Frobenius form in expected matrix

multiplication time over sufficiently large
fields

Clément Pernet, Arne Storjohann

David R. Cheriton School of Computer Science, University of Waterloo, Ontario,
Canada N2L 3G1

Abstract

A new randomized algorithm is presented for computing the Frobenius form of an n X n matrix
over a sufficiently large field K. Let 2 < w < 3 be such that two matrices in K™"*™ can be
multiplied together with O(n“) operations in K. If #K > 2n?, the new algorithm uses an
expected number of O(n®“) operations in K to compute the Frobenius form of A, matching the
lower bound for the cost of this problem. A similarity transformation matrix can be computed
with an additional O(n* loglogn) operations in K. For comparison, the randomized algorithms
of Giesbrecht (1993, 1995) and Eberly (2000) use an expected number of O(n® logn) operations
in K to compute both the form and a similarity transformation matrix. Eberly’s algorithm has
the advantage of being applicable over all fields.

Key words: Frobenius form, characteristic polynomial, minimal polynomial, randomized
algorithm, Las Vegas, algebraic complexity

1. Introduction

Like the better known Jordan form, the Frobenius form of a square matrix A over a
field K is a unique representative of the set of all matrices similar to A. The Frobenius
form, also called the rational canonical form, has the shape

U AU = F = . e KX,

Email addresses: cpernet@uwaterloo.ca (Clément Pernet), astorjoh@uwaterloo.ca (Arne
Storjohann).

Preprint submitted to Elsevier 30 November 2007

Each block Cy, is the companion matrix (see §2) of a monic f; € Klz], and fi;1|f; for
1 < i <1 —1. The form reveals many invariants of A: the minimal polynomial is fi,
the characteristic polynomial is the product fifs--- f;, the determinant is the constant
coefficient of f1 fs - - - f1, and the rank is equal to n minus the number of companion blocks
corresponding to a polynomial with a zero constant coefficient.

The problem of computing the Frobenius form has been well studied. Storjohann
(1998) describes an algorithm that uses 2n3+ O(n?) operations in K to compute the form
F itself. A similarity transformation matrix U such that U1 AU = F can be computed
with 6n® +O(n?(logn)?)) operations in K using the algorithm of Storjohann and Villard
(2000). For a more thorough survey of previous algorithms we refer to Storjohann (2000).

In this paper our focus is on the problem of reducing the computation of the Frobenius
form to that of matrix multiplication. Let w be a valid exponent for the complexity of
matrix multiplication: O(n*) operations from K are sufficient to multiply together two
n x n matrices over K. Henceforth in this paper, all complexity bounds are in terms of
number of required field operations from K, and we make the common assumption that
w > 2. The first reduction to matrix multiplication is the randomized Las Vegas algorithm
of Giesbrecht (1993, 1995). Over a sufficiently large field, with #K > n?, Giesbrecht’s al-
gorithm computes the Frobenius form together with a similarity transformation matrix in
expected time O(n* logn). More recently, Eberly (2000) describes a Las Vegas algorithm,
applicable over a field K of any size, that computes the form and a transformation ma-
trix in expected time O(n® logn), and Storjohann (2000, 2001) describes a deterministic
algorithm for computing a transformation matrix in time O(n*(logn)(loglogn)). Note
that all of these reductions require a polylogarithmic number of matrix multiplications.

To understand the source of the logn factor in all the cost bounds in the previous
paragraph, consider the problem of computing only one of the invariants revealed by
the Frobenius form: the characteristic polynomial. Keller-Gehrig (1985) gave three re-
ductions of the problem of computing the characteristic polynomial to that of matrix
multiplication. Keller-Gehrig’s third algorithm has cost O(n*) but only works for input
matrices with restrictive genericity requirements. His first algorithm, a simplified version
of the second, also only works for input matrices satisfying certain requirements. Of pri-
mary interest here is his second algorithm which works for all input matrices A € K"*"
and has a running time of O(n“logn). The algorithm works by computing a Hessen-
berg form of A (see §2), from which the characteristic polynomial is easily recovered.
The extra logn factor arises because the algorithm computes the ©(log n) matrix powers
A% A% A8 Alleg2nl | Similarly, the logn factor in the cost bounds for previous re-
ductions to matrix multiplication for the problem of computing the Frobenius form arise
because Keller-Gehrig’s algorithm is used as a subroutine directly (Giesbrecht, 1993,
1995; Storjohann, 2000, 2001) or because a logarithmic number of powers of A might be
computed (Eberly, 2000).

In this paper we combine ideas from Giesbrecht (1995), Keller-Gehrig (1985) and Vil-
lard (1997) to get a new Las Vegas randomized algorithm for computing the Frobenius
form. If K has at least 2n? elements the new algorithm has expected cost O(n*), match-
ing the lower bound for this problem. Unlike Keller-Gehrig’s O(n* logn) algorithm for
the characteristic polynomial, we proceed in steps for k =1,2,3,...,n — 1 and thus the
new algorithm converges arithmetically. The algorithm we describe shares more similar-
ities with Keller-Gehrig’s O(n“) deterministic algorithm for generic matrices; the main

difference is that we randomize and show how to take into account the block structure
that will arise depending on the degrees of the invariant factors of the input matrix.

In Section 2 we introduce some notation and recall some facts about Krylov matri-
ces. Section 3 gives a worked example of the new algorithm and offers an overview of
Sections 4—6 which are devoted to presenting the algorithm and proving correctness.
Section 7 shows how to compute a similarity transform matrix in time O(n* loglogn).
The new algorithm is not only of theoretical interest but also practical. In Section 8
we describe an implementation, present some timings, and compare with the previously
most efficient implementations that we are aware of. Section 9 concludes with some open
problems.

2. Notation and preliminaries

We will frequently write matrices using a conformal block decomposition. A block is
a submatrix comprised of a contiguous sequence of rows and columns. In special cases,
a block may be a single matrix entry or may have row or column dimension zero. The
generic block label * denotes that a block is possibly nonzero. Blocks that are necessarily
zero are left unlabelled. The label x is also used as a generic index to avoid cluttering
the presentation when explicit indices are not required.

Let g =go+ g1z + -+ gr_12" "t + 2" € K[z]. The companion matrix of g is denoted
by Cy and has the shape

0---0 —go
1
Cy = e K™,
0 —Gr—2
1 —9r-1

When using C, as a block label, we allow the special case g = 1 in which case C; has
zero rows and columns.

Let b= by + bz + - - -+ bgr? € K[z]. We use the label By to denote a block which has
the shape

bo
by

0

More precisely, all entries of By, are zero except for entries in the last column row i equal
to b;_1, 1 < i < d+ 1. The dimensions of a block labeled B, will be conformal with
adjacent blocks. Note that B, may have zero columns and should have at least 1+ degb
rows if b # 0.

Every square matrix over K can be written using a block decomposition as

CCI Bb12 Bblk
Bbzl CCz Bb2k

Bbkl Bbk2 Cck

for some (not necessarily unique) choices of the ¢, and b,.. In particular, we allow that
some of the diagonal companion blocks in the decomposition might be 0 x 0. But if we
specify that k should be minimal, the decomposition is unique.

