Further topics (with possible papers to suggest):

- routing
- Travelling Salesman Problem (today)
- Frechet distance and polygon sweeping
- reconfiguration
- online shortest paths
- thick paths, airspace problems
- betweenness centrality
- etc.

Deadline for selecting a paper or suggesting a topic from above: Wednesday October 15.

Schedule:

Mon Oct 6
Wed Oct 8 Hamide
Mon Oct 13 - Thanksgiving
Wed Oct 15 Mustaq Ahmed
Mon Oct 20 Philippe Nathan (or Wed.)
Wed Oct 22 Khaled

Mon Oct 27
Wed Oct 29

Shortest paths through multiple targets - Travelling Salesman and etc.

Travelling Salesman Problem. Given a graph $G=(V, E)$ with weights on edges w: $\mathrm{E}->\mathrm{R} \geq 0$, find a TSP tour - a cycle C that visits every vertex exactly once and has minimum weight ω
Bill Cook, U. Waterloo
M http://www.math.uwaterloo.ca/tsp/ $e \in C$

Travelling Salesman Problem. Given a graph $G=(V, E)$ with weights on edges w: $->R \geq 0$, find a TSP tour - a cycle C that visits every vertex exactly once and has minimum weight $\sum_{e \in C} w(e)$

Craig Kaplan

CS 860 Fall 2014

Travelling Salesman Problem.
TSP is NP-complete
Approximation algorithms:
general

$$
\begin{aligned}
& \text { no constant factor } \\
& \text { approx (unless } P=N P \text {) } 1.5 \text { appro } \\
& \text { recent progress }
\end{aligned}
$$

Euclidean
vertices are pts in plane
distance = Euclidean

$$
\begin{aligned}
& \text { PYAS - polynomial } \\
& \text { time approx schemo }
\end{aligned}
$$

'98 - Mitchell

- Aroma

T could present
From: http://scholar.google.ca/scholar?hl=en\&q=M\�\�mke+and+Svensson\&btnG=\&as sdt=1\%2C5\&as sdtp=

$$
s \text { + related papers }
$$

Travelling Salesman Problem with neighbourhoods.

Approximation algorithms for TSP with neighborhoods in the plane
$\overline{\text { A }}$ Dumitrescu, JSB Mitchell - Journal of Algorithms, 2003 - Elsevier
In the Euclidean TSP with neighborhoods (TSPN), we are given a collection of n regions (neighborhoods) and we seek a shortest tour that visits each region. As a generalization of the classical Euclidean TSP, TSPN is also NP-hard. In this paper, we present new ...
Cited by 145
From: http://scholar.google.ca/scholar?cluster=2201776311898066735\&hl=en\&as sdt=0,5

+ later papers

Touring a sequence of polygons

Touring a sequence of polygons

M Dror, A Efrat, A Lubiw, JSB Mitchell - ... of the thirty-fifth annual ACM ..., 2003 -dl.acm.org
Abstract Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s , visits in order each of the polygons, and ends at t . If the polygons are disjoint and convex, we give an algorithm running in time $O(k n \log (n / k)), \ldots$ Cited by 85 Related articlesAll 11 versionsCiteSave

From: http://scholar.google.ca/scholar?hl=en\&q=touring+a+sequence+of+polygons\&btnG=\&as sdt=1\%2C5\&as sdtp=

Problem: Given a sequence of k polygons in the plane, a start point s, and a target point, t, find a shortest path that starts at s, visits the polygons in order, and ends at t.

Algorithm:
$\mathrm{O}(n k \log n)$ for disjoint convex polygons. $n=$ total number of vertices. $\mathrm{O}\left(n k^{2} \log n\right)$ for non-disjoint convex polygons, with boundary constraint on the path

Query for shortest path to t in $O(k \log n+$ output-size $)$

Touring a sequence of polygons

Touring a sequence of polygons

M Dror, A Efrat, A Lubiw, JSB Mitchell - ... of the thirty-fifth annual ACM ..., 2003 -dl.acm.org
Abstract Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s , visits in order each of the polygons, and ends at t . If the polygons are disjoint and convex, we give an algorithm running in time $O(k n \log (n / k)), \ldots$ Cited by 85 Related articlesAll 11 versionsCiteSave

From: http://scholar.google.ca/scholar?hl=en\&q=touring+a+sequence+of+polygons\&btnG=\&as sdt=1\%2C5\&as sdtp=

Problem: Given a sequence of k polygons in the plane, a start point s, and a target point, t, find a shortest path that starts at s, visits the polygons in order, and ends at t.

