A. Let 8 = (/r||4]])". We show how to recover U and V in
O™ (nmr?=2(log B) + nmB(log 8)) bit operations.

In general, the transforms U and V' are highly nonunique. The main
contribution here is to produce U and V' (in the time stated above) with
good bounds on the size of entries. We get ||M||,||N|| < 782, ||F|| <
148 and ||B|| < 2541 - ||A]l.

This chapter is organized into two sections. In Section 8.1 we demon-
strate how to construct a small postmultipler for the Smith form of a
full columns rank input matrix.

Notes

Many algorithms have been proposed and substantial progress has been
made bounding from above the bit complexity of this problem. Table 8.1
summarizes results for the case of an n X n input matrix A by giving
for each algorithm a triple (Time, Space, Type). The Time and Space
columns give the exponents e; and f; such that the corresponding al-
gorithm has running time bounded by O™(n° (log || A||)¢2) bit operatons
and intermediate space requirments bounded by O™(n/ (log || A||)#2) bits.
We neglect to give the exponents es and fo (but remark that they are
small for all the algorithms, say < 3.) We use this simplified (Time,
Space, Type) “one-paramter” complexity model only when summarizing
— our primary interest is the complexity in the paramater n.

The Time bounds given for algorithms 5, 7, 8, 9 and 12 allow M(k) =
k2, that for algorithm 11 assumes M(k) = O(k?~1), and the other bounds
assume M(k) = O7(k). Algorithms 8 and 10 require the input matrix
to be nonsingular. Algorithm 9 calls for a comment since there is no
citation. The algorithm is a variation of algorithm 7 — the improvment
in space complexity is achieved by incorporating p-adic lifting ala Dixon
(1982), see also (Mulders and Storjohann, 1999), into the algorithm of
Storjohann (1996a) and applying software pipeling between that algo-
rithm and the one in (Storjohann, 1998a). We will present this in a
future paper.

The actual time complexity of algorithm 12 depends on the cost a
matrix vector product involving A; the stated Time bound is valid (for
example) for an input matrix which has O™(n) nonzero entries.

We suggest that algorithms 8, 9, 11 and 12 are emminently suitable
for implementation.
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’ \ Citation \ Time \ Space \ Type ‘
Smith form of a dense integer matrix
1 | Kannan and Bachem (1979) finite | finite | DET
2 | Tliopoulos (1989a) 5 3 DET
3 | Hafner and McCurley (1991) 5 3 DET
4 | Giesbrecht (1995a) 4 3 LV
5 | Giesbrecht (1995a) 0+1 2 MC
6 | Storjohann (1996c) 0+1 3 DET
7 | Storjohann (1998a) 4 3 DET
8 | Eberly, Giesbrecht and Villard (2000) | 3.5 2 MC
9 | Storjohann (200x) 4 2 DET
Transforms for Smith form of a dense integer matrix
10 | Tiopoulos (1989b) 042 4 DET
11 | Storjohann (here) 0+1 3 DET
Smith form of a sparse integer matrix
12 | Giesbrecht (1996) | 3 | 2 [MC

Figure 8.1: Complexity bounds for Smith form computation

The comments we make in the second last paragraph on page 94 are
applicable here as well. Heuristic algorithms for Smith form computa-
tion are given by Havas et al. (1993) and Havas and Majewski (1997).
Also, the lattice basis reduction based techique mentioned on page 94 for
reducing the size of numbers in the transforming matrices are applicable
here as well.

8.1 Computing a Smith Conditioner

In this section we show how to construct a small post-multiplier matrix
for the Smith form of an integer matrix. We take a more abstract ap-
proach an present the main results over an abstract PIR. Let R be a
PIR.
Let A € R™*™ have Smith form S = diag(s1, $2,...,5n). Let ¢; =
Div(s;,s;—1) for 1 <i <mn, sg = 1. Then S = diag(e1, e1ea,...,e162---¢€y).
The next lemma is obvious.

Lemma 8.1. Assume A is left equivalent to S. Then the matriz obtained
from A by

e adding any multiple of a latter to a former column, or
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e adding a multiple of e;11ei42---€; times column i to column j
(i<3j)
is also left equivalent to S.

Definition 8.2. We say that A is in triangular Smith form if A is upper
triangular with each diagonal entry an associate of the corresponding
diagonal entry in S.

A matrix in triangular Smith form is easy to transform to Smith
form.

Lemma 8.3. If A is in triangular Smith form, there exists a unit upper
triangular V' such that AV is in Smith form.

The next lemma is analogous to Lemma 8.1 but for triangular Smith
forms.

Lemma 8.4. Assume A is left equivalent to triangular Smith form.
Then the matrixz obtained from A by

e ading any multiple of a former to a latter column, or
e adding a multiple ej11€j19 - - - €; times column i to column j (i > j)
is also left equivalent to a triangular Smith form.

Proof. Assume, without loss of generality, that A is in triangular Smith
form. Since we may restrict our attention the the symmetric submatrix
comprised of rows and column ¢, ..., j, which is also in triangular Smith
form, we may assume that ¢ = n and j = 1. Since A can be written as
Aey with A[1,1] = 1, we may assume that e; = 1.

Let d = e5...e,. Then there exists a v € R™™ such that vA =
[d 0 --- 0 ]. Tosee this, let D be the diagonal matrix with D[i, i] =
€i+1-+-en. Then DA has all diagonal entries equal to d and each off-
diagonal entry divisible by d. The existence of v follows easily.

Let w € R™*! be the last column of A. Then for any t € R,

1
(I, — twv) A . = A.
td . 1
The determinant of the matrix on the left is given by 1 — tvw. By con-

struction of v and w, we have vw = 0, and thus the left transformation
is unimodular. O
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Lemma 8.5. Assume A is left equivalent to a triangular Smith form.
Then every Hermite form of A is in triangular Smith form.

Proof. Let H be a Hermite form of A. Then H is left equivalent to a
triangular Smith form of A; for each ¢, there exists an R-linear combi-
nation of rows of H which is equal to row ¢ of a triangular Smith form
of A. The only row of H with principal entry nonzero is row one. It
follows that HJ[1,1] is the first diagonal entry in the Smith form of A.
Since all entries in H[1,*] are divisible by H|[1,1], the only multiple of
H{[1, %] which has principal entry zero is the zero vector. We must have
H|[2,2] equal to the second diagonal entry in the Smith form of A. Now
use induction on 1. O

Definition 8.6. A unit lower triangular matriz C is called a Smith
conditioner for A if AC is left equivalent to a triangular Smith form.

Proposition 8.7. Let A € R™*" with Smith form S = diag(eq, e1ea, ...,
eres - -ey) be given. Given a Smith conditioner L for A, the following
matrices:

o a unit lower triangular C' with C[i,j] € R(R,ejt1ej42---€;) for
1> 7, and

e a unit upper triangular R with R[i,j] € R(R,eit1€i42---¢€;) for
i<y,
such that ACR is left equivalent to S, can be computed in O(n’) basic
operations of type {Arith, Quo}.

Corollary 8.8. Let R = Z/(N). The complexity bound of Proposi-
tion 8.7 becomes O(nf(log B) +n?(logn) B(log 8)) word operations where
B8 =nN.

Proof. Set E to be the strictly lower triangular with E; ; = ej11ej42---¢;
for i > j and compute a matrix V as in Example 3.13. Set C' = LV. By
Lemma 8.4, C' will also be a Smith conditioner for A.

Compute a Hermite form H of AC. Then H is a triangular Smith
form of A (Lemma 8.5) and there exists a unit upper triangular 7' such
that HT is in Smith form (Lemma 8.3). Write H as SH where H is
unit upper triangular and compute 7' = H~! using a Hermite reduction
transform. Then ACT is left equivalent to S.

Set E to be the strictly upper triangular with E; ; = e;y1€,42---¢€;
for ¢ < j and compute a matrix V' as in Example 3.14. Set R =TV . By
Lemma 8.1, ACR will also be left equivalent to S. O
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Proposition 8.7 starts with a Smith conditioner L of A. If the follow-
ing two conditions are met

e R is a stable ring, and
e the Smith form of A has all diagonal entries nonzero

then we can recover such an L from any transform (x, V') such that AV
is left equivalent to a Smith form of A. The idea is to use Lemma 2.21
to produce a lower triangular L such that V can be expressed as the
product L 1 %o for some upper triangular x; and lower triangular .
Such an L will be a Smith conditioner since ALx; is left equivalent to a
Smith form (Lemma 8.1) and AL is left equivalent to a triangular Smith
form (Lemma 8.4).