For a square matrix A € K®*" and vector v € K"*1, let K4(v,d) denote the Krylov
matrix

Ka(v,d) = [o] Ao [a0-10] € ke,

For V € K™ we denote by Orb4(V) the subspace of K® spanned by all the column
vectors in [V | AV | A2V | ...].

Fact 2.1. Let A € K™ be arbitrary and U € K"*™ be nonsingular. Then

(1) U = | Ka(vor,dy)| Kalv2.do)
K™ and positive integers dy,da, . .., dy if and only if

‘KA(vm,dm)} for some wvectors vy,va, ..., Uy €

C; B, --- B,

. B, Cy --- B,

vltau=| (2.1)
B, B, - Cp,

with C; of dimension d;, 1 <i<m.
(2) For any j, 1 < j < m, the matriz in (2.1) can be written as

C, B, - B.| B. B. --- B,

CjJrl B* B*

B, B, - C,,

if and only if the dimension of Orba([v1 | --- | v;]) is equal to dy + --- + d;.

We call the matrix in (2.1) a shifted form with degree sequence (d1,da,...,dy,), cor-
responding to the dimensions of the diagonal blocks. A shifted form that is block upper

triangular with all diagonal blocks of the form C, is called a shift-Hessenberg form.
Polynomial matrices A, B € K[z]"*™ are equivalent over K[z] if there exists unimodular
matrices U,V € K[z]"*" such that UAV = B. Recall that the unimodular matrices over
K[z] are precisely those that are invertible over Kx], thus those with determinant a
nonzero constant polynomial. The following classical result links the notion of similarity

over K (denoted by ~) with equivalence over K[z] (denoted by =).

Theorem 2.2. (Fundamental Theorem of Similarity over a Field)

001 Bb12 T Bbln 051 Bl_)lg t BI_JM
Bb21 002 Bb2n Bi)zl Cé BBgn
anl an2 e Ccn BBnl BBng T Cén
if and only if
C1 612 T bl’n El 512 e Bln
ba1 c2 bon | bo1 Co bon,
bnl bn2 N &) Bnl BnQ crr Cp

Mathematical background information can be found in (Hoffman and Kunze, 1971,

Chapter 7) and (Gantmacher, 1990, Chapter 7).

3. Overview

The key to our algorithm is what we call a k-uniform shifted form: each diagonal
companion block has dimension k, except for possibly the last which may have dimension
less than k. For brevity we will refer to such a matrix as a k-shifted form. The algorithm
proceeds in steps for k = 1,2,3,...,n — 1. Step k involves the transformation of a k-
shifted form to a (k+ 1)-shifted form. We begin directly with a complete worked example
of the algorithm.

Since every square matrix over a field is in 1-shifted form, we may consider our input

matrix to be in 1-shifted form. For our example we will start with the following 1-shifted

form of dimension 14 over Z/(97).

15 5 24 26 15 43 75 49 45 53 72 50 10 75
A1 47 83 21 42 50 45 94 18 52 42 26 13 67
32 31 68 30 37 8 12 27 43 22 61 12 25 65
8426 85 41 37 20 7 77 92 26 43 73 37 13
91 8 45 2 29 89 45 73 95 36 51 7 75 34
55 36 52 77 G4 46 82 4 84 29 25 35 18 46
6423 61 12 83 26 3745 67 1 4 3458 44 | _ oo iais
53 48 69 53 53 91 83 71 26 60 18 60 62 18 | € Z/(97)"" .
19 25 14 60 33 88 39 94 14 81 85 83 30 70
87 20 11 26 86 42 30 94 35 88 66 22 33 18
491 5133266 8 51 11 37 6 27 32 18
60 81 62 26 16 11 17 11 26 28 18 10 16 0
97 74 41 30 95 18 91 10 10 36 15 74 65 83

|41 93138139 7 39 19 86 86 59 9 64 50

Ay

Let e; denote column i of the identity matrix of appropriate dimension. The following

striped Krylov matrix corresponding to A; will be the identity matrix:

[Ky er,)| K (e2,1)] - | Kay (e10,1)]

Our idea, made precise in Section 4, is to compute what we call the Krylov extension of Ay
by increasing the rank of each Krylov slice by at most one in a lexicographically maximal
fashion. In this example, the Krylov extension of A; is (2,2,2,2,2,2,2), corresponding

to the nonsingular matrix

Kz = | K, (e1,2)| K, (e2,2)]- | Ky (er,2) |

r115] 5| 24| 26| 15| 43| 757
41|11 47| 83| 21| 42| 50| 45
32| 31j1 68| 30| 37| 8| 12
84| 26| 85|141| 37| 29| 7
91| 8| 45| 2|129| 89| 45
55| 36| 52| 77| 64|1 46| 82
64| 23| 61| 12| 83| 26|1 37

- 93| 48] 69| 53| 58| 91| 83

191 25| 14| 60| 33| 88| 39

87 20| 11| 26| 86| 42| 30

41 911 5| 13| 32| 66| 8

60| 81| 62| 26| 16| 11| 17

27| 74] 41 30| 95| 18| 91

41 93| 13| 81| 39| 7| 39]

Note that the slices corresponding to the basis vectors eg, eg, ..., e14 have been annihi-

lated. Applying the similarity transformation K5 to A; yields the 2-shifted form

- 57 44 13 85 79 18 637
111 74 33 46 76 76 83

81 21 46 57 44 50 27

7916 57 1 20 81 14

10 33 53 77 44 2 23

43 40130 20 96 32 17
. 37 42 44 12 41 54 27
Ay =Ky AiKo= | g8 37 50189 30 73 96
30 57 75 47 40 8 24
70 61 18 57134 94 61
85 8 22 72 92 82 70
21 13 9 80 19193 48
90 24 72 58 81 55 56
90 52 78 41 35 2 142

Continuing on, the Krylov extension of As is (3,3, 3, 3,2), corresponding to

K= | Kay(er,3)|Ka(e3,3)| K (e5,3)| Ky (er.3)| Kaae0,2) |

r1 57 44 13 85 7
111 74 33 46
81|11 21 46 57
79 16 57 1
10 33|1 53 77
43 41 130 20
37 42 44|11 12
- 88 37 50| 189 ’
30 o7 75 471
70 61 18 o7 1
85 8 22 72
21 13 9 80
90 24 72 58
90 52 78 41

giving the 3-shifted form

- 57 93 63 32 297
1 15 13 78 92 33
126 88 53 70 35

0 22 4 23 78
211 64 16 18 43
6 112 77 56 73

. 62 50 92 57 30

Ay = K3 A K3 = 13 61 27 31 65

22 41 176 9 2

64 59 47 67 55

39 19 831 46 36

91 19 64 182 6

55 73 49 66 86

42 24 48 31112]

From a complexity point of view it is important that A; has only about 1/k times as
many nonzero elements as A;. Since A3 = (K2K3) *A;(K2K3), we could have computed
Aj directly from A; by constructing the single transformation

KyKs3 = [KAl(el,S)‘KAl(eg,?))‘KAl(eg,3)‘KA1(64,3)‘KA1(65,2)})

but the overall cost is reduced by applying the transformation matrices sequentially. Note
that the last diagonal block of Az only has dimension 2 because 3 does not divide 14,
the dimension of the matrix.