Algorithm:
$\mathrm{O}(n k \log n)$ for disjoint convex polygons. $n=$ total number of vertices. $\mathrm{O}\left(n k^{2} \log n\right)$ for non-disjoint convex polygons, with boundary constraint on the path

Query for shortest path to t in $O(k \log n+$ output-size $)$

Touring a sequence of polygons

Problem: Given a sequence of k polygons in the plane, a start point s, and a target point, t, find a shortest path that starts at s, visits the polygons in order, and ends at t.

Algorithm:

$\mathrm{O}(n k \log n)$ for disjoint convex polygons. $n=$ total number of vertices.
$\mathrm{O}\left(n k^{2} \log n\right)$ for non-disjoint convex polygons, with boundary constraint on the path

Query for shortest path to t in $\mathrm{O}(k \log n+$ output-size $)$

Touring a sequence of polygons
crucial property - visiting a line

- locally shortest paths are unique
- although the shortest path map is too big, we can use a "last step shortest path map"

Touring a sequence of polygons - Applications

Parts Cutting

disjoint convex polygons (no boundaries)
$\mathrm{O}(n k \log n) \quad \mathrm{k}=$ \# polygons, $\mathrm{n}=$ total number of vertices

Touring a sequence of polygons - Applications

Touring a sequence of polygons - Applications

disjoint convex polygons
enclosed in one large polygon, and touching its boundary order of visit determined by order around polygon

$\mathrm{O}(n k \log n)$
this improved previous algorithms for Safari problem (zookeeper has an $O(n \log n)$ algorithm)

Touring a sequence of polygons - Applications
Watchman route - find shortest tour from s s.t. every point on the polygon boundary is visible from some point on the tour

Touring a sequence of polygons - Applications
Watchman route - find shortest tour from s s.t. every point on the polygon boundary is visible from some point on the tour

Touring a sequence of polygons - Applications
Watchman route

enclosed in one large polygon, and touching its boundary order of visit determined by order around polygon
$\mathrm{O}\left(n^{3} \log n\right)$ - better than previous algorithms

Touring a sequence of polygons

Two main ideas for the algorithm

- locally shortest paths are unique
- although the shortest path map is too big, we can use a "last step shortest path map"

A path is locally shortest if moving any one bend of the path does not improve it

Locally shortest \Rightarrow globally shortest
because locally shortest paths are unique (as the algorithm will show)

Touring a sequence of polygons

Two main ideas for the algorithm

- locally shortest paths are unique
- although the shortest path map is too big, we can use a "last step shortest path map"
shortest path map - divide plane into regions by combinatorics of shortest path

Touring a sequence of polygons
shortest path map - divide plane into regions by combinatorics of shortest path

Touring a sequence of polygons
shortest path map - divide plane into regions by combinatorics of shortest path

Theorem. The complexity of the shortest path map for n line segments can be 2^{k}

Touring a sequence of polygons
shortest path map - divide plane into regions by combinatorics of shortest path
last step shortest path map - divide plane into regions by combinatorics of the last step of the shortest path

Touring a sequence of polygons
last step shortest path map - divide plane into regions by combinatorics of the last step of the shortest path
answering queries using the last step shortest path map - Example 1

Touring a sequence of polygons
last step shortest path map - divide plane into regions by combinatorics of the last step of the shortest path
answering queries using the last step shortest path map - Example 2

Example 3 -bounce of vertex y for $P_{2} \Rightarrow$ query y for P_{1}

Touring a sequence of polygons
last step shortest path map - divide plane into regions by combinatorics of the last step of the shortest path
answering queries using the last step shortest path map
$O(k \log n)$ to find shortest path length
$\mathrm{O}(k \log n+$ output-size $)$ to find shortest path
need:
planar point location
reflect point in line
don't need distance computations to find shortest path (so no square roots)

Touring a sequence of polygons - Algoirithm

Add polygons one by one, computing the last step shortest path map for each

find $T=$ "first contact" points of P

Claim. T forms a chain.

find the rays leaving vertices of T

Claim. rays leaving T form a "starburst", i.e. there is a unique ray to each point in the plane

Thus locally shortest paths are unique

Just need to query every vertex of P_{i} with respect to polygon sequence $P_{1} \ldots P_{i-1}$ $\mathrm{O}(k \log n)$ per query. Total $\mathrm{O}(n k \log n)$.