Notes

The idea of a “Smith conditioner” was first used by Kaltofen, Krish-
namoorthy & Saunders (1987, 1990) for polynomial matrices; there C
was chosen randomly. By first postmultiplying an input matrix by a
Smith conditioner, the problem of computing the Smith form is reduced
to that of computing an echelon form. Villard’s (1995) algorithm for
Smith form over Q[z] — which first showed the problem to be in P
— recovers the entries of C' one by one while transforming the input
matrix to echelon form. Villard also uses the term “triangular Smith
form”. Giesbrecht’s (1995a) randomized Smith normal form algorithm
for integer matrices computes the columns of C' by, in essence, using
a Las Vegas probabilistic algorithm to obtain solutions to the mod-
ulo N extended gecd problem. In (Storjohann, 1997) we show how to
produce a Smith conditioner for an integer input matrix which has
log ||C|| = O((logn +1loglog || A]|)?). In (Mulders and Storjohann, 1998)
the modulo N extended gecd problem for polynomials is studied and ap-
plied to get a small Smith conditioner when R = K]z].
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Worked Example over 7Z

Our goal is to recover the Smith form of

14 8§ —-26 —-14 13 7
6 —-30 16 —-14 -—-17 13
-8 =20 14 20 20 2
46 -14 O 18 —-15 3
-6 —-18 —-18 18 -39 -3
8§ —4 6 —-36 6 —24

over Z. We compute the determinant of this matrix to be d = 3583180800.
Working modulo d we recover the Smith form S = diag(1, 2, 6, 12, 48, 518400)
of A. Now we want to recover a transform (U, V') such that UAV = S.
Recall that = means left equivalent modulo N (see Section 5.1). Work-
ing modulo N = 2 - 514800 we recover a

610263 739906 924658 295964 566625 460949
842660 884554 744338 476716 573129 717178
811572 434451 242395 581038 600751 755646
V= c 7,6%6
302520 914154 532124 430481 214158 150757
843932 720594 858593 51322 732251 81872

258189 13326 683869 875588 385203 622164

such that AV =y S. Note that this V satisfies detV L N but not
detV = £1. As discussed above, use Lemma 2.21 to recover from V a
unit lower triangular L which will be a Smith conditioner for A. We get

1
942681 1
254870 704138 1
228897 218885 568609 1
1013963 3368 240655 559257 1
914176 513121 747963 326960 862874 1 |
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Now construct C and R as in Proposition 8.7 so that S =y ACR.

1
1 1
4 2 1
C =
11 5 1 1
1 8 7 1 1
i 278066 227881 50475 20416 9674 1 |

and )
1 1 0 3 27 201749

1 0 0 18 191429
1 1 3 62592

R =
1 2 581
1 5166
1

Note that C'R is unimodular over Z. We conclude that ACR is left
equivalent (over Z) to S.

Some Bounds

Let A € Z™*™ have full column rank. Let D = diag(si, s2,...,8m) be
the principal m x m submatrix of the Smith form of A. Above we saw
how to recover a unimodular V' € Z™*™ such that AV is left equivalent
to D. The V recovered using the technique there can be expressed as
the product of a unit lower triangular C' and unit upper triangular R
such that

e 0 <Cli,j| <si/s; fori>j, and
e 0 < R[i,j] <s;/s; for j > 1.

Row i of C has entries bounded in magnitude by s;. Similarly, column
j of R has entries bounded in magnitude by s;. Part (a) of the next
lemma follows. Part (b) follows from Hadamard’s inequality. Part (c)
from part (b).
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Lemma 8.9. Let C and R satisfy the bounds given above. Then

(a) ||V|| < ns2,. The total size of V is O(n?logn + nlog f3).

(b) [[CHI IR < n™/28.

() IV7HI < nn"p2.

8.2 The Algorithm

Let A € Z™™ have rank r. By transposing A if necessary, we may
assume, without loss of generality, that m < n. Let D be the principal
r X r submatrix of the Smith form of A. The nullspaces M and N are
recovered using Proposition 6.6. The following procedure shows how to
recover an F and F such that EAF = D. Then we paste to get a Smith
transform as in 8.1.

1. By computing a GaussJordan transform for A recover the following
quantities: the rank r of A; permutation matrices P and @ such
P AQ has principal r x r submatrix B nonsingular; the determinant
d and adjoint B4 of B.

B *

PAQ =

2. Apply Corollary 3.16 to recover an F; € Z"*™ such that E1 PAQ
is in Hermite form. Let H; be the principal r x r submatrix of

EPAQ.
PAQ
Bl =
Ey
[ * .l . |=0HE] « ]
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3. If r = m then set (Fy, Hs) := (I, B) and goto step 4. Other- e FEntries in the last n — r rows of U and last m — r columns of V
wise, apply Corollary 3.16 to recover an Fy; € Z™*" such that will be bounded in magnitude by rB2.
(F)T(PAQ)T is in Hermite form. Let Hy be the principal r x r o ' _ _
submatrix of PAQF). ) jb’fntgz;z in the first v columns of V' will be bounded in magnitude
y e 5.
PAQ r
B * 1 Hs o FEntries in the first r rows of U will be bounded in magnitude by
— r2rtsgh | All.
. . =, Corollary 8.11. If r = m the bound for ||V|| becomes rs2,, where sy,

is the last diagonal entry in the Smith form, and the total size of V will
be O(m?(logm + log || A]])).

4. Let G := (1/d)H, B*H,.
Note: G = ElpAQFl

PAQ
Bl « ] A
£y
S| I A | I

5. Let N = 2|det Hz| and use Proposition 7.14 to recover the Smith
form D = diag(sy, s2,...,s.) of G together with a V' € Z"*" such
that D =5 GV.

6. Use the technique detailed in Section 8.1 to recover from V a unit
lower triangular C' € Z"*" and unit upper triangular R € Z"*"
with GCR left equivalent to D and

e 0<Cli,j| < s;/sj fori> j, and
e 0 < R[i,j| <sj/s; for j >1.

7. Set F := FlCR . .
Set = (1/ det(HyHy)) DR™'C~ H BHIV E,.

Proposition 8.10. Let A € Z™"*™. Unimodular U € Z™"*"™ and V €
Zm*™ such that UAV is in Smith form can be recovered in

O(nmrafz(log nm)(log 8) + nm(log nm) B(log B))

word operations where 8 = (\/r||A||)". Moreover
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Chapter 9

Similarity over a Field

Fast algorithms for recovering a transform matrix for the
Frobenius form are described. This chapter is essentially self
contained. Some of the techniques are analogous to the di-
agonalization algorithm of Chapter 7.

Let K be a field. Corresponding to any matrix A € K®"*™ there exists an
invertible U over K such that

Ch
Cr,
U'AU = F = ) € Kmxm,

Ofl

F is the Frobenius canonical form of A, also called the rational canonical
form. Each block CY, is the companion matrix of a monic f; € K[z] and
filfig1 for 1 < i <1 —1. The minimal polynomial of A is f; and the
characteristic polynomial is the product fifs---f;. The determinant
of A is given by the constant coefficient of fifs--- f;. Recall that the
companion matrix of g = go + g1x + -+ + gr_12" 1 + 2" € K[z] is

0 - 0 —go
o N G (9.1)
’ 0 —gr2
1 —0gr—1

139
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This chapter demonstrates that a transform for the Frobenius form can
be recovered in O(n?) field operations assuming standard matrix multi-
plication. Our primary purpose, though, is to show how to incorporate

matrix multiplication and reduce the running time to O(nf(logn)(loglogn)).

Both the standard and fast algorithm require only operations of type
{+, —, x, divide by a nonzero } from K. We now sketch the two algo-
rithms.

The standard algorithm The algorithm proceeds in two stages. In

KK K X K X K X ¥ X
KK K X X X X X X X
KK K K K X K X ¥ X
* K K X K X K X ¥ X
KK K X X X X X ¥ X
KK K X K X K X ¥ X
* K K K K X K X ¥ X
KK K K K X K X ¥ X
* K K X K X K X ¥ X
KK K X X X X X ¥ X

Figure 9.1: Transformation to Zigzag form

Section 9.2 we give an O(n?) field operations algorithm for transforming
A to Zigzag form Z — a matrix with an “almost” block diagonal struc-
ture and fewer than 2n nonzero entries, see Figure 9.1. The algorithm is
naive; the approach used is Gaussian elimination but using elementary
similarity tranformations (instead of only elementary row operations).
Recall that an elementary similarity transformation of a square matrix
A is given by A — FEAE~! where F is the elementary matrix corre-
sponding to an elementary row operation. More precisely: switching
rows i and j is followed by switching the same columns; multiplying row
i by a is followed by multiplying the same column by a~!; adding a times
row j to row 1 is followed by subtracting a times column ¢ from column
j.

In Section 9.4 an algorithm is given for transforming a Zigzag from
Z to Frobenius form F, see Figure 9.2. The approach exploits some of
the theory concerning modulo isomorphism — especially the links be-
tween matrices over K (similarity transformation) and over K[z] (equiv-
alence transformation). This is recalled in Section 9.1. In particular, the
algorithm here is inspired by the recursive algorithm supporting Theo-

141
C, B, - C, -
C. C,
B.C, B, c,
C. c,
Z = _ — F= )
c, c,
B. C, B, C.
L C, | L C.|

Figure 9.2: From Zigzag to Frobenius Form

rem 7.12 for the transformation of a bidiagonal matrix over a PIR to
Smith form. The combining phase requires us to transform a block di-
agonal matrix to Frobenius form. This is presented in Section 9.3. As a
corollary of Sections 9.2, 9.3 and 9.4 we get an O(n?) algorithm for the
Frobenius form.

§9.2 §9.3

§9.4

Figure 9.3: Standard Algorithm — Suggested Reading Order

The fast algorithm The last three sections of this chapter develop
the fast algorithm. The first step of the algorithm is to transform the
input matrix to block upper triangular shifted Hessenberg form, see Fig-
ure 9.4. The transformation to Hessenberg form costs O(n?(logn)) field

* k% k% C, B, B,
* k% k% C., B,

A= * * * x = — H= .
% % % % % :
* k% k% C,

Figure 9.4: Transformation to Hessenberg form

operations using the algorithm of Keller-Gehrig (1985). Section 9.7 gives
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a divide and conquer algorithm for transforming a Hessenberg to Frobe- l l Citation l Time | Trans | Cond [ Type |
nius from. The key step in the algorithm, presented in Section 9.6, is Hessenberg form of a dense matrix
the combining phase; this requires fewer than O(loglogn) applications of 1 | Keller-Gehrig (1985) ng(lqg n) . DET
Keller-Gehrig’s (1985) algorithm for Hessenberg form. By comparison, 2 n’ . DET
Giesbrecht (1993) first showed, using randomization, that computing the Frobenius form of a dense matrix
Frobenius form can be reduced to an expected constant number of Hes- 3 | Liineburg (1987) n* . DET
senberg computations. 4 | Ozello (1987) n' . DET
§9.1 5 | Augot and Camion (1994) n' . DET
6 | Giesbrecht (1995b) n® . q>n? Lv
A\ 7 n3(log ") . LV
8 | — n?(logn ° q>n? LV
§9.3 §9.5 9 | Steel (1997) (n4 : . DET
§9.4 §9.6 10 | Storjohann (1998b) n® DET
11 | Storjohann and Villard (2000) n® . DET
12 | Eberly (2000) n?(logn) . LV
§9.7 13 | Storjohann (here) n?(logn)(loglog n) . DET
Frobenius form of a sparse matrix
Figure 9.5: Fast Algorithm — Suggested Reading Order 14| Villard (1993) n’? q¢>2 | MC
15 | Eberly (2000) n? . LV

The algorithms we develop here use ideas from Keller-Gehrig (1985),
Ozello (1987), Kaltofen, Krishnamoorthy and Saunders (1990), Gies-
brecht (1993), Villard (1997) and Liibeck (2002).