Similar to the previous steps A; — As and A — Agz, the striped Krylov matrix

{KAB (e1, 3)‘[(,43 (e4,3) ‘KAB (6773)‘KA3(61073)‘KA3(6137 2)}

will be the identity matrix since the dimensions of the slices corresponding to the basis
vectors (e, eq, €7, €10, €13) match the degree sequence (3,3, 3,3,2) of the diagonal blocks
in As. The Krylov extension of As is (4,4,3,2,1). If the the Krylov extension is not
monotonically nonincreasing or does not correspond to a square matrix the algorithm
will abort. For this step, like the previous two steps, the Krylov extension satisfies these
conditions and we may continue. The Krylov extension of As corresponds to

Ky= [KA3(€1,4)‘KA3(6474)‘KA3(€7,3)‘KA3(610,2)‘KA3(61371)}

r1 57 93 1
1 15 13
126 88
01 22
21 1 64
76| 112
- 62 50|11
= 13 6| 1
22 4] 1
64 59 1
39 19 1
91 19
55 73 1
i 42 24 |

As demonstrated by Ky, K3 and Ky, it is always the case that K1 will be comprised
entirely of identity vectors and columns of Aj. This follows from the fact that Ay is
in k-shifted form and we are extending each Krylov slice to dimension at most & + 1.
Applying the similarity transform K4 to As we obtain the 4-shifted form

- 19 21 72| 56697
189 65 3| 6958
1 55 1 69 8285
132 10 50| 8479
5 77 42| 3374
_ 141 9 73 7873
A KA der — As|By | 54 1 41 19| 3668
1=Ky AzKy = = 24 168 60| 4776
Cy|Dy 29 45 6| 8 32
39 71 84| 8169
29 45 18| 8 93
96 63
12 34
L 1]

Although the entire matrix A4 is not in 4-shifted form, we may partition the Krylov
extension (4,4,3,2,1) into two parts: (4,4,3) corresponding the the principal block Ay4
which is necessarily in 4-shifted form; and [2, 1] corresponding to the trailing 3 x 3 block

D, that is completed. Let F; be the matrix obtained from D4 by zeroing out all off-
diagonal blocks B,. For this example the Krylov extension is what we call normal: the

southwest block Cj is filled with zeroes; the trailing block Dy is in shift-Hessenberg form;

Ay By Ay
D4 F4
r 19 21 72| 56697 T 19 21
1 89 65 3] 69 58 1 89 65 3
1 55 1 69| 82 85 1 55 1 69
132 10 50| 84 79 132 10 50
5 77 42| 33 74 5 77 42
14 1 9 73| 78 73 14 1 9 73
54 1 41 19| 36 68 54 1 41 19 . 31
24 168 60| 4776 |~ 24 168 60 ; (3.1)
29 45 6 8 32 29 45 6
39 71 84| 8169 39 71 84
29 45 1 8 8 93 29 45 1 8
96 63 96
12 34 12
L 11 L 1]
and
Frobenius(A4) = Diag(Frobenius(Ay4), Fy). (3.2)

The algorithm assays that (3.1) holds by applying Theorem 2.2 to transform to the ring
of polynomials and then checking some divisibility conditions. Indeed, the matrix on the

left of (3.1) corresponds to the shift-Popov matrix

% % %|56 + 69z + 8222 + 8423 69 + 58z + 85x% + 793
* % %|33 + 78z + 3622 + 4723 74 4 73z + 6822 + 7623

* ok K 8 + 81z + 82 32 + 69z + 9322 EZ/(Q?)‘E’XE’.
—96 — 2z + 22 63 + 34x
-1+4+z

If last diagonal entry —1 4+ x divides all polynomials above, then polynomial multiples
of the last row may be added to the previous rows to zero out all entries above —1 + .
Next we check that —96 — 2z + 22 divides all diagonal entries above. The general case
should be clear from this example. These divisibility checks are similar to step 3 of the
randomized polynomial Smith normal form algorithm of Kaltofen et al. (1990).

Finally, consider the transformation to 5-shifted form if we proceed directly with Ay,
shown on the left of (3.1), instead of the sparser matrix on the right of (3.1). The Krylov
extension of A, is (5,4,2), which is normal and thus corresponds to the nonsingular

11 x 11 matrix K5. By augmenting K5 with I3 we obtain the similarity transformation

K5 of dimension 14 which may be applied to Ay.

rl 5 0 7

1 64 0

1 50 0

176 0

7411 0

_ 48/ 1 0

K 700 10

I3 53 01
88 o] 1
53 0
1
1
L 1.
Applying the transform to A4 yields
r 1 40 42| 86 457
1 92 34 72| 5992
1 10 46 32| 3784
1 87 34 37| 8439
Ay 15 40 11| 2531
ils 96 59| 6570
_ 4| D4 1 4 54| 80 86
As = K3 K5 = 1 91 6| 3328 (3:3)

Dy 14 75 1610
96| 0 81
12 0 16
96 46
12 51
L 1]

There are two important points to note. On the one hand, the construction of K3 is based
entirely on the 4-shifted form A4, and did not depend on the northeast block By. On
the other hand, the computation of As did require the premultiplication of B, by K. 5 L
In general, the premultiplication of offdiagonal blocks By by K 5 +11 could lead to a bad
complexity of the algorithm. It is for this reason that we apply the recursive formula (3.2)
to compute the Frobenius form instead of proceeding as in (3.3).

In Section 4 we define precisely what we mean by the Krylov extension of a k-shifted
form and give an algorithm for its computation that has cost O(k(n/k)*). As discussed
in the example above, for the algorithm to be able to continue the Krylov extension must
be normal, that is, must satisfy certain conditions (see Definition 4.1). In Section 6 we
show how to precondition the input matrix so that all the Krylov extensions computed
during the course of the algorithm will be normal with high probability.

In Section 5 we present an algorithm that takes as input a square matrix A € K™"*"
over a field, and either returns the Frobenius form of A or reports “fail.” The algorithm
transform the principal block of the work matrix from k-shifted to (k + 1)-shifted form
for k =1,2,...,n — 1 in succession. The running time of the algorithm is bounded by
O(Z;ll k(n/k)*¥), which can be shown to be O(n“) under the assumption that w > 2.
In Section 7 we establish that K = K9K3--- K, can be computed with O(n* loglogn)
field operations, thus showing that a similarity transform matrix to achieve the Frobenius
form can be computed in the same time.

10

4. Normal Krylov extension

Note that the number of non—trivial diagonal blocks in a k-shifted form A € K™*"™ is
given by m := [n/k], and that the dimension of the trailing block is n — (m — 1)k. If we
let v; = e(;_1)r41 for 1 <7 < m, then the block Krylov matrix

Ko)| K v, B)|- | K (01, B) K (v — (m — D) (4.1)
will be equal to I,,.