Touring a sequence of polygons
general problem: non-disjoint convex polygons, with boundary constraints on the path

algorithm and analysis are more complicated - will just give top-level ideas

Touring a sequence of polygons
general problem: non-disjoint convex polygons, with boundary constraints on the path
boundary constraints

construct shortest path map from the starburst rays leaving P

Touring a sequence of polygons
general problem: non-disjoint convex polygons, with boundary constraints on the path
intersecting polygons

shortest paths may "bounce" from intersection points

"first contact" set becomes a tree rays leaving P still form a starburst so locally shortest paths are unique

Running time increases to $O\left(n k^{2} \log n\right)$

routing

Find a path from s to t in a [geometric] graph without knowing the graph.
Use local information.
geometric routing - graph G embedded in the plane

Greedy routing

compass routing

geometric routing

Routing with guaranteed delivery in ad hoc wireless networks

P Bose, P Morin, I Stojmenović, JUrrutia - Wireless networks, 2001 - dl.acm.org
... In contrast, our algorithms always guarantee that a packet will be delivered to (all of) its intended
recipients) so long as the unit graph $U(S)$ is static and connected during the time it takes to route a message. ... Page 3. ROUTING WITH GUARANTEED DELIVERY IN AD HOC ...
Cited by 1833Related articles All 52 versionsCiteSave
From: http://scholar.google.ca/scholar?hl=en\&q=Routing+with+guar-+anteed+delivery+in+ad+hoc+wireless+networks\&btnG=\&as sdt=1\%2C5\&as dtp=

Online routing in triangulations

P Bose, P Morin - SIAM journal on computing, 2004 - SIAM
We consider online routing algorithms for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing algorithms, one that works for all Delaunay triangulations and the other that works for all regular ...
Cited by 87 Related articles All 2 versionsCiteSave
From: http://scholar.google.ca/scholar?hl=en\&q=Online+routing+in+triangulations\&btnG=\&as sdt=1\%2C5\&as dtp=

routing

for an abstract graph, we can embed it using "virtual coordinates" and use geometric routing
[HTML] On a conjecture related to geometric routing,
CH Papadimitriou, D Ratajczak - Theoretical Computer Science, 2005 - Elsevier
We conjecture that any planar 3-connected graph can be embedded in the plane in such a way that for any nodes s and t, there is a path from s to t such that the Euclidean distance to t conj: any 3 -connected
gratin can be embedded
Sit. greedy routing wortes decreases monotonically along the path. A consequence of this conjecture would be that ...

From: http://scholar.google.ca/scholar?hl=en\&q=On+a+conjecture+related+to+geometric+routing\&btnG=\&as sdt=1\%2C5\&as sdtp=

Some results on greedy embeddings in metric spaces
 T Leighton, A Moira - Discrete \& Computational Geometry, 2010 - Springer

Abstract Geographic Routing is a family of routing algorithms that uses geographic point locations as addresses for the purposes of routing. Such routing algorithms have proven to be both simple to implement and heuristically effective when applied to wireless sensor ... Cited by 70 Related articlesAll 21 versionsCiteSave

- for trees

Succinct greedy drawings do not always exist
PAngelini, G Di Battista, F Frati - Networks, 2012 - Wiley Online Library
Abstract A greedy drawing is a graph drawing containing a distance-decreasing path for every pair of nodes. A path ($\mathrm{v} 0, \mathrm{v} 1, \ldots, \mathrm{vm}$) is distance-decreasing if $\mathrm{d}(\mathrm{vi}, \mathrm{vm})<\mathrm{d}(\mathrm{vi}-1, v m)$, for $\mathrm{i}=1, \ldots, \mathrm{~m}$. Greedy drawings easily support geographic greedy routing. Hence, a ... Cited by 3Related articles All 3 versionsCiteSave

From: http://scholar.google.ca/scholar?hl=en\&q=Succinct+greedy+drawings+do+not+always+exist\&btnG=\&as sdt=1\%2C5\&as sdtp=
competitive online routing

$$
\begin{aligned}
& \text { want length of path found using local rating } \\
& \leq c \text {.shortest path }
\end{aligned}
$$

[HTML] Competitive online routing in geometric graphs
P Bose, P Morin - Theoretical Computer Science, 2004 - Elsevier
We consider online routing algorithms for finding paths between the vertices of plane graphs. Although it has been shown in Bose et al.(Internat. J. Comput. Geom. 12 (4)(2002) 283) that there exists no competitive routing scheme that works on all triangulations, we ... Cited by 59 Related articles All 34 versionsCiteSave

From: http://scholar.google.ca/scholar?q=Competitive+online+routing+in+geometric+graphs\&btnG=\&hl=en\&as sdt=0\%2C5

- t more papers (see web page)