Notes

Many algorithms have been proposed and substantial progress has been
made in bounding from above the algebraic complexity of this problem.
Figure 9.6 summarizes results for the case of an n xn input matrix over a
field K by giving for each algorithm a quadruple (Time, Trans, Cond, Type).
Time is the asymptotic complexity. A e in the column labelled Trans
indicates that a transition matrix is recovered. Some of the algorithms
assume a condition on ¢ = #K, this is indicated in column Cond. Finally,
the Type of the algorithm is as before: deterministic (DET), randomized
Las Vegas (LV) or randomized Monte Carlo (MC).

Augot and Camion (1994) give various specialized results. For ex-
ample, knowing the factorization of the characteristic polynomial, the
Frobenius form can be computed in O(n3m) field operations where m
is the number of factors in the characteristic polynomial counted with
multiplicities. Over a finite field they show that m = O(logn) in the
asymptotic average case. In the worst case m = n.

Figure 9.6: Complexity bounds for Frobenius form computation

Now consider the randomized algorithms. Algorithms 6, 8 and 14
can be applied over a fields which are “too small” by working instead
over an algebraic extension of the ground field. Use of this trick has
two consequences. First, the complexity will increase by a polylogarith-
mic factor. Second, and more importantly, if the algorithm produces a
transition matrix this might not be over the ground field but over the
extension field instead. One of the questions left open by Giesbrecht, and
recently solved by Eberly (2000), is whether such a transition matrix can
be computing asymptotically quickly in the small field case.

Now consider the O(n?) deterministic algorithms. The first stage of
the algorithm in (Storjohann, 1998b) is the same as here — transfor-
mation to Zigzag form — but the transformation from Zigzag to Frobe-
nius form proposed there does not recover a transistion matrix. We
solve that problem here by adapting the divide and conquer algorithm
of Section 7.3. A more inspired algorithm for the Zigzag to Frobenius
transformation phase has been proposed by Villard (1999). Villard’s
method is iterative. The O(n?®) running time is achieved by exploiting
the sparsity of Z and avoiding matrix multiplication; instead of per-
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forming operations with matrix blocks only operations with key vectors
of the transformation matrix are used. By incorporating the recursive
approach here the running time for the Zigzag to Frobenius phase is re-
duced to O((nlogn)?) field operations. This is presented in (Storjohann
and Villard, 2000).

Now consider the algorithms for sparse input matrices. The run-
ning time estimates given in the table assume an input matrix which
has only O7(n) entries. More precisely, Eberly’s algorithm requires an
expected number of O(n) multiplications of the input matrix A by vec-
tors, O(n) multiplications of the transpose AT by vectors, and additional
O(kn?) field operations, where k is the number of blocks in the Frobe-
nius form. Villard’s algorithm requires O(unlogn) multiplication of A
by vectors, and additional O(un?lognloglogn) field operations, where
 is the number of distinct blocks in the Frobenius form. Since & = O(n)
and 1 = O(n'/?) the worst case running times are as stated in the table.

Notation

A block is a submatrix comprised of a contiguous sequence of rows and
columns. For g = go + g1z + -+ + gr—12" ' + 2" € K[z], let C, € K™"
denote the companion matrix of g as shown in (9.2).

0 - 0 —go
o e (9.2)
' 0 —Yr—2
1 —9r—1

When using C, as a block label, we allow the special case g = 1 in which
case Cy has zero rows and columns.

Let b =bg+byz+---+bgx? € Klz]. We use the label By to denote a
block which has all entries zero except for entries in the last column row
i equal to —b;_1 for 1 < i < d+ 1. The dimensions of a block labeled
By, will be conformal with adjacent blocks. Note that B, may have zero
columns and should have at least 1 + degb rows if b # 0.

Every matrix A € K®*™ can be written using a block decomposition

as
CCl Bb12 T Bbll«
Bb21 002 Bb2k

Bbm Bbk? Cck
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for some (not necessarily unique) choices of the ¢,’s and b,.’s. In par-
ticular, we allow that some of the diagonal companion blocks in the de-
composition might be 0 x 0. But if we specify that & should be minimal,
the decomposition is unique.

9.1 Preliminaries and Subroutines

We begin with (a version of) a classical result. First recall some facts
about matrices over K[z]. Let A(z),S(z) € K[z]™*™ be nonsingular.
A(x) and S(z) are equivalent if U(z)A(x)V (x) = G(z) for unimodular
U(z),V(z) € Klz]"*™. Moreover, S(z) is in Smith canonical form if
S(x) is diagonal with each diagonal monic and dividing the next.

Theorem 9.1. (Fundamental Theorem of Similarity over a Field)
Suppose that A € K"™*™ can be written as

CCl Bb12 e Bblk
Bl.)21 CC2 Bb% (93)
Bbm Bbk2 o Cck'
If the Smith form of
c1 b2 - big C1
bar 2 bak C2
€ Klz]**k s . e K[z]**F,
b1 bra - ck Ck
then
Cz
Cs,
Cs,

is the Frobenius form of A.

Note that every A € K™ " can be written as in (9.3) with k£ = n,
¢i = x+ Ay and by; = A;;. Theorem 9.1 shows that we may recover the
Frobenius form of A by computing the Smith form of zI,, — A € K[z]|"*"
(or vice versa).

Next we give some technical lemmas and then develop the analogue
of Theorem 9.1 but for triangular instead of diagonal decompositions.
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Lemma 9.2. Let A € K" ™ and U € K"*" be nonsingular. Then
U=YAU can be written as

Ccl Bblz Bblk
By, C. B,

U-1AU = 21 2 2k (9 4)
Bbkl Bbm CCk

with d; = degc;, 1 < j <k, if and only if
U = [v1]Avy| - [AD 7 g |- - o | Avg| - - - A% L] (9.5)

for some v; € KP*1 1 <4<k

Now fiz the v;’s. Then U~YAU is block upper triangular if and only
if (d1,da,...,dy) is the lexicographically largest such sequence for which
the corresponding U of (9.5) is nonsingular.

Proof. Can be shown using elementary linear algebra. O

There is a special case of Lemma 9.2 that is important enough that
we give a name to the form obtained in (9.4).

Definition 9.3. Let A € K"*". The shifted Hessenberg form of A is
the block upper triangular matrix

C., By, - By,
U~'AU = C _ Blfz”
Ce.
where U is constructed as in (9.5) using [vi|va| - |v,] = I, and with
(d1,da,...,dy,) chosen lexicographically mazimal.

We have shown the Hessenberg form with n diagonal blocks. But
note that many of these blocks might be C7, hence of dimension 0 x 0.
The next result gives an asymptotically fast algorithm to compute the
Hessenberg form.

Fact 9.4. (Keller-Gehrig, 1985) Let A € K"*" together with v; € K™
for 1 < i < n be given. The following two problems can be accomplished
in O(n?(logn)) field operations:
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o Find the lexicographically largest sequence (dy,ds, ..., dy) such that
the U in (9.5) is nonsingular, or report that no such sequence ex-
151s.

e Given a sequence of integers (di,da,...,d,), with 0 < d; <n and
dy +da+ -+ d, =n, construct the matriz U in (9.5).

Under the assumption of standard matrixz multiplication, the cost of solv-
ing both problems is O(n?) field opearations.

Note that in Fact 9.4 we assume we start with a list of n vectors {v.}.
On the one hand, in the special case where A is, for example, the zero or
identity matrix, we require n linearly independant {v,} to construct a
nonsingular U. On the other hand, for an A which is not so special, if we
construct (di,ds,...,d,) to be the (unique) lexicographically maximal
degree sequence with respect to the v;’s, then typically many of the d;’s
will be 0. Note that if d; = 0 then v; is not used in the construction of
U — in other words ¢; = 1.

Now recall some facts about matrices over K[z]. Let A(x), H(x) €
K[z]"*™ be nonsingular. A(x) and H(z) are right equivalent if A(z)V (x) =
H(z) for a unimodular V(z) € K[z]"*". Moreover, H(x) is in right Her-
mite form if H(zx) is upper triangular with H [, ] monic and deg(H[i, 7)) >
deg(H[i, j] for 1 < i < j < m. Theorem 9.1 showed that the Smith form
over K]z] is the analogue of the Frobenius form. The next theorem shows
that the Hermite form over K[z] is the analogue of the shifted Hessenberg
form.

Theorem 9.5. Suppose that A € K"*™ can be written as

CCI Bb12 T Bbw
Bbzl CCz Bbzk
. . (9.6)
Bbkl Bbm T Cck
If the right Hermite form of
1 by -+ bk e 512 §1k
b21 Co bgk C2 b2k

€ Klz]**k s . ) € Kz,

bri br2 - o Ck
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then
Cz BBIQ e BEw
C2 bo
C,

is the shifted Hessenberg form of A.