Definition 4.1. The Krylov extension of a k-shifted form A € K"*" with m := [n/k]
diagonal blocks is the lexicographically maximal sequence (dy,ds, ..., d,,) of nonnegative
integers that satisfies the following restrictions:

o d; <k+1foralll<i<m;

e K= [KA(vl,dl) ‘KA(UQ, dz)" . ‘KA(vadm)] has full column rank;
where v; = e(;_1)p41 for 1 <@ <m.
The Krylov extension is said to be normal if:
(1) dy+dy+ -+ +dy =nand (dy,ds,...,dy) is monotonically nonincreasing;
(2) The shifted form K 'AK has the shape

AlB
D

K 1AK =

)

where D is a shift-Hessenberg form (possibly of dimension zero) and A is (k + 1)-
shifted form of dimension 7 = di +- - - +d,;, where m is the minimal index such that
dm < k+ 1. Moreover, for each diagonal block of D, the polynomial corresponding
to that block divides all polynomials corresponding to offdiagonal blocks B, in
K~1AK above that diagonal block, so that

A\B A\
D F

)

where F' is the matrix obtained from D by zeroing out all offdiagonal blocks B..
(3) Frobenius(Diag(A, F')) = Diag(Frobenius(4), F)

Condition 1, which will be checked during computation of the Krylov extension, en-
sures that the matrix K corresponding to the Krylov extension is nonsingular and can be
used as as similarity transformation matrix. Condition 2 ensure that our recipe for recur-
sively computing the Frobenius form can be applied. Condition 3 is slightly stronger than
condition 2, and ensures that the final answer of the algorithm will indeed be in Frobe-
nius form, and not just a block diagonal matrix that is similar to the Frobenius form.
Condition 3 will be verified once for all Krylov extensions at the end of the algorithm.

We now describe an algorithm that computes the Krylov extension. Actually, the
algorithm is only guaranteed to work if the Krylov extension is normal. If condition 1 of
Definition 4.1 does not hold the algorithm will detect this and report failure. The idea of
the algorithm is straightforward. Consider the n x (n+m—1) matrix F obtained from the
matrix in (4.1) by extending the dimension of each Krylov slice from k to k + 1, except
for the last. Then E has all the columns of I,, plus an additional m — 1 columns from

11

A. Recall that the column rank profile of E is the lexicographically smallest subsequence
(i1,19,...,1,) of (1,2,...,m 4+ m — 1) such that columns i1, is, ..., i, have full rank.

The following result follows from Fact 2.1 by considering the shape of K~!AK in case
the Krylov extension is normal.

Lemma 4.2. If the Krylov extension (dy,ds,...,dy,) of a k-shifted form A € K"*" is
normal, then the submatriz of E comprised of the rank profile columns is equal to the
matriz K of Definition 4.1.

We next describe how to compute the column rank profile of the matrix F taking
advantage of its structure.

Computing the column rank profile

For the purposes of giving a particularly simple example, suppose we are computing
the Krylov extension of a 3-shifted form with degree sequence (3,3, 3), giving rise to the
matrix

110 20 7
1 1 21
112 22
131 23
E = 4 1 24 € 7/(97)7* 1,
5 125
0 26 1
0 27 1
0 28 1

The column rank profile of F can be computed using gaussian elimination, processing
each column in turn, starting from the first column to the last. Processing of a column
involves either determining that the column has already been zeroed out, and hence is
not included in the rank profile, or performing gaussian elimination to zero entries to the
right of the last non-zero entry in the column (the pivot). Processing of the first three
columns consists in zeroing the coefficients to the right of the ones. After processing the
fourth column the work matrix has the following shape:

The key observation now is that after processing columns 5 and 6, column 7 will be
zeroed out and is therefore not in the rank profile. After the elimination is completed the

matrix has the form

. .
1
1
131 2566
E = 14 11233
5 0
0 26 1
0 27 1
i 0 28 1]

-1 S
1
1
131
E= 14 1
15 0
0 261
0 27 1
L 0 28 0]

12

The rank profile is thus (1,2, 3,4,5,6,8,9,10).
Recall that m := [n/k] is the number of Krylov slices, and that the matrix F is
obtained from I, by extending the dimension of each Krylov slice from k to k + 1, except
for the last. Thus, there are only m — 1 columns of £ which are not known columns of
I,,. To take advantage of this structure, we perform the elimination on the n x (m — 1)
submatrix G of E formed by the m — 1 columns with index k + 1,2(k 4+ 1),...,(m —
2)(k 4+ 1), n. In the previous example
710 207
11 21
12 22
13 23
G=|1424
15 25
0 26
0 27
| 0 28]

It is sufficient to keep track of the structured columns by the vector ¢ of their indices: if
H is the submatrix of E formed by these n columns, then ([i] = j & H,; ; = 1. At the
beginning of the elimination H = I,,, so £[i| =i for 1 <i < n.
Now consider the processing of the ith column of G if we include pivoting.
e The coefficients Gyj); Vj < k x i are set to zero to simulate the elimination by the
corresponding structured rows to the left.
e The vector £ has to be updated with the permutation that may be used to find the
last non zero entry (the pivot) in the current column.
The elimination on G can be performed in time O(nm using LQUP decomposi-
tion Ibarra et al. (1982). The only modification is to incorporate the operations listed
above into the last recursion level of the algorithm (for m = 1). In Algorithm 1 (Extension)
we denote the subroutine just described by StructuredRankProfile. Since m = ©(n/k)
we have nm“~1 = O(k(n/k)*), giving the following result.

w—l)

Algorithm 1 Extension(A,n, k)

Require: A k-shifted form A € K™*™,
Ensure: The Krylov extension (dy,...,d,,) of A, or fail.
/* Fail will be returned if condition 1 of Definition 4.1 is not
satisfied. Fail will not be returned if the Krylov extension is normal.
*/
Form the n X (n+m) matrix E from (4.1) by extending the dimension of each Krylov
slice by one.
[71,...,Jr] ;== StructuredRankProfile(F, k).
if there exists a monotonically nonincreasing sequence (di,...,d,,) such that
[1,.--,4r] is equal to [1,...,dy, (k+1)+1,....(k+1)+dy, ..., (m-=1)(k+
+1,...,(m—1)(k+1)+1+d,,] then
return (dy,...,dp)
else
return fail.
end if

Theorem 4.3. Algorithm Eztension is correct. The cost of the algorithm is O(k(n/k)*).

13

5. Frobenius form via arithmetic progression

Let A € K™"*™ be a k-shifted form with a normal Krylov extension (dy, da, ... ,d,,). Let
K be the striped Krylov matrix associated to the extension. A key step of the algorithm
is the change of basis K1 AK. To perform this efficiently, the structure of the matrices
A, K and K~'AK have to be taken into account.

Note that all the columns of K ' AK will be known columns of I,, except for the at
most m columns {dy,d; + da,...,d; +d2 + -+ + dp}. Let Y be the submatrix of K
corresponding to these columns. To recover K ' AK we need to compute K 1 AY.

Let *, denote a permutation matrix. Up to a row and column permutations, which
may be deduced from the degree sequence of diagonal blocks in A, we have

Similarly, since K will have fewer than [n/(k + 1)] < m columns which are not iden-
tity vectors, and up to row and column permutations, which may be deduced from
(d1,da,...,dn), we have

K'AY = %,

This gives the following result.

Lemma 5.1. Let K € K™*" be the striped Krylov matriz corresponding to the uniform
Krylov extension (dy,ds, ..., dy,) of a k-shifted form A € K"*™. There exists an algorithm
Transform that takes as input (A, k, (dy,ds,...,dp)) and returns K=AK. The cost of
the algorithm is O(k(n/k)%) field operations from K.

