CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Further topics (with poss - routing - Travelling Salesman - Frechet distance and - reconfiguration - online shortest paths - thick paths, airspace - betweenness central - etc.	ible papers to suggest): Problem (today) d polygon sweeping s e problems lity	
Deadline for selecting a p	paper or suggesting a topic from above	e: Wednesday October 15.
Schedule:		
Mon Oct 6 Wed Oct 8 Hamide		
Mon Oct 13 - Thanksgiving Wed Oct 15 Mustaq Ahmed	d	
Mon Oct 20 Philippe Nath Wed Oct 22 Khaled	an (or Wed.)	
Mon Oct 27 Wed Oct 29		

CS 860 Fall 2014 Lecture 9 Anna Lubiw, U. Waterloo Travelling Salesman Problem. TSP is NP-complete Approximation algorithms: 2 metric Euclidean general no constant-factor, approx (unless P=NP) vertices are pts. in plane distance = Euclidean 1.5 approx PTAS - polynomial time approx scheme recent progress 198 - Mitchell Approximating graphic TSP by matchings -Arora T Momke, O Svensson - Foundations of Computer Science (..., 2011 - ieeexplore.ieee.org Abstract—We present a framework for approximating the metric TSP based on a novel use of matchings. Traditionally, matchings have been used to add edges in order to make a Tcould present given graph Eulerian, whereas our approach also allows for the removal of certain edges ... Cited by 54Related articlesAll 21 versionsCiteSave From: http://scholar.google.ca/scholar?hl=en&g=M%C3%B6mke+and+Svensson&btnG=&as sdt=1%2C5&as sdtp= +related papers

CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Travelling Salesman Proble	m with neighbourhoods.	
Approximation algorithms for A Dumitrescu, JSB Mitchell - Journal of In the Euclidean TSP with neighborhood (neighborhoods) and we seek a short the classical Euclidean TSP, TSPN is <u>Cited by 145</u>	TSP with neighborhoods in the plane of Algorithms, 2003 - Elsevier ods (TSPN), we are given a collection of n regions est tour that visits each region. As a generalization of also NP-hard. In this paper, we present new	
From: http://scholar.google.ca/scholar?cluster=22	201776311898066735&hl=en&as_sdt=0.5 + later P	apers
qt		

CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Touring a sequence of polygons		
Touring a sequence of polygons M Dror, A Efrat, A Lubiw, JSB Mitchell of the t Abstract Given a sequence of k polygons in the seek a shortest path that starts at s, visits in orde polygons are disjoint and convex, we give an alg Cited by 85Related articles All 11 versions Cite Sav From: http://scholar.google.ca/scholar?hl=en&q=touring+a+sequence	hirty-fifth annual ACM, 2003 - dl.acm.org plane, a start point s, and a target point, t, we r each of the polygons , and ends at t. If the porithm running in time O (kn log (n/k)), /e	
Problem: Given a sequence of <i>i</i> shortest path that starts at <i>s</i> , v	k polygons in the plane, a start point <i>s</i> risits the polygons in order, and ends a	, and a target point, <i>t</i> , find a target point, <i>t</i> , find a target point, <i>t</i> , find a
Algorithm: O(<i>nk</i> log <i>n</i>) for disjoint convex O(<i>nk</i> ² log <i>n</i>) for non-disjoint co	polygons. <i>n</i> = total number of vertice nvex polygons, with boundary constra	s. int on the path
Query for shortest path to t in	$O(k \log n + output-size)$	
\bullet s P_1	P_2 t	

CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Touring a sequence of poly	gons	
Touring a sequence of polygo M Dror, A Efrat, A Lubiw, JSB Mitchell Abstract Given a sequence of k polygons seek a shortest path that starts at s, visits polygons are disjoint and convex, we givu Cited by 85Related articlesAll 11 versions From: http://scholar.google.ca/scholar?hl=en&q=tourin	of the thirty-fifth annual ACM, 2003 - dl.acm.org in the plane, a start point s, and a target point, t, we in order each of the polygons , and ends at t. If the e an algorithm running in time O (kn log (n/k)), CiteSave g+a+sequence+of+polygons&btnG=&as_sdt=1%2C5&as_sdtp=	
Problem: Given a sequence shortest path that starts a	e of <i>k</i> polygons in the plane, a start point <i>s</i> , t <i>s</i> , visits the polygons in order, and ends at	and a target point, t, find a
Algorithm: O(<i>nk</i> log <i>n</i>) for disjoint cor O(<i>nk</i> ² log <i>n</i>) for non-disjoi	nvex polygons. $n =$ total number of vertices nt convex polygons, with boundary constrai	s. nt on the path
Query for shortest path to	t in O(k log n + output-size)	
• <i>s</i> <i>P</i> ₁	P_2 t	

CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Touring a sequence of polygo	ns	
Problem: Given a sequence of shortest path that starts at s	of k polygons in the plane, a start point, visits the polygons in order, and ends	s, and a target point, t, find a at t.
Algorithm:		
$O(nk^2 \log n)$ for non-disjoint	convex polygons, with boundary constr	raint on the path
Query for shortest path to t i	n O(k log n + output-size)	
	• S	P
		13
	Pa	F
	P_1	-3
		P
		D
		l

CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Touring a sequence of polygons		
Two main ideas for the algorith - locally shortest paths are u - although the shortest path	m Inique map is too big, we can use a "last s	step shortest path map"
shortest path map — divide pla	ne into regions by combinatorics of	shortest path
	u	
	s	
"through region" s, q q	Ubounce through	5
u s	u s, v, q	u s q s $(u,v), q$
		edge U, v

CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Touring a sequence of polygon	S	
last step shortest path map — shortest path	divide plane into regions by combinat	corics of the last step of the
answering queries using the la	st step shortest path map	
O(k log n) to find shortest p	oath length	
$O(k \log n + output-size)$ to	find shortest path	
need:		
planar point location reflect point in line		
don't need distance comput	ations to find shortest path (so no squ	uare roots)

CS 860 Fall 2014	Lecture 9	Anna Lubiw, U. Waterloo
Touring a sequence of polygons	— Algoirithm	
Add polygons one by one, comp	uting the last step shortest path ma	ip for each
	SK \	
	FRIT	A T
	- u	
	T	
S	K	
	K V V	
find T = "first contact" point	nts of P find the rays le	aving vertices of T
Claim. T forms a chain.	Claim. rays lea	aving T form a "starburst", i.e. there
	is a unique ray	to each point in the plane
	Thus locally sh	ortest paths are unique
Just need to query every v	vertex of <i>Pi</i> with respect to polygon :	sequence P ₁ P _{i-1}
$O(k \log n)$ per query. Tota	$1 O(nk \log n).$	

5 860 Fall 2014	Lecture 8	Anna Lubiw, U. Waterloo
geometric routing		
Routing with guaranteed d <u>P Bose</u> , <u>P Morin</u> , <u>L Stojmenović</u> , <u>J Ur</u> In contrast, our algorithms always recipient(s) so long as the unit graph a message Page 3. ROUTING W <u>Cited by 1833Related articlesAll 52 v</u> From: <u>http://scholar.google.ca/scholar?hl=en&g</u>	elivery in ad hoc wireless networks cutia - Wireless networks, 2001 - dl.acm.org guarantee that a packet will be delivered to (all of) its intend U(S) is static and connected during the time it takes to route ITH GUARANTEED DELIVERY IN AD HOC rersionsCiteSave =Routing+with+guar-+anteed+delivery+in+ad+hoc+wireless+networks&btnG=/	led € 8as_sdt=1%2C5&as_sdtp=
in unit disk graph.		
Online routing in triangula P.Bose, P.Morin - SIAM journal on cr We consider online routing algorith straight line graphs. Our results inclu one that works for all Delaunay trian Cited by 87Related articlesAll 2 yers	tions mputing, 2004 - SIAM ms for routing between the vertices of embedded planar de (1) two deterministic memoryless routing algorithms, gulations and the other that works for all regular ionsCiteSave	- plonar triangulations
From: <u>http://scholar.google.ca/scholar?hl=en&q</u>	<u>=Online+routing+in+triangulations&btnG=&as_sdt=1%2C5&as_sdtp=</u>	

CS 860 Fall 2014	Lecture 8	Anna Lubiw, U. Waterloo
routing		
for an abstract graph, w	e can embed it using "virtual coordinates"	' and use geometric routing
[HTML] On a conjecture re CH Papadimitriou, D Ratajczak - We conjecture that any planar 3 way that for any nodes s and t, th decreases monotonically along th Cited by 107Related articlesAll 7 From: http://scholar.google.ca/scholar?hl=e	elated to geometric routing, Theoretical Computer Science, 2005 - Elsevier -connected graph can be embedded in the plane in such a here is a path from s to t such that the Euclidean distance to t he path. A consequence of this conjecture would be that versionsCiteSave en&q=On+a+conjecture+related+to+geometric+routing&btnG=&as sdt=1%2C5&as sd	- conj.: any 3-connected graph can be embedded s.t. greedy routing works
Some results on greedy T Leighton, <u>A Moitra</u> - Discrete & Abstract Geographic Routing is a locations as addresses for the pu be both simple to implement and <u>Cited by 70Related articlesAll 21</u> From: http://scholar.google.ca/scholar?hl=e	Computational Geometry , 2010 - Springer family of routing algorithms that uses geographic point proses of routing. Such routing algorithms have proven to heuristically effective when applied to wireless sensor versionsCiteSave an&q=Some+Results+on+Greedy+Embeddings+in+Metric+Spaces&btnG=&as_sdt=1%	- positive results but # bits for coords. toe high (routing tables better)
Succinct greedy drawin P Angelini, G Di Battista, F Frati Abstract A greedy drawing is a g every pair of nodes. A path (v 0, v for i= 1,, m. Greedy drawings Cited by 3Related articlesAll 3 ve From: http://scholar.google.ca/scholar?hl=e	Igs do not always exist Networks, 2012 - Wiley Online Library graph drawing containing a distance-decreasing path for v 1,, vm) is distance-decreasing if d (vi, vm)< d (v i-1, vm), easily support geographic greedy routing. Hence, a ersionsCiteSave en&q=Succinct+greedy+drawings+do+not+always+exist&btnG=&as sdt=1%2C5&as s	or trees

CS 860 Fall 2014 Lecture 8 Anna Lubiw, U. Waterloo competitive online routing want length of path found using local routing < c shortest path [HTML] Competitive online routing in geometric graphs P Bose, P Morin - Theoretical Computer Science, 2004 - Elsevier We consider online routing algorithms for finding paths between the vertices of plane graphs. Although it has been shown in Bose et al. (Internat. J. Comput. Geom. 12 (4)(2002) 283) that there exists no competitive routing scheme that works on all triangulations, we ... Cited by 59Related articlesAll 34 versionsCiteSave From: http://scholar.google.ca/scholar?g=Competitive+online+routing+in+geometric+graphs&btnG=&hl=en&as_sdt=0%2C5_ - more papers (see web page)