Note that every A € K™*™ can be written as in (9.6) with k = n,
¢ = ¢+ Ay and b; = A;;. Lemma 9.5 shows that we may recover the
shifted Hessenberg form of A by computing the right Hermite form of
xl, — A € K[z]™*™.

Example 9.6. Let

| -1 3| _ | Coy1 Bs 2%2
A[—z —3]{ B, CHJGK '

Since the right Hermite form of

[x—i—l 3

2
2%2 ?+4x—-3 1/2z+1/2
2 $+3}€Km [ 1

| € ka2

we may conclude that the shifted Hessenberg form H of A is

| Cozqaa—3 Bijaagie | _ 3 2x2
H[ By Cy =11 e

The above example shows how to deduce the shifted Hessenberg from
from the right Hermite form of xI, — A. But note that we cannot de-
duce the Hermite form from the corresponding Hesssenberg form because
blocks C7 will by 0 x 0, and thus we lose the entries in the Hermite form
which are in a column with a unit diagonal. The next result shows how
to avoid this problem, and gives a method for deducing the Hermite form
of certain matrices over K[z] from their corresonding shifted Hessenberg
form over K.

Lemma 9.7. Suppose that A(z) € K[z]¥** can be written as

cr bz - b
b1 2 bay

bri br2 - ok
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with each ¢; monic and degb;, < degc;, 1 < ¢ < k. Suppose that
degdet A(z) = n. Let n = n+ k. If the n X 1 shifted Hessenberg form
(over K) of

Cze,  Babyy, -+ Baby, Caz, 131512 lgmgu
lgibzl (7162 lgmbzk . (7152 13152
. . . 15 . . 5
Bwbkl Bl'bkg e Ca;ck C11'75l
then _ _
¢ bz - (_911
C2 by
Ci

is the right Hermite form of A(x).

As a corollary of Lemma 9.7 and Fact 9.4 we get the following fast
method for computing right Hermite forms of certain matrices.

Proposition 9.8. Suppose that A(z) € K[z]*** can be written as

C1 bia - b
ba1 e bay
bri b2 -

with each ¢; monic and degb;, < degc;, 1 <i < k. Then we can recover
the right Hermite form of A(x) using O(n®(logn)) field operations, where
degdet A(z) = n.

We next give an example of Lemma 9.7.
Example 9.9. Let

Alz) = { S ] € K[z]>*>.

Since the shifted Hessenberg form of

0 0 0 0

1 -1 3 | axa . 1 3| -1/2 Axa
0 o | KT 14 |—12 | €K
-2|1 -3 | 0
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we may conclude that the right Hermite form H(x) of A(x) is

2 +4x—-3 1/2x+1/2
@ =" / 1 2 ke,

We end this section by developing a simple result which will be used
to precondition a matrix in Hessenberg form by using similarity trans-
formation. Recall that the effect of premultiplying a vector B, by a
companion block C. can be interpreted as the shift (multiplication by
x) of b in the residue class ring K[z]/(c). The following example is for
vectors of dimension three.

Cc Bb B:cb mod ¢
—Co —bo goba
1 —c1 —b1 |=| —bo+ g1b2
1 —c —bo —b1 + g2bo

What is illustrated by the above example holds for arbitrary dimension.
By premultiplying by a power of C. we get:

Fact 9.10. (C.)*Bj, = B,x} mod o

The next result can be derived using this fact together with Lemma 9.2.

Lemma 9.11. Let

_ 061 Bb12 dxd
A= [ C } eK

C2

with d; = degc;. Fort € Klx] with degree less than dy, choose v1,vy €
K1 as (v1,v2) = (B1, Byypai+1) and construct U as in (9.5). Then

U= [ fo, | * ] and U'AU = [ Cor Br, }
Idg Cc2

where t12 = b1a + teo mod cy.

Lemma 9.11 was motivated by (Giesbrecht 1993, Section 2.3). There,
it is noted that if byo is divisible by cg, then choosing t = —bys /¢ yields
t19 = 0. This idea can be generalized as follows. Let (g, *, a,*,*)
Gedex(eq,c2). Then aco = g mod ¢;. Choose t + Rem(—a(bi2/g),cl),
that is, choose t to be the the unique remainder of degree less than d
obtained by dividing —a(bi2/g) by ¢;. We get:

Corollary 9.12. If g divides bys then t15 = 0.
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9.2 The Zigzag form

A square matrix Z over K is in Zigzag form if

[ C., By,
Ce,
Bb2 CC3 Bb'g
Ce
7 = ! (9.7)
Cclc72
Bbk;z Cck—l Bbk—l

C

Ck

with each b; either zero or minus one, and degc; > 0 for all i, 1 < i <
k—1.

Proposition 9.13. There exists an algorithm which takes as input an
A€ F™" and returns as output a U € F™*" such that Z = UAU ! is
in Zigzag form. The cost of the algorithm is O(n3) field operations.

We will describe an algorithm for reducing a matrix to Zigzag form
using only elementary similarity transformations. The approach is essen-
tial that of Ozello (1987), who also uses similarity transformation. Let
the block label L; be defined as By except that coefficients of b appear
in the first instead of last column.

Lemma 9.14. An A € F™*" can be reduced to a similar matriz with
the shape shown in (9.8) using O(ndegc) elementary similarity trans-
formations where c is found during the reduction.

Cc Lb
(9.8)

Furthermore, the only possibly required row operations involving row one
are those which add a multiple of a different row to row one.

Proof. There are three stages to the reduction. After stage 1, 2 and 3 the
work matrix has the shape shown in (9.10), (9.11) and (9.8) respectively.

1. We reduce column j of the work matrix to correct form for j =
1,2,...,degc in succession. The algorithm is inductive and it is
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sufficient to consider a single column. After the first j — 1 columns
have been reduced the work matrix can be written as

0 -~ 0 A[l,j] |* -+ =x
) . . . .
0 Alj—1,4]|* --- =

L Algl | e x| (9:9)
AG+ 1] - %

Note that the input matrix can be written as in (9.9) with j = 1.
If the lower left block of the work matrix (9.9) is zero then the
principal block is C, with degc = j and we are finished this stage.
Otherwise, choose ¢ with j +1 < i < n and A[i, j| # 0. Perform
the following (at most) n + 1 row operations to reduce column
j to correct form: switch rows i and j so that A[j + 1,j] # 0;
multiply row j + 1 by A[j +1,5]7! so that A[j +1,5] = 1; add
appropriate multiples of row j + 1 to the other n — 1 rows to zero
out entries above and below entry A[j+ 1, j] in column j. Directly
following each of these row operations we must also perform the
corresponding inverse column operation on the work matrix. It is
easily verified that none of these column operations will affect the
entries in the first j columns of the work matrix. Since we perform
this elimination process for columns j = 1,2,...,degc this stage
requires at most (n+1) deg c elementary similarity transformations.

2. At this point the work matrix can be written as

9.2.
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requires at most n — j column operations for each row for a to-
tal of (n — 5)(j — 1) column operations. When working on row
1, the corresponding inverse row operations that we must perform
involve adding multiples of the last n — j rows of the work matrix
to row ¢ — 1. Because of the structure of the work matrix, the only
effect these row operations can have is to change the last n — j
entries in the unprocessed row ¢ — 1. Thus, it is important that
we perform the elimination in the order specified, that is, for row
1=34,7—1,7—2,...,2 in succession.

. At this point the work matrix can be written as

0 - 0 AL [x e %7
1 o h
1 Al ] (9-11)
* PR *
i .

where j = degc and all entries below the first row of the upper
right block are zero. If the entire upper right block is zero we are
finished. Otherwise, choose k with j +1 < k < n and A[l, k] # 0.
Perform the following (at most) n — j + 1 column operations to
complete the reduction: switch columns j + 1 and k; multiply
column j+1 by A[l,j+1]7}!; add appropriate multiples of column
j + 1 to the last n — 5 — 1 columns of the matrix to zero out
entries to the right of entry A[1, 7+ 1]. The inverse row operations
corresponding to these column operations only affect the last n—j
rows of the work matrix.

O

We now outline our approach for reducing an A € F™*" to Zigzag
form. The key idea can be understood by considering the first few steps.

First apply the algorithm of Lemma 9.14 and transpose the work matrix
so that it has the block lower triangular shape

ro -~ 0 All,j] |* -+ %7
) . . . .
0 Alj—1,5]|* - =
1 AR | e (910
* *
i x % |
where j = degec. Fori = j,7— 1,57 —2,...,2 in succession, zero

out entries to the right of entry A[i, j] in row ¢ by adding appro-
priate multiples of column ¢ — 1 to the last n — 7 columns. This

t
Ce,

ol (9.12)
1
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Our goal now is to improve the structure of the trailing block labeled * to
have the shape shown in (9.8) whilst leaving the other blocks unchanged.
The proof of Lemma 9.14 indicates which elementary similarity transfor-
mations should be applied to the trailing n — deg c; rows and columns of
the work matrix to effect the desired transformation. By Lemma 9.14,
the only row operations involving row deg ¢ are those which add a mul-
tiple of another row to row degc;, this shows that the block labeled Ly
will remain unchanged.

After applying the algorithm of Lemma 9.14 to the trailing block of
(9.12), the work matrix can be written as

~ Czl
Lb1 CC2 ng

Now transpose again to get

The last step is to transpose the center block of the work matrix. The
next lemma shows how to recover a similarity transform 7' for accom-
plishing this.

Lemma 9.15. Let C, € K> [fT = [v|Cv]|...|C% 1] where v =
B,a € K1 then T~1C!T = C.. Furthermore, LyT = By for any Ly
with d columns. T can be constructed in O(d?) field operations, d =
degec.