Once K~ ' AK has been computed, the algorithm must perform some polynomial divi-
sions to check that condition 2 of Definition 4.1 is satisfied. Since the sum of the degrees
of the polynomials corresponding to the diagonal blocks is n, and the sum of the degrees
of the polynomials corresponding to offdiagonal blocks above any given diagonal block
is at most n, the total cost of all these division checks will be bounded by O(n?) field
operations assuming standard polynomial multiplication.

Assembling these components together gives Algorithm 2 (FrobeniusRec) that recur-
sively computes a block diagonal form similar to the input matrix or returns fail. Each
recursive step corresponds to the transformation from a k-shifted form to a k + 1-shifted
form.

Theorem 5.2. Algorithm 2 (FrobeniusRec) is correct. The cost of the algorithm is
O(n®).

14

Algorithm 2 FrobeniusRec(A4,n, k)
Require: A k-shifted form A € K"*™,
Ensure: return a diagonal Hessenberg form similar to A, or fail.
if n=%k or n =0 then
Return A
else
(d1,da,...,dn) := Extension(A4, k)
/* If the call to Extension fails then abort and return fail */
m := minimal index with d; < k+1
ﬁZ:dl +d2++dm
AlB
C\|\D
if C is not the zero matrix or D is not shift-Hessenberg then
abort and return fail
end if
Let F be the matrix obtained from D by zeroing out offdiagonal blocks B,
iB| [4]
if b
D ‘F
abort and return fail
end if
Return Diag(FrobeniusRec(A, i, k + 1), F)
end if

:= Transform(A, k, (d1,dz,...,dn))

then

Proof. The complexity is deduced from the following arithmetic progression:
n n

D k(n/k)Y =02 (1/k)*7 <0 Y (1/k)* 7 = ((w - 1)n¥ = O(n®)
k=1

k=1 k=1

sincew—1>1. O

To ensure that the algorithm will only fail with a bounded probability, the input matrix
A has to be preconditioned by a random similarity transformation. This precondition
also ensures that condition 3 of Definition 4.1 holds with high probability. This gives
Algorithm 3 (Frobenius). The probability analysis of this algorithm will be detailed in
Section 6; the cost of the algorithm is still O(n®) field operations.

6. Preconditioning

Let A € K"*™ be an arbitrary matrix. In this section we prove that Algorithm 2
(FrobeniusRec) will not fail when given as input the tuple (B,n,1,z), where B =
V~1AV and V is filled with algebraically independent indeterminates. Upon special-
ization of the indeterminates with random field elements, as is done by Algorithm 3
(Frobenius), a bound of 1/2 on the probability of failure will follow due to the Schwartz
/ Zippel Lemma (Schwartz, 1980; Zippel, 1979).

The proof of the following theorem is similar to and inspired by (Villard, 1997, Proof
of Proposition 6.1). Note that for convenience we assume that the Frobenius form of A

15

Algorithm 3 Frobenius(4,n)

Require: A matrix A € K"*",
Ensure: return the Frobenius form of A, or fail.
/* Fail will be returned with probability at most 1/2. We require #K >
2n?. */
A := a subset of K with #A > 2n?
Choose V € K"*" with entries uniformly and randomly from A.
B:=V~'AV /* If V is singular then abort and return fail */
F := FrobeniusRec(B,n,1)
if F' is not in Frobenius form then
abort and return fail
end if
Return F

has n blocks, some of which may trivial (i.e., 0 x 0). In the statement of the theorem this
means that some of the f, and d, may be zero.

Theorem 6.1. Let A € K"*" have Frobenius form with blocks of dimension fi > --- >
fn, and let vy, ..., v, be the columns of a matriz V' filled with algebraically independent
indeterminates. Suppose (di,...,dy,) is monotonically nonincreasing sequence of nonneg-
ative integers. Then

K = [Ka@rd)| | Ka(vn.do)]
has full column rank if and only if 2321 d; < Z;Zl fj foralll <i<n.
Proof. The “only if” direction follows because for any block X of i vectors, even a generic
block X = [v; | -+~ | v;], the dimension of Orb4(X) is at most >°°_, fi.

To prove the other direction we specialize the indeterminates in the vectors v;. In
particular, it will be sufficient to construct a full column rank matrix

k=[] -]

over K such that each K; is in Krylov form and has dimension d;, 1 < i < n. Consider a
change of basis matrix U € K"*" such that U~ AU is in Frobenius form. Then

U= {KA(ulvfl)"" ‘KA(unvfn)}
is nonsingular. Let
=[] |5
be the submatrix of U such that each K; has the form

K = | Ka(u,min(fi,d0))|E: |

where E; has dimension d; — min(f;,d;), and the columns of Ey, Es,..., E, are filled
with unused columns of U, using the columns in order from left to right. Then K has
full column rank and each K; has the correct dimension. Our goal now is to demonstrate
the existence of an invertible matrix 7" such that K = KT has the desired form. We will
construct T = I + >_7" ,(T; — I) where each T; is unit upper triangular. For all ¢ with

16

d; < f; no transformation of K; is required: set T; = I. If f; < d; then

Ki = [KA(uufi) Ka(A% ujy,ta)|- - ‘KA(ASkujk7tk‘)i|

where, by construction of the E;, we have j; < jo < -+ < jg, 81 = fj,—s;for1 <1 < k-1,
and t; < fi. Using the property 23:1 d; < 23:1 fj we have ji <. Since (d1,...,d,) is
monotonically nondecreasing and K 4(v;, d;) is a submatrix of K; for 1 <1 < k, it follows
that

s;>d; for 1 <<k, (6.1)
We can write K; as the sum of the following k + 1 matrices:

Ki:[KA(ui,fi) 0,...,0} (6.2)

k—1
+ [07...,0‘KA(ASlujzvfjl - s1)

=1

07,__,0] (6.3)

+ [0, 0| Ka(auy, 1) | (6.4)

To bring the matrix in (6.2) to Krylov form we may add suitable linear combinations of
the first f; columns to the last d; — f; columns to obtain

{KA(Uu i)

Ka(Aluid; —)]

This is possible since the i*" invariant subspace has dimension f;. Denote by Ti(l) the
unit upper triangular matrix which effects this transformation on K.

Now consider the matrix in (6.4). The Krylov space needs to be extended on the left
to fill in the zero columns as follows:

[KA(ASujk,Sk — S) KA<AskUjk,tk)

From (6.1) we may conclude that s > 0. Since K4(A%uj,,s, — s) is a submatrix of
[[‘(1‘. .. ‘Ki—l }, we need only copy former to latter columns. Denote by Ti(2) the unit
upper triangular matrix which effects the copying on these columns. Similarly, there
exists a unit upper triangular matrix Ti(?’) which extends the Krylov sequence of the
matrix in (6.3) to the left and right. Let T; = Ti(l) + Ti(Q) + Tl-(g). |

In the following corollary the matrix A and V' are as in Theorem 6.1, that is, A € K™"*"
has Frobenius form with blocks of dimension f; > fo > -+ > f,, and V is an n X n matrix
filled with indeterminates.