Proof. T can be constructed in the allotted time using matrix-vector
products. Note that T will be unit lower anti-diagonal. This shows
L,T = By and also that T' is nonsingular. The result now follows from
Lemma 9.2. O

We now return the the proof of Proposition 9.13.

Proof. (Of Proposition 9.13.) Initialize U to be the identity matrix and
Z to be a copy of A. Perform the following steps:
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Zig: Using the algorithm of Lemma 9.14 transform Z to have the shape
shown in (9.8). Apply all row operations also to U.

Zag: Transpose Z and U. Apply the algorithm of Lemma 9.14 to the
trailing (n — degecy) X (n — degey) submatrix of Z. Apply all
column operations also to U. Transpose Z and U. Apply the
transformation specified by Lemma 9.15 to the companion block
just found. Postmultiply the corresponding columns of U by T.

At this point

C., | By,
C.,
UAU ' =7 = : (9.13)
Bb2 *

Recursively apply the Zig and Zag steps on the lower right block * of Z
as shown in (9.13). Terminate when Z is in Zigzag form.

Computing and applying the transform 7" during a Zag step requires
O(n?d) field operations where d is the dimension of the companion block
found during that step. The cost follows from Lemma 9.14 and by noting
that degc; + degcs + -+ - +degcer = n. O

9.3 From Block Diagonal to Frobenius Form

In this section we show how to transform a block diagonal matrix

Co,

Ca,
A= . € KX, (9.14)

Ca,

to Frobenius form. For convenience, we allow companion blocks through-
out this section to have dimension 0 x 0. Our result is the following.

Proposition 9.16. There exists an algorithm which takes as input a
block diagonal A = diag(Cla,,Ca,, ..., Ca,) € K™*™, and returns as out-
put a U € K™ such that F = UAU ! is Frobenius form. The cost of
the algorithm is O(n®) field operations.
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Proof. Apply following lemma to get a particular partial factorization of
each of the a;’s. Let d; = dega;, 1 <i<k.

Lemma 9.17. There exists a set {by,ba, ..., by} of monic polynomials
with

o b, Lb; foralli#j;

® a; = Ci1Ci2 - Cim Wilh each c;j a power of by, 1 <i <k, 1 <5<
m.

Moreover, the (c;;)'s can be recovered in O(n?) field operations.

Proof. See (Bach and Shallit 1996, Section 4.8). O

The next lemma shows how to “split” a companion block C,, into
m companion blocks based on the factorization a; = c¢j1¢i0 - Cim. A
similar idea is used by Kaltofen et al. (1990) and Giesbrecht (1994). Let
col(1y,,j) denote column j of the d x d identity.

Lemma 9.18. Let A; = diag(C.,,,C¢.y, -+ ,Cs,,,) and set

) Cim
U= v ‘ A;v; ‘ ‘ ALy, ] € K xdi

where v; = Zlgjgm col(lg,, 1+cin+---+cij) € KXl Then U[lAiUi =
Cy,. The matriz U; can be recovered in in O(d?) field operations.

Proof. The minimal polynomial of A; is given by lem(c;1, ¢iay - - -, Cim ) =
¢;. This shows that C., is the Frobenius form of A;. It follows easily
that v; will be a cyclic vector for A;. Since A; contains fewer than 2d;
entries, U; can be constructed in the allotted time using matrix-vector
products. O

Let V = diag(U;y,Us,...,Uy,) € K**™ where each U; is constructed
as above. Then VAV ! equals

Cu Ca Cla
diag(ccu’cclzv e 7001m’ 0021 ) Cczzﬁ U 7CCZm7 T Ccm ) Cckz’ e 7CCkm)'
For 1 <j <m, let (cgj,cqy, .-, cx;) be the list (c1j,ca5, ..., cx;) sorted

by degree (increasing). Construct a permutation matrix P € K™*" based
on these sorts such that PV AV ~1P~! can be written as

Cr Cty ka

C Cesyr , Cep, C

Cr2) ) Ccl;n’ Ccz’l ’ 22 ’ CCQ?M Cr1? 7 Cr2) ’ Cck?m)

diag(C,

[
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Here, f; denotes the product ¢;j¢p3 - - - ¢;5,- By construction, we have f;
dividing f;11 for 1 < ¢ < k. Now apply Lemma 9.18 to construct a block
diagonal W such that W'PVAV -1 P='W = diag(Cy,,Cy,, ..., Cy,.),
the Frobenius form of A, and set U = W~1PV. O

9.4 From Zigzag to Frobenius Form

Proposition 9.19. There exists an algorithm that takes as input a
Z € K"™ 4n Zigzag form, and returns as output a U € K"*™ such
that F = UAU™! is in Frobenius form. The cost of the algorithm is
O(n?(logn)) field operations, or O(n3) field operations assuming stan-
dard matrix multiplication.

Proof. Let f(n) be the number of field operations required to compute
a U over K which transforms a Zigzag form or the transpose of a Zigzag
form to Frobenius form. Clearly, f(0) = 0. (Every null matrix is in
Frobenius form.) Now assume n > 0. The result will follow we can show
that

f(n) < f(m) + f(n2) + O(n%)

for some choice of 7y and ny both < n/2.

Let Z be in Zigzag form with Frobenius form F. Using Lemma 9.15
we can construct a T over K such that T-'FT = F* in O(n?) field
operations. This shows it will be sufficient to solve one of the following:
transform Z to F; transform Z! to F; transform Z to F*; transform
Z' to F'. We now describe a seven step algorithm for solving one of
these problems. Each step computes an invertible n X n matrix U and
transforms the work matrix Z inplace as follows: Z — U~ ZU.

We begin with Z in Zigzag form as in (9.7).

1. At least one of Z or Z! can be partitioned as

Z

* Z2

where both Z; and Z, are square with dimension < n/2 and the
center block is a either a companion matrix or transpose thereof.
Zy and/or Zs may be the null matrix but the center block should
have positive dimension.
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If the middle block is the transpose of a companion matrix, apply
Lemma 9.15 to compute a similarity transform which transposes
it. The transform can be constructed and applied in the allotted
time to get

Z1 | B

Zy
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holds for j = 1. This is accomplished by applying the transform
(UL, U) where

where each block labeled B, zero except for possibly a single nonzero
entry in the last column.

Recursively transform the principal and trailing block to Frobenius
form. The work matrix can now be written as

Fy | B.
c
B, | F»

where each block labeled B, is zero except for possibly the last
column.

Applying a similarity permutation transform which shuffles the

Idk—l

*
I

k

blocks so that
Iy

*

e

*

C

. Transform the principal block diag(F}, F») to Frobenius form. By

Proposition 9.16 this costs O(n?) field operations.

We now have

Co,

Cak—l Bbk—l

By,
By
By

2

3

(9.15)

(2

4. We now want to “condition” the work matrix (9.15), modifying

only the b,’s, so that

(aj,b5) = (aj,bj, . ..

bp) for 1<j<k (9.16)

is computed using the Stab function together with the method
of Lemma 9.11. The off-diagonal blocks of U are recovered in
succession, from last to first, so that (9.16) holds for j =k — 1,k —
2,...,1. The method is similar to step seven of the algorithm
supporting Proposition 7.12.

The work matrix can now be written as in (9.15) and satisfies
(9.16).

. Apply a similarity permutation transform to shuffle the blocks so

that

(9.17)

Bbz Ca1
Bb] Clll

Let A be the matrix shown in (9.17). Use the method of Fact 9.4
to construct a U such that U~1AU is in shifted Hessenberg form
(recall Definition 9.3). Applying the transform (U~!,U) to get

Cs, By, -+ Dy,
CSL—l Bb*
Cs,
where s;,8;-1,...,5s; are those diagonal entries in the right Her-

mite form of I — A € Kz]"*™ which have positive degree (cf.
Theorem 9.5).

By Lemma 9.5, together with an argument analogous to that used
in step eight of the algorithm supporting Proposition 7.12, we may
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conclude that diag(Cy,, Cs,, ..., Cs,) is in Frobenius form and that
s; divides b;; for 1 <i < j <n.

6. Transpose to get

ct,
B G5,

(9.18)
By, By, - O

Now let A be the matrix shown in (9.18). Because of the divisibility
properties of the s,’s and b,’s established in the previous step, the
right Hermite form of zI,, — A € K[z]"*" will be such that all off-
diagonal entries in those columns with a positive degree diagonal
entry will be zero. Use the method of Fact 9.4 to construct a U so
that U~*AU is in shifted Hessenberg form. Apply the transform
(U~1,U) to get diag(Cs,,Cs,_,5---,Cs,).

7. Apply a permutation similarity transform to get diag(Cs,, Cs,,...,Cs,),

a matrix in Frobenius form. We are finished.

By augmenting the input matrix Z with identity matrices as shown
below, we can automatically record all similarity transforms applied to
A and recover a final transform (U, U~!) such that UZU ! = F.

o e

The cost of computing and applying the similarity transforms in each
step is bounded by O(nf(logn)) basic operations, or O(n?) field opera-
tions assuming standard matrix multiplication. The result follows. [

We get the following as a corollary of the last three sections.

Corollary 9.20. Let A € K™, AU € K™™" such that F = U AU
is in Frobenius form can be computed in O(n3) field operations.

9.5 Smith Form over a Valuation Ring

The algorithm of this section is inspired by Liibeck (2002).
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This section is concerned with the problem of computing the Smith
form of a matrix over a certain type of PIR. In particular, let

R = K[z]/(p*) where p € K[z] is irreducible of degree d

We may assume that elements of R are represented as polynomials from
K[x] with degree strictly less than deg p* = kd. We need to define both a
complete set of associates A(R) of R and also a complete set of residues
modulo each element of A(R), cf. Section 1.1. We choose

AR) ={0,p,p?,...,p" '} and R(R,p") = {r € K[z] | degr < degp’}

It is well known that each of the basic operations {Arith, Gedex, Ass,
Rem, Ann} can be accomplshed using O((kd)?) field operations; this
assumes standard polynomial arithmetic.

In this section, we adopt the convention that Smith forms of square
matrices are written as diag(0,0,...,0,8.,...,S2,81) where s;|s;41 for
1 < ¢ < r. Hermite form will always mean right Hermite form, as
defined on page 147 before Lemma 9.5. Let A € R™*™. Note that the
diagonal entries of the Smith form of A over R and also of any Hermite
form of A will be powers of p. On the one hand, since R is a PIR (i.e. not
necessarilly a PID) the Hermite form might not be a canonical form. On
the other hand, it follows from Section 8.1 that there exists a unit lower
triangular conditioning matrix C' such that every Hermite of C'A will be
in triangular Smith form, that is, have the same diagonal entries as the
Smith form. In fact, the R that we consider in this section is a valuation
ring: for every two elements a,b € R either a divides b or b divides a. For
this R it turns out that we may choose C' to be a permutation matrix.
We get the following result.

Proposition 9.21. Let A € R™*™ be given, R = K[z]/(p*) where p is
irreducible of degree d. Then there exists a permutation matriz C' such
that every Hermite form of C A is in triangular Smith form. Such a C
can be recovered in O(m®(kd)?) field operations using standard polyno-
mial arithmetic.

Remark: We call the matrix C' of Proposition 9.21 a Smith permuta-
tion.

Proof. Initialize C = I,,,, B = A and [ = 0. Perform the following steps
for i = 1,2,...,k. Each steps modifies C and B. The paramater [ is
monotonically nondecreasing. At the start of each step, the trailing [
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rows of B are linearly independant over R(R, p), and the trailing [ rows
of B and ¢ will not be changed,

1. Let B be a copy of B with entries reduced modulo p.
2. Find the rank r of B over R(R,p). At the same time, find

-]

such that PB has last r rows with rank =, and

e a permutation matrix

e an upper triangular

U= {%] e R(R, p)™*™

such that UPB has first » rows all divisible by p.

3. Replace C with PC. Replace B with the matrix obtained from
UPB by dividing each entry in the first n — r rows by p.

It is easy to verify that upon completion C' will indeed be a Smith per-
mutation for A. The cost of step 1 is O(m?(kd?)) field operations, since
reducing a degree dk — 1 polynomial modulo a degree d — 1 polynomial
can be accomplished in O(kd - d) field operations. Step 2 can be accom-
plished in O(m?d?) field operations by computing a Gauss transform for
B over R(R,p). Step 3 costs O(m?(d- kd)) field operations, since U and
B have entries bounded in degree by d and kd respectively. O

An Extension

Now consider the situation where
R = K[z]/(f*) where f € K[z] has degree d,

that is, where f might not be irreducible. We would like to compute a
Smith permutation for an A € R™*™. Unfortunately, this might not be
possible, since R is not a valuation ring; one reason is that entries in the
Smith form of A may contain only partial factors of f. But initialize
p = f. What happens if we pretend that p is irreducible and we run
the algorithm supporting Proposition 9.217 There is precisly one place
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where the algorithm might break down — during the computaton of
the rank r and permuation P in step 1. Since these are computed by
Gaussian elminination, we might get an error when attempting to divide
by a nonzero (but not necessarily invertible) element of R. If such a
“side exit” error happens, we can produce (in O(d?) field operations) a
nontrivial factorization for p: either p = p¢ with € > 1 or p = pp with,
say, degp > degp and p L p. The idea is to reduce all entries in the work
matrices U and B modulo p and continue with the Gaussian elmination.
By keeping track of all the factorizations that occur we can produce the
following.

e A gcd-free basis {p, f1, fo,..., fx} for f, say f = p°fi* f5?--- fiF,
such that

— degpefi fo? - fT = deg fi} for 0 < i <k, and

— each diagonal entry of the Smith form of A over R can be
written as s§ where s is a power of p and § L p.

e A Smith permutation C for A over R/(p*) = K[z]/(p*).

The cost analysis is straightforward. As the “work modulus” p is de-
creasing in degree, the cost of all the steps of the algorithm supporting
Proposition 9.21 decreases. It remains only to bound the cost of reducing
entries in the work matrices when the modulus changes. But for some
monontonically decreasing degree sequence d = dg > dy > dg > --- >
dj+1, the total cost of these reductions is bounded by

O(m? - (do(dy — dy) + dy(dy — d3) + ---)) = O(m?d?)

field operations. (Recall that computing the remainder of a degree dy — 1
polynomial with respect to a degree do—1 polynomial costs O(dg(dg—d1))
field operations when using standard arithmetic.) We get:

Corollary 9.22. Let A € K[z]/(f¥) be given. A factorization of f and a
Smith permutation C as described above can be recovered in O(m? (kd)?)
field operations using standard polynomial arithmetic.

9.6 Local Smith Forms

Let A € K[z]™*™ be given. We abuse notation very slightly, and some-
times consider A to be over a residue class ring K[z]/(p*) for a given
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p € K|z], k € N. Assume for now that p is irreducible. Then each diago-
nal entry of the Smith form of A over K[z] can be written as ss where s
is a power of p and 5 L p. If n is an upper bound on the highest power
of p in any diagonal entry of the Smith form of A, then we can recover
the Smith form of A locally at p by computing the Smith form of A over

Klz]/(p"*1).

This section is concerned with the problem of computing a Smith
permutation. Specifically, we are given as input

e an irreducible p € K[z] of degree d, and

e a nonsingular Hermite form A € K[z]™>*™

entry a multiple of p.

which has each diagonal

Our goal is to produce the following:
e A Smith permutation C for A over K[z]/(p"*!), where n = deg det A.

Thus, the problem we consider here reduces to the problem we dealt with
in the previous section. But if we apply Proposition 9.21 directly, we get
a complexity of O(m?(nd)?) field operations. Because, by assumption,
p divides each diagonal entry of A, we have m < n/d. Using m < n/d
and 0 > 2 leads to the complexity bound of O(n*2) field operations for
recovering C'. In this section, we establish the following result.

Proposition 9.23. Let p be irreducible of degree p and A € Klz]™*™
be in Hermite form with each diagonal entry a multiple of p. Suppose
n = degdet A. Then a Smith permutaion C for A over Klx]/(p"t!)
can be recovered in O(n? (logn)(loglogn)) field operations using standard
polynomial arithmetic.

Proof. Initialize C = I,,,. The key idea is to work in stages for k =
1,2, ... Each stage applies row permutations to C' to achieve that C is
a Smith permutation for A over K[z]/(p*) for higher and higher powers
of p. After stage k — 1 and at the start of stage k, the matrix C' will be
a Smith permutation for A over K[z]/(p?**~1)) (we define ¢ below) and
the Hermite form of C'A can be written as

p¢(k71)T ‘ * * *
Hk,1 * *
Hy—2 L (9.19)
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where

e all entries in the principal block p?*~DT are divisible by p®*—1,
and

e the work matrix is in triangular Smith form over K[z]/(p?*~1).

Subsequent stages need only work with the smaller dimensional subma-
trix 7. The function ¢ determines the amount of progress we make at
each stage. What is important for correctness of the algorithm is that ¢
is monotonically increasing, that is ¢(k) > ¢(k — 1) for k € N. In fact,
if we choose ¢(k) = k + 1, then ¢(k) — ¢(k — 1) = 1 and the algorithm
will require at most n stages. If we chose ¢(k) = 2¥, the algorithm will
require at most [log, n] stages. We define

k) — 1 ifk=0
o(k) = (@27 k>0

The following is easily verified:

Lemma 9.24. With the following definition of ¢, we have
e ¢(k) < (¢p(k—1))2+1 for k>0, and
* if k > [logy(logy(n))/((logy 0) — 1)1, then ¢(k) > n

In other words, with this definition of ¢, and with the assumption
that 6 > 2, the algorithm will require only O(loglogn) stages. Now
we give the algorithm. Initialize k = 1, C = I,,, and T = A. Do the
following.

1. Let B be a copy of T. Reduce entries in B modulo p®*)—#(k—1),
Note: B will have dimension less than |n/(¢(k — 1)d)].

2. Use Proposition 9.21 to recover a Smith permutation L for B over

Klz]/(p?F)—ok=1)),
¢ — {Aﬁ] C.

3. Update C' as follows:

4. Use Proposition 9.8 to compute the Hermite form H of LB over
K[z]. Replace T by 1/p?*) times the principle square submatrix
of H of maximal dimension such that all entries in the submatrix
are divisible by p?®*).
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5. If T is the null matrix then quit.
6. Increment k£ and go to step 1.

Now we turn our attention to the complexity. From Lemma 9.24 we
know that we jump back up to step 1 at most O(loglogn) times. The
result will follow if we show that each of the other steps are bounded by
O(n®(logn)) field operations.

Step 4 costs O(n?(logn)) field operations. Now consider step 2. Each
application of Proposition 9.21 requires

n o 5
O<(¢w_1m)~(@®%—dk—UM)>

field operations. Since ¢(k) — ¢(k — 1) < ¢(k), and using Lemma 9.24,
we may substitute ¢(k) — ¢(k — 1) — (¢p(k — 1))?/2. Since § > 2 the
overall bound becomes O(n?). Now consider step 1. The sum of the
degrees of the diagonal entris in 7" is less than n. By amortizing the cost
of reducing the entries in each row of B, we get the bound

o ((5a) - (0t — ok~ 1)3)

field operations. We have already seen, while bounding step 2, that this
is less than O(n?). O

An Extension
Now consider that we are not given an irreducible p, but rather

e an f € K[z] of degree d, and

mxXm

e a nonsingular Hermite form A € K|z] which has each diagonal

entry a multiple of f.