Corollary 6.2. Let B := V1AV and k satisfy 2 < k < n. The lezicographically mazimal
sequence (dy,da, ..., d,) of nonnegative integers such that:
o d; <k foralll<i<m, and

o K = [KB(el,dﬂ‘KB(ez,dz)" . ‘KB(emdn)} has full column rank,
will satisfy dy + do + - -+ + d,, = n and can be written as

(d17d2;' adn) = (kak7"',kad’rﬁ7fﬁl+17fﬁl+2a"'afn)

17

with k > dg > fms1. Moreover,

Al *

D

K 'BK =

is in shifted form, where A is in (k + 1)-shifted form of dimension i = dy + -+ + dp,
and D 1is in shift-Hessenberg form.

Proof. By Theorem 6.1, and because (d1, da, . . ., d,y,) is chosen lexicographically maximal,
the index m will be the minimal integer for which mk > fi+ fo-+- - -+ fm, and in particular
(m—-1k+dn = fi+ fo+ -+ fm- But Theorem 6.1 also gives that (m — 1)k <
fi+ fo+ -+ fimn—1. Substituting this inequality into the previous equality shows that
dm > fm > fm+1. Similarly, because (dy,ds, .. ., d,) is chosen lexicographically maximal,
the inequality of Theorem 6.1 will hold with equality for m + 1 < i < n, and it follows
that d; = f; for m + 1 < i < n. The claim about the shape of K~'BK now follows from
Fact 2.1. O

Each entry of VK = [KA(UI; dl)‘... ‘KA(’Un7dn):| is a linear combination of inde-
terminates of V. It follows that the determinant of V K is a nonzero polynomial in the
indeterminates of V' with total degree at most n.

Let KM = I, and K® be the matrix K of Corollary 6.2 for k = 4, 2 < i < n. Given as
input (B,n,1), Algorithm 2 (FrobeniusRec) will perform a change of basis at each step,
computing the matrix Kj,; = (K®)~1K®*+1D corresponding to the Krylov extension of
the principal block Ay, of Ay, i=1,2,...,n—1. Let A be the product of the determinant
of V and each matrix K. Then A is a nonzero polynomial of total degree bounded by
n?. The next result now follows from the Schwartz / Zippel Lemma.

Theorem 6.3. Algorithm 2 (Frobenius) will return fail with probability at most 1/2.

We remark that Corollary 6.2 captures the notion of what we might call a generic
Krylov extension, very similar to that of generic degree profile for matrix minimal poly-
nomials studied by Villard (1997). We end this section with some examples of generic
Krylov extensions. The matrix used for the worked example in Section 3 had Frobe-
nius form with blocks of dimension [5,4,2,2,1], and the generic Krylov extension was as
follows:

k=1[(1,1,1,1,1,1,1,1,1,1,1,1,1,1)
k=2(22,2,2222)
k=3/(3,3,3,3,2)

k=4[(4,4,3) ®[2,1]
k=5|[5,4,2,2,1]

The generic Krylov extension for an input matrix whose Frobenius form has blocks of

18

dimension [8,5,5,2, 1] will be as follows:

k=1/(1,1)
k=2/(2,2,2,2,2,2,2,2,2,21)
=3((3,3,3,3,3,3,3)

k=4[(4,4,4,4,4,1)

k=5((5,5,5,5,1)

k = 6[(6,6,6) ® 2, 1]

k=7[(7,6)®[52,1]

k= 38|[8,5,5,2,1]

Note that once some blocks have been completed, the number of blocks in the work
matrix will no longer decrease.

7. Computing a similarity transformation matrix
In this section we establish the following complexity result.

Theorem 7.1. There exists a Las Vegas algorithm that takes as input a matric A € K"*™
over a field K with #K > 2n2, and returns as output a U € K™*™ such that U1 AU
is in Frobenius form. The algorithm uses an expected number of O(n*loglogn) field
operations.

To establish Theorem 7.1 it will be sufficient to compute in time O(n*loglogn) a
matrix W € K"*™ such that W—'AW is in quasi-Frobenius form: a shift-Hessenberg
form that has the same diagonal blocks as the Frobenius form of A. In particular, a
matrix that transforms a quasi-Frobenius form to Frobenius form can be computed with
O(n?) field operations. Suppose

CCl an Bblk
C62 Bb%

Ce,

is in quasi-Frobenius form with degree sequence (dy,ds,...,dg). Let D; = dy +do+- -+
d;—1 for 1 < ¢ < k. Because H is in quasi-Frobenius form, c¢; divides b;; and the quantity

hij == —b;;/c; is a polynomial for 1 <i < j < k. Let
j—1
Vj = €p; + ZBﬂfDihij S K”><1
i=1

for 1 < j < k. Giesbrecht (1993, Section 2.3) shows that that matrix

T= {KH (v1,d1) ‘KH (va,ds) ‘ ‘KH Uk,dk)}GKnxn

19

is such that T-'HT will be in Frobenius form. For example, the transformation matrix
T corresponding to the quasi-Frobenius form shown in (3.3) is

r1 57 55 |11 |457
1 57 38 55| 6 11|4

1 57 |86 38|72 6|27

1 57| 86| 72|66

1

I 38 (32 7
T_ 1 22 38|81 32|59
- 1 22| 81|87

1 81

1 46

1

As this example shows, because H is quasi-Frobenius and degh;; < d; —d; — 1 for
1 <i < j <k, all vectors in the Krylov slice Ky (v;,d;) are shifts of the first vector v;,
1 <4 < k. Thus, to write down T we only need to compute the h;;, which we noted in
Section 5 can be accomplished with O(n?) field operations.

A call to Algorithm 3 (Frobenius) that does not return fail will compute the matri-
ces V, A, and K}, and the Krylov extension of A for k = 2,3,...,n, as shown in the
following simplified, iterative version of the algorithm.

R

Al = VilAV;
for k=1ton—1do
A | By, _
Write Ay, = with Ay in k-shifted form and Dy, in shift-Hessenberg form;

Dy,
Compute the Krylov extension of the principal block Ay, of Ay;
Kj11 := Diag(Ky, I) € K"*", the matrix corresponding to the Krylov extension;
Apqr = Kk__:lAkKk-&-l
od

Note that many of the K; matrices may be equal to I,. In any case, the matrix
K = K3K3 - -+ K, will be such that (VK) ' A(VK) is in quasi-Frobenius form. Our goal
is thus to compute K. For 2 < k < s <n, let K} s denote the subproduct K K41 --- K.
First we show how to compute K}, ¢ for s = O(k“~!) in time O(n®).

Lemma 7.2. For 2 < k <n, let s = min([k*"1],n). Then Kj s can be computed with
O(n®) field operations from K.

Proof. Let m := [n/k], and let v; = e(;_1)p41 for 1 <i < m. Let (dy,da,...,dy,) be the
first m elements of the lexicographically maximal sequence of Corollary 6.2. Note that
(d1,da,...,dny) is equal to the Krylov extension of A;_;. Then

K s = [KAk(Ul,dl)‘KAk(v27d2)‘~ .- ‘KAk(vm,dm)

Let V = {v1‘v2‘-~- ‘U7n:|‘ Considering the shape of A and choice of v;, we have

Ka, (viydi) = Kpiag(a,,n(vidi), 1 < i < m. Since each d; < k, we may compute all

20

required columns of Ky s by computing Diag(fl};,f)V for i = 1,2,...,s. Since premul-
tiplying V' by Diag(Ag,I) can be done in time O(n“(1/k)“~!) field operations, and
s = O(k*~1), the overall cost is as stated. O

Now compute K = K ,, as follows.