Now our goal is to produce the following:

o A gcd-free basis {p, f1, fo, ..., fi} for f, say f=p°fi' f5? - fe",
such that

— degpefit fs? -+ f7 = deg fi1 for 0 < i <k, and

— each diagonal entry of the Smith form of A over K[z] can be
written as ss where s is a power of p and 5 L p.
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e A Smith permutation C for A over K[x]/(p" '), where n = deg det A.
Using Corollary 9.22, we get the following:

Corollary 9.25. Let A € K[z]|™*™ be nonsingular, in Hermite form,
and with each diagonal entry a multiple of f. Suppose that degdet A = n.
Then a partial factorization of f together with a Smith conditioner C
for A as described above can be recovered in O(n’(logn)(loglogn)) field
operations.

9.7 The Fast Algorithm

Let A € K"*™, We give a recursive algorithm for computing the Frobe-
nius form of A. The approach is a standard divide and conquer paradigm:
four recursive calls on matrices with dimension at most |n/2]. First we
use two recursive calls and some additonal massaging to arrive at a Hes-
senberg form T which has each diagonal entry a power of f, for some
f € Klz]. We will be finished if we can recover the Frobenius form of
T. Because of the special shape of T, it will be sufficient to recover
the Frobenius form locally for some p € K][z], a factor of f. The other
components of T' (corresponding to factors of the characteristic polyno-
mial of T which are relatively prime to p) will be split off from T and
incorporated into the final two recursive calls of the algorithm. Before
the splitting of T" begins, the final two recursive calls have dimension ny
and ng respectivley, ni,ny < [n/2] and nq +t + ny = n where ¢ is the
dimension of T'. We need to ensure that the size of the final two recursive
calls remains bounded by n/2. Suppose that we split the block T" into
two blocks of dimenision ¢; and to respectively, to < t;. Then

Lemma 9.26. Either ny +ty < |n/2]| or ny + 2 < [n/2].
Now we give the algorithm.

1. Use Fact 9.4 to recover a shifted Hessenberg form of A. Partition

as
* * *

Cy || *
*
where the principal and trailing blocks are in shifted Hessenberg

form with dimension n; and ngy respectively, ni,ne < n/2. Recur-
sively transform these blocks to Frobenius form.
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2. Note: the principal n—no submatrix of the work matrix is the sub-
matrix demarked by the double lines. Apply steps 3—7 of Propo-
sition 9.19 to transform this submatrix to Frobenius form. The
work matrix now looks like

F. | %
]

3. Compute a ged-free basis {by, ba, ..., by, } for the set of all diagonal
companion blocks in the work matrix. Apply Lemma 9.18 to the
principal and trailing submatrices to split according the gcd-free
basis. After applying a similarity permutation the work matrix
can be written as

*1
*2

*1
*2

*mo

where *; denotes a (possibly null) matrix in Frobenius form which
has each diagonal entry a power of b;.

4. Because

[ ] bll_b]fOI"L#‘%

e the observation of Corrollary 9.12,

we can construct, using Fact 9.4, a transistion matrix that trans-
forms the work matrix to look like

*1 *
*9 *

*1
*9
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5. Apply a similarity permutation to achieve

*1 *
*1
*9 *
*2 . (9.20)
e, *
. *m -
6. Partition the work matrix as
Ay
T (9.21)
Ay

such that the principal and trailing block have dimension n; and
ng respectively, where n1,ny < n/2 are chosen maximal. Note that
T will be one of the blocks of the matrix in (9.20), say

T — *f *
*f

with each of *; in Frobenius form, each diagonal a power of f.

7. Denote by T'(z) € Klz]™*™ the Hermite form which corresponds to
the Hessenberg form 7. Now apply the algorithm of the previous
section to recover from T'(z) and f the following:

o A gcd-free basis {p, f1, fo, ..., fu} for f,say f =p°fi* f52 - frF,
such that

— degp®fi' f52 -+ fT > deg fiii" for 0 < i <k, and

— each diagonal entry of the Smith form of T'(z) over Klx]
can be written as s§ where s is a power of p and 5 L p.

e A Smith permutation L for T'(x) over K[z]/(p"t1).

Split the block T according to the ged-free basis {p, f1, f2,. .., fx}
using the technique of steps 3-5 above. According to the Smith
permutation L, apply a similarity permutation to the block T},
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corrsponding to p. Transform 7}, to Hessenberg form and then ap-
ply step 6 of the algorithm supporting Proposition 9.19 to trans-
form T}, to Frobenius form.

After the splitting of T" is complete, the work matrix can be written
(up to a similarity permuation) as in

Ay

Ay

Ao

Ay

where T}, is block diagonal and the submatrices A, contain the
other blocks split off from T, cf. (9.21). The degree conditions on
the partial factorization p©fi* f5--- fi* of f ensure that we can
allocate these other blocks (those split off from 7T') between A; and
As in such a way that the principal and trailing submatrices of the
work matrix still have dimension < n/2, see Lemma 9.26.

8. Recursively transform the principal and trailing block to Frobenius
form. Now the work matrix is block diagonal.

9. Complete the transformation using Proposition 9.16.

Corollary 9.25 shows that step 7 can be accomplished in
O(nf(logn)(loglogn)) field operations. We get the following result:

Proposition 9.27. Let A € K®™*". A U € K™*™ such that F = U~ 1AU
is in Frobenius form can be computed in O(n?(logn)(loglogn)) field op-
erations.

Chapter 10

Conclusions

We developed and analysed generic algorithms for the computation of
various matrix canonical forms. We also applied the generic algorithms
to get algorithms for solving various problems with integer input ma-
trices. The analysis of the generic algorithms was under the algebraic
complexity model — we bounded the number of required basic oper-
ations. The analysis of the integer matrix algorithms was under the
bit complexity model — we took into account the size of operands and
bounded the number of required bit operations. This chapter make some
comments and poses some questions with respect to each of these areas.

10.1 Algebraic Complexity

Much of our effort was devoted to showing that the problems of com-
puting the Howell and Smith form are essentially no more difficult over
a PIR than than over a field. A precise statement and analysis of the
algorithms over a PIR was made possible by defining a small collection
of basic operations from the ring. In particular, introducing the basic
operation Stab made it possible to give an algorithm for diagonaliza-
tion in the first place. We remark that the algorithms we have given
are applicable over any commutative ring with identity that supports
the required basic operations. For example, the required operations for
triangularization are {Arith, Gedex} while those for diagonalization are
{Arith, Gedex, Stab}. A ring which support only these operations might
not be a PIR.

The comments we make next are of a complexity theoretic nature.
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Notwithstanding our focus on more general rings, here it will be appro-
priate to consider the well understood case of matrices over a field.

The Question of Optimality

In this subsection, we restrict ourselves to the special case of square
input matrix over an infinite field K. Recall that we are working over
an arithmetic RAM. All complexity bounds will be in terms of number
of operations of type Arith from K. If we don’t specify otherwise, all
algorithms and problems will involve an n x n input matrix over K. Let
P1 and P2 be such problems. Then:

e P2 is reducible to P1 if, whenever we have an algorithm for P1
that has cost bounded by #(n), then we have! also an algorithm
for problem P2 that has cost bounded by O(t(n)).

e P2 is essentially reducible to P1 if, whenever we have an algorithm
for P1 that has cost bounded by ¢(n), then we have also an algo-
rithm for P2 that has cost bounded by O (t(n)).

Let MATMULT be the problem of matrix multiplication. More precisely,
let MATMULT(n) be the problem of multiplying together two n X n
matrices. Over a field, the Howell and Smith form resolve to the Gauss
Jordan and rank normal form. The problems of computing these forms
over a field had already been reduced to MATMULT. The result for the
Gauss Jordan form is given Keller-Gehrig (1985), and that for the rank
normal form follows from LS P-decomposition algorithm of Ibarra et al.
(1982). A treatment can be found in Biirgisser et al. (1996), Chapter 16.
We have shown here that the problems of computing the Frobenius form
is essentially reducible to MATMULT; this has been already established
by Giesbrecht (1993) using randomization.
The question we want to consider here is the opposite:

Is MATMULT essentially reducible to the problem of comput-
ing each of these canonical forms?

For nonsingular input over a field, the problem of computing a trans-
form for the Howell, Hermite or Gauss Jordan form coincides with IN-
VERSE — matrix inversion. Winograd (1970) has shown that MATMULT
is reducible to INVERSE. The proof is shown in Figure 10.1. We may

1The distinction between “we have” and “there exists” is important.
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I, A -1 I, —A AB
I, B — I, -B |,
I, I,

Figure 10.1: Reduction of MATMULT(n) to INVERSE(3n).

conclude that the algorithms we have presented here for these echelon
forms are asymptotically optimal.

The problem DET — computing the determinant — is immediately
reducible to that of computing the Frobenius form. Now consider the
Smith form. Many problems are reducible to that of computing trans-
forms for the Smith form of a square input matrix A. We mention three.
The first is BASIS — computing a nullspace basis for A. The second is
TRACE — computing the sum of the diagonal entries in the inverse of a
nonsingular A. The third is LINSYS — return A~'b for a given vector b.
The first reduction is obvious (the last n — r rows of the left transform
are the nullspace basis). To see the second two, note that if UAV = I,
then VU = A~

Unfortunately, we don’t know of a deterministic reduction of MAT-
MuLT to any of DET, BAsiS, TRACE or LINSYS. But we do know of a
randomized reduction from MATMULT to DET. Giesbrecht (1993) shows
— using techniques from Strassen (1973) and Baur and Strassen (1983)
— that if we have a Monte Carlo probabilistic algorithm for DET that
has cost bounded by ¢(n), then we have also a Monte Carlo probablistic
algorithm MATMULT that has cost bounded by O(¢(n)).

We can also ask a question of a different nature. Is MATMULT com-
putationally more difficult than BAsis or DET? Here the emphasis has
shifted from algorithms for the problems to the problems themselves.
It turns out that the arithmetic RAM is not a suitable computational
model to ask such questions. For example, maybe no single algorithm
achieves the “best” asymptotic cost for a given problem, but rather a
sequence of essentially different algorithms are required as n — co. A
suitable model over which to ask such questions is that of computation
trees where we have the notion of ezponent of a problem. We don’t
define these terms here, but refer the reader to the text by Biirgisser et
al. (1996). Over the model of computation trees, it has been established
that the exponents of the problems DET, BAsis and MATMULT coincide.
In other words, from a computational point of view, these problems are
asymptotically equivalent. The result for BASIS is due to Biirgisser et al.
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(1991). The result for both Basis and DET can be found in Biirgisser
et al. (1996), Chapter 16.

Logarithmic Factors

Our algorithm for Smith form requires O(n?) basic operations, but the
method we propose for producing transforms requires O(n?(logn)) basic
operations.

Is the logn factor essential? Is it the necessary price of in-
corporating fast matrix multiplication?

Our deterministic algorithm for producing a transform for the Frobe-
nius form costs O(n?(logn)(loglogn)) factor. Such doubly (and triply)
logarithmic factors often appear in complexity results because of the
use of FFT-based methods for polynomial arithmetic, or because the
algorithm works over an extension ring. Our algorithm assumes stan-
dard polynomial arithmetic and the doubly logarithmic factor appears
in a more fundamental way. The algorithm converges in O(loglogn)
applications of Keller-Gehrig’s (1985) algorithm for the shifted Hessen-
berg form. From the work of Eberly (2000) follows a Las Vegas proba-
bilistic algorithm for Frobenius form that requires an expected number
of O(nf(logn)) field operations — this matches Keller-Gherig’s result
for the characteristic polynomial. Except for the use of randomization,
Eberly’s result is also free of quibbles — no field extensions are required
and a transform is also produced.

Is the additional loglog n factor in our result essential? Is it
the necessary price of avoiding randomization?

10.2 Bit Complexity

In the study of bit complexity of linear algebra problems there are many
directions that research can take. For example: space-efficient or space-
optimal algorithms; coarse grain parallel algorithms; fast or processor-
efficient parallel algorithms; special algorithms for sparse or structured
input, ie. “black-box” linear algebra. We make no attempt here to survey
these research areas or to undertake the important task of exposing the
links between them. We will focus, in line with the rest of this document,
on sequential algorithms for the case of a dense, unstructured input
matrix.

10.2. BIT COMPLEXITY 175

Let us first make clear the direction we have taken in the previous
chapters. Our programme was to demonstrate that our generic algo-
rithms could be applied, in a straightforward way, to get algorithms for
canonical forms of integer matrices which are deterministic, asymptoti-
cally fast, produce transform matrices, and which handle efficiently the
case of an input matrix with arbitrary shape and rank profile. Thus,
much emphasis was placed on handling the most general case of the
problem. An additional goal was to produce “good” transform matrices,
that is, with good explicit bounds on the magnitudes of entries and good
bounds on the total size. This additional goal was achieved under the
restriction that the asymptotic complexity should be the same (up to
log factors) as required by the algorithm to produce only the form itself.

Since the running times we have achieved for our Hermite and Smith
form algorithms for integer matrices are currently the fastest known — at
least for solving the general problem as described above — there arises
the question of whether these running times can be improved. Our
answer is that we believe the bit complexities we have achieved allow
for substantial improvement. For this reason, it is useful to identify
and clearly define some versions of these fundamental problems which
deserve attention in this regard. We do this now.

Recovery of Integer Matrix Invariants

The problem of computing matrix canonical forms belongs to a broader
area which we can call “recovery of matrix invariants”. We can identify
seven important problems: DET, RANK, MINPoLy, CHARPOLY, HER-
MITE, SMITH and FROBENIUS. These problems ask for the determinant,
the rank, the minimal polynomial, the characteristic polynomial, and
the Smith, Hermite and Frobenius canonical form of an input matrix A.

An interesting question, and one which is largely unanswered, is to
demonstrate fast algorithm to compute each of these invariants in the
case of an integer matrix. To greatly simplify the comparison of differ-
ent algorithms, we define the problems DET, RANK, MINPoOLY, CHAR-
Pory, HERMITE, SMITH and FROBENIUS more precisely with the fol-
lowing comments:

e We consider as input a square n X n integer input matrix A and
summarize the soft-Oh complexity by giving the exponent of the
parameter n. Complexity results will be given in terms of word
operations — the assumption being that, for some I = O(logn +
loglog||A]||), where I depends on a given algorithm, the computer
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on which we are working has words of length (at least) [ and the
list of primes between 2/=! and 2! are provided for. This single
parameter model captures the essential feature of working over Z;
the size (bit-length) of integers that we need to compute with grows
from the starting size of log, ||A|| — typically at least linearly with
respect to n.

e For the problems HERMITE, SMITH, FROBENIUS, we ask only for
the canonical form and not transform matrices. The reason for this
is that the transforms are highly non-unique. By asking only for
the matrix invariant there can be no quibbles about the “quality”
of the output — our attention is focused purely on the running
time.

e For the problems HERMITE and SMITH we allow that the algorithm
might require the input matrix to be nonsingular. A nice feature
of HERMITE is that, when A is nonsingular, the output will have
total size bounded by O7(n?) bits — this is about the same as the
input matrix itself. All the other problems also have output which
have total size bounded by O™(n?) bits.

Suppose we are given a prime p that satisfies p > ||A||. Then all the
problems mentioned above can be solved deterministically over the field
Z/(p) in O"(n?) bit operations. Now consider the bit complexity over
Z. On the one hand, we have taken a naive approach. Our algorithms
for solving the problems DET, RANK, SMITH, HERMITE require O™(n? -

Problem DET | LV | MC
DET 4 3.5
RANK 4 3.5 3
MINPoLy 5 4 3.5
CHARPoOLY 4 3.5
HERMITE 4

SMITH 4 3.5
FROBENIUS 5 4 3.5
LINSYS 4 3

Table 10.1: Single Parameter Complexity: 0 = 3

n) bit operations — the cost in bit operations over Z is obtained by
multiplying the cost to solve the problem over Z/(p) by a factor of n.
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On the other hand, faster algorithms for almost all these problems are
available. In Table 10.1 we give some results under the assumption of
standard matrix multiplication. Many of these results can be improved
by incorporating fast matrix multiplication, and we discuss this below,
but first we give some references for and make some remarks about the
algorithms supporting the running times in Table 10.1.

The MC result for MINPoLY is due to Kaltofen (1992), who stud-
ies the division free computation of the determinant. From his work
there follows a deterministic O™(n3-%) bit operations algorithm to com-
pute the minimal polynomial of the linearly recurring scalar sequence
wv, uAv, uA>v, . . ., for given vectors u and v with word-size entries. Many
of the other results in Table 10.1 follow as a corollary to this result since
they are obtained by reducing to the problem MINPoOLY.

e From Wiedemann (1986), we know that for randomly chosen? vec-
tors w and v the minpoly of uv, uAv, uA?v,... will be, with high
probability, the minimal polynomial of A — this give the MC al-
gorithm for MINPOLY.

e Similarly, for a well chosen diagonal matrix D, and for nonsingular
A, the minimal polynomial of DA will coincide with the charac-
teristic polynomial of DA — this gives the LV algorithm for DET.

e Now consider when A may be singular. Saunders observes that,
for randomly chosen w, v and D, the correct rank of A can be
recovered with high probability from the minimal polynomial of
DAAT by adapting the technique in Saunders et al. (2004).

e In (Storjohann, 2000) we observe FROBENIUS can be reduced to
MINPoOLY plus the additional computation of the Frobenius form
of A modulo a randomly chosen word-size prime p — this gives the
MC results for FROBENIUS and CHARPOLY.

The MC algorithm for RANK is obtained simply by choosing a random
word-size prime p and returning the rank of A modulo p. The DET
result for RANK, CHARPOLY, HERMITE and LINSYS are well know; that
for SMITH follows from our work here.

Now let us discuss the DET and LV results for MINPOLY and FROBE-
NIUS. The reason that the DET results have exponent 5 is because the
best bound available for the number of word-size primes p which are

2For our purposes here, random word-size entries.
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bad?® with respect to homomorphic imaging is O™(n?). Thus, even though
O~ (n) word-size primes are sufficient to construct the result, O"(n?) are
required to guarantee correctness. Giesbrecht (1993) observes that the
minimal polynomial can be certified modulo O7(n) (randomly chosen)
word-size primes — the LV result of MINPOLY now follows as a corol-
lary to his LV algorithm for FROBENIUS. In (Giesbrecht and Storjo-
hann, 2002) we extend this certification technique to get the LV result
for Frobenius.

The MC result for SMITH is due to Eberly et al. (2000). Their algo-
rithms works by reducing the problem to O(n-®) applications of LINSYS
— compute A~'b for a given vector b. The LV algorithm for LINSYS is
p-adic lifting as described in Dixon (1982).

Many of the complexities in Table 10.1 can be improved substantially
by incorporating fast matrix methods. Work is currently in progress, but
see for example Kaltofen (1992), Mulders and Storjohann (2004).

3Those for which the structure of the Frobenius form or degree of the minimal
polynomial of A as computed over Z/(p) differs from that computed over Z.
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