K :=1I,;
k:=2;
while £ <n do
s := min([k“~1], n);
Compute K}, s using the algorithm of Lemma 7.2;
K = KKy g;
k:=k+s+1
od

The value of k increases at least as rapidly as the sequence 291, 2@=1* ow=1%
and thus will exceed n after O(loglogn) iterations. Since each loop iteration has runtime
O(n¥), this shows that K may be computed in time O(n* loglogn). Compute W := VK,
the quasi-Frobenius form H := W—'AW, and then the matrix T that transforms H to
Frobenius form. Finally, set U := WT. Then U is such that U ! AU is in Frobenius form.
This completes the proof of Theorem 7.1.

8. Implementation

We have implemented a slightly simplified version of the Frobenius form algorithm that
computes the characteristic polynomial in a Las Vegas fashion. Algorithm 4 (CharPolyRec)
avoids some of the divisibility checks because these are only required to certify the Frobe-
nius form. The running time of Algorithm 4 (CharPolyRec) will not be improved com-

Algorithm 4 CharPolyRec(A,n, k,x)
Require: A k-shifted form A € K"*™ an indeterminate x.
Ensure: return detzl — A, or fail.
if n =0 or n =k then
Return det(z — A)
else
(d1,da,...,dy) ;= Extension(A4, k)
/* If the call to Extension fails then abort and return fail */
m := minimal index with d; < k+1
ni=d +dy+-+dn
A|B
C|D
then abort and return fail */
Return CharPolyRec(A, 7,k + 1,2) x det(zI — D)
end if

:= Transform(A, k, (d1,dz,...,dy)) /* If C is not the zero matrix

pared to Algorithm 2 (FrobeniusRec) since the divisibility checks only cost O(n?), but
the change allows us to reduce the cost of the preconditioning phase by introducing

21

a block Krylov preconditioner. We use the dimension of the blocks as a parameter to
optimize the efficiency. Since the optimal value for this parameter is highly architecture-
dependant it has to be set experimentally. We present experiments comparing the com-
putation speed in practice our implementation with, to the best our our knowledge, the
two fastest existing softwares for computing the characteristic polynomial.

The implementation described here is part of the FFLAS-FFPACK library ! . This C++
library provides the efficient basic routines such as matrix multiplications and LQUP
decomposition that make use of the level 3 BLAS numerical routines Dumas et al. (2002,
2004), and Strassen-Winograd fast matrix multiplication algorithm.

8.1. Efficient preconditioning

Although it does not affect the asymptotic complexity, the preconditioning phase
V=LAV of Algorithm 3 (CharPoly) is expensive in practice. First note that this precon-
ditioning consists in replacing the identity vectors in the computation of the first Krylov
extension of Algorithm 4 (CharPolyRec) by n random vectors. Our approach is to reduce
the number of random vectors and combine the algorithm with a standard block Krylov
method. More precisely we compute a block Krylov matrix M = [U |AU] . .. \AcflU]
where U is formed by [n/c] random vectors, for a given parameter c.

e If this matrix is non singular, then the matrix M ~*AM will be in c-shifted form (up
to row and column permutations) and Algorithm 4 (CharPolyRec) can be called with
shift parameter k = ¢ instead of k = 1.

o If r = rank(M) < n then the first linearly independent columns of M can be com-
pleted into a non singular matrix M by adding n — r columns at the end. This matrix
transforms A into the block upper triangular matrix

H, %
R

M UAM =

where the 7 x r matrix H. is in c-shifted form (up to row and column permutations). Its

characteristic polynomial obtained as the product of the characteristic polynomials of

the matrices H, and R, computed recursively, with shift parameter ¢ and 1 respectively.

Lemma 8.1 indicates how the block Krylov matrix M can be completed into a non-
singular matrix M.

Lemma 8.1 (Generalization of (Dumas et al., 2005, Theorem 2.1)). Let M be
an x n matriz of rank r and (L,Q,U, P) be the LQUP decomposition of M. The n xn
matriz M defined by
_ I, 0
M= | MQ pT
0 Ly—r

is mon singular and its first v columns are the rank profile columns of M.

L This library is available online at http://www-1jk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS or
within the LinBox library http://www.linalg.org

22

Proof. First note that QT LQ is lower triangular, non singular and has the following
shape

Ly
L2 Infr

Therefore QT M = QT LQU P has the generic rank profile: all its leading 4 x 4 principal
minors are non zero. In particular its first r rows are the first linearly independent rows
of MT.

Let us write

QTLQ =

U, Uy
0 0

7

where U; is r X r.
Considering the product

L U, U Lo|Q"™ |
! PP p= =3 (8.1)

0 Inv| | O Loy [o I,H]P

one sees that M is non singular. O

Algorithm 5 (CharPoly) gives the algorithm with this modified preconditioning step.
Again, note that only ¢ columns of the matrix H. have to be computed, which makes
the computation of B much cheaper.

Algorithm 5 CharPoly(A,n, z)

Require: A matrix A € K"*" an indeterminate z, a preconditioning parameter c.
Ensure: det(zI — A), or fail.

/* Fail will be returned with probability at most 1/2 if #K > 2n? */

A := a subset of K with #A > 2n?

m = [n/c]

Choose V € K"*™ with entries uniformly and randomly from A.

Compute the n x (c[n/c]) matrix M = [V[AV]|...|A“" V]

Compute (L, Q, U, P), the LQUP decomposition of M. Let r = rank(MT)

_ I, 0

M= | MQ pT

0 -

H. %

R
Return CharPolyRec(H,.,n,c,x) x CharPolyRec(R,n,0, z)

B:=M "AM =

As c gets larger, the width of the slices of the block Krylov matrix K become smaller.
In the extreme case ¢ = n, the algorithm computes the usual Krylov matrix of only one
vector. In this case, the algorithm is equivalent to the algorithm LU-Krylov presented
in (Dumas et al., 2005, algorithm 2.2). Assuming w = 3 the leading term in the complexity
of algorithm LU-Krylov is competitive (2.667n3) but the algorithm does not fully exploit

23

matrix multiplication (as it also performs n matrix-vector products). At the opposite,
the case ¢ = 1 corresponds to Algorithm 3 (CharPoly). It fully reduces the problem to
matrix multiplication, but involves more field operations: the only preconditioning phase
VLAV already costs 4.667n> assuming w = 3. Therefore the preconditioning parameter
c is used to balance the computation between these two algorithms.

Finding the optimal preconditionning paramater, n=5000

230 T T
1 block of order 5000 ——
220 -1 5 blocks of order 1000 4
| 10 blocks of order 500 —x—
210 | B

200 | | .
190 || 1
180 |
170 |

Time (s)

160
150
140
130

120 Il Il Il
0 50 100 150 200

Preconditionning parameter c

Fig. 1. Finding the optimal preconditioning parameter ¢ for matrices of order 5000, Itanium2-64
1.3Ghz, 192Gb

Figure 1 displays the computation time of the algorithm for different values of c.
Three matrices of order 5000 are used: they differ in the number of blocks in their
Frobenius form. For ¢ < 55, the timings are decreasing when ¢ increases, which shows
the advantage of using the block Krylov preconditioning. Then the timings increase
again for larger c. In these cases, the dominant operation is the computation of the block
Krylov matrix M using many matrix multiplication with rectangular dimensions. Now
the matrix multiplication routine is less efficient with these dimensions: computing c
n X n by n x n/c products is slower than computing one n x n by n x n product for
two main reasons: worse data locality, and fewer gain of the sub-cubic algorithm. The
optimal value ¢ = 55 gives here the best timings. This value is not only depending on the
matrix dimension, but also on the architecture and the BLAS that are used, since it is
linked with the ratio between the efficiency of the matrix vector product and the matrix
matrix multiplication.

Note that the algorithm gets faster as the dimension of the largest block decreases,
since it reduces the total number of iterations in the algorithm.

8.2. Timing comparisons

We now compare the running time of our implementation of Algorithm 5 CharPoly
with that of other state of the art implementations of characteristic polynomial algo-
rithms. The routine LU-Krylov, available in the FFLAS-FFPACK and LinBox, libraries
was shown to be the most efficient implementation in most cases Dumas et al. (2005).

24

For all the experiments we used the finite field Z /(547 909). On one hand, the prime is
large enough to ensure a high probability of success; none of the computations returned
fail. On the other hand, the prime is small enough so that the FFLAS-FFPACK routines
can make efficient use of the level 3 BLAS subroutines, using delayed modular reductions
with the 53 bits of the double floating point mantissa. We used the C BLAS provided
by the ATLAS-3.7 library, and the version 4.1 of the gcc compiler.

n magma-2.13 | LU-Krylov | New algorithm

100 0.010s 0.012s 0.016s

300 0.20s 0.26s 0.27s

800 4.84s 4.00s 2.79s

3000 243.0s 181.3s 77.0s

5000 1116s 854.5s 283.3s
10000 9805s 6904s 2513s
15000 30597s 21302s 7478s

Table 1. Computation time with random dense matrices over Zsargog, Athlon-865, 1.8Ghz,
64Gb

Table 1 presents the timings for the computation of the characteristic polynomial of
matrices having only one block on their Frobenius form. The preconditioning parameter
¢ has been set to 85 for these experiments. The new algorithm improves the computation
time of both magma and LU-Krylov for dimension larger than 300. This improvement
factor increases with the dimension and reaches 4.09 with magma and 2.84 with LU-Krylov
for n = 15000.

Figure 2 presents these timings in a log scale graph. The slopes of the two lines, which
corresponds to the exponent of their complexity, are both close to 3. However, the slope
of the new algorithm is slightly lower, indicating the effective use of sub-cubic matrix
multiplication for this computation.

9. Conclusions

We have presented a randomized algorithm for computing the Frobenius form of an
n X n matrix over a field that improves the worst case time complexity for this problem
by a factor of logn, and matches the complexity of matrix multiplication. The algorithm
is randomized of the Las Vegas type and fails with a probability less than 1/2 provided
that the field has more than 2n? elements. If the field is too small we can work over an
extension but a better solution (currently) would be to apply an alternative algorithm
such as the Frobenius form algorithm of Eberly (2000). For comparison, Eberly’s Las
Vegas Frobenius form algorithm has expected cost O(n®logn), no restrictions on the
field size, and it computes a similarity transform matrix as well as the form itself. We
have established that a similarity transform matrix can be computed with an additional
O(n*lognlogn) field operations, but again we require the field to have at least 2n?
distinct elements.

The main open problem we identify is to eliminate the condition on the field size
while maintaining the cost bound O(n*): ideally the algorithm could be derandomized

25

Comparison for random dense matrices Z/(547909)
100000

New algorithm ——
LU-Krylov

10000 Magma —— 3

1000 F 4

100 ¢ E

Time (s)

10 ¢ E

0.1 ¢ E

0.01 w !
100 1000 10000

Matrix order

Fig. 2. Timing comparison between the new algorithm and LU-Krylov, logarithmic scales,
Athlon-865 1.8Ghz, 64Gb

entirely. The currently fastest deterministic algorithm has cost O(n*(logn)(loglogn))
(Storjohann, 2000, 2001).

References

Dumas, J.-G., Gautier, T., Pernet, C., 2002. Finite field linear algebra subroutines. In:
Mora, T. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
'02. ACM Press, New York, pp. 63-74.

Dumas, J.-G., Giorgi, P., Pernet, C., 2004. Finite field linear algebra package. In: Gutier-
rez, J. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC 04.
ACM Press, New York, pp. 119-126.

Dumas, J.-G., Pernet, C., Wan, Z., 2005. Efficient computation of the characteristic
polynomial. In: Kauers, M. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Com-
putation: ISSAC ’'05. ACM Press, New York, pp. 140-147.

Eberly, W., 2000. Asymptotically efficient algorithms for the Frobenius form. Tech. rep.,
Department of Computer Science, University of Calgary.

Gantmacher, F. R.; 1990. The Theory of Matrices. Vol. 1. Chelsea Publishing Company,
New York, NY.

Giesbrecht, M., 1993. Nearly optimal algorithms for canonical matrix forms. Ph.D. thesis,
University of Toronto.

Giesbrecht, M., 1995. Nearly optimal algorithms for canonical matrix forms. STAM Jour-
nal of Computing 24, 948-969.

Giesbrecht, M., Storjohann, A., 9 2002. Computing rational forms of integer matrices.
Journal of Symbolic Computation 34 (3), 157-172.

Hoffman, K., Kunze, R., 1971. Linear Algebra. Prentice-Hall, Englewood Clikffs, N.J.

26

Ibarra, O., Moran, S., Hui, R., 1982. A generalization of the fast LUP matrix decompo-
sition algorithm and applications. Journal of Algorithms 3, 45-56.

Kaltofen, E., Krishnamoorthy, M. S., Saunders, B. D., 1990. Parallel algorithms for ma-
trix normal forms. Linear Algebra and its Applications 136, 189-208.

Keller-Gehrig, W., 1985. Fast algorithms for the characteristic polynomial. Theoretical
Computer Science 36, 309—317.

Schwartz, J. T., 1980. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27, 701-717.

Storjohann, A., 1998. An O(n?3) algorithm for the Frobenius normal form. In: Gloor, O.
(Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’98. ACM
Press, New York, pp. 101-104.

Storjohann, A., 2000. Algorithms for matrix canonical forms. Ph.D. thesis, Swiss Federal
Institute of Technology, ETH—Zurich.

Storjohann, A., 2001. Deterministic computation of the Frobenius form (Extended Ab-
stract). In: Proc. 42nd Annual Symp. Foundations of Comp. Sci. IEEE Computer
Society Press, Los Alamitos, California, pp. 368-377.

Storjohann, A., Villard, G., 2000. Algorithms for similarity transforms. extended ab-
stract. In: Mulders, T. (Ed.), Proc. Seventh Rhine Workshop on Computer Algebra:
RWCA’00. Bregenz, Austria, pp. 109—118.

Villard, G., April 1997. A study of Coppersmith’s block Wiedemann algorithm using
matrix polynomials. Tech. Rep. RR 975-1-M, IMAG Grenoble France.

Zippel, R., 1979. Probabilistic algorithms for sparse polynomials. In: Proc. EUROSAM
79. Marseille, pp. 216-226.

27

