

CS 860 Fall 2014	Lecture 8 notes	Anna Lubiw, U. Waterloo
Chen and Han. 1996.		
Shortest paths on a polyhedron, J Chen, Y Han - International Journal of Com We present an algorithm for determining the s surface of a polyhedron which need not be c source point on the surface of a polyhedron Cited by 115Related articlesAll 4 versionsCite From: http://scholar.google.ca/scholar?q=Shortest+paths+c	Part I: Computing shortest paths putational Geometry &, 1996 - World Scientific shortest path between any two points along the convex. This algorithm also computes for any the inward layout and the subdivision of the Save	
Shortest paths on a polyhed	on surface in O(n^2) time, O(n) space.	
Solves single-source version	, query target point t. Builds shortest path	map.
Input: polyhedral surface — n = # triangles.	O(logn) Guery triangles in 3-space, joined edge-to-edge (O(logn + output) every edge in 2 triangles).
Before: continuous Dijkstra (D(n^2 log n). Mitchell, Mount, Papadimitric	Du
-d3 hull demo	PLEDA	
LEI	DA	Kaneva O'Rourke

CS 860 Fall 2014 Lecture 8 notes Anna Lubiw, U. Waterloo Chen and Han. Shortest paths on polyhedron surface. Start with convex polyhedron (then no shortest path goes through a vertex Fixed t - vertex because a taut string won'f). Claim 1. If you unfold two adjacent D's to the plane, any shortest path crosses in a straight line Claim 2. A shortest path does not enter a face twice. claim 3. Two shortest paths do not intersect (except at source/target). Idea Unfold from source point S.

CS 860 Fall 2014 Lecture 8 notes Anna Lubiw, U. Waterloo Chen and Han. Shortest paths on polyhedron surface. Build segment serment tree Splits at U 63 $Proj_{e_1}^I$ е, lz lo $Proj_{e_{\alpha}}^{I}$ $Proj_{e}^{I}$ e_{2} Two children, $(e_1, I, Proj_{e_1}^I)$ and $(e_2, I, Proj_{e_2}^I)$ Nodes are segments Node has 1 or 2 children. Lemma After depth n the tree captures all shortest paths. Pf. A shortest path gees through at most n faces (since we don't repeat faces) Compare all path s > t in tree for shortest. OK but this is exponentially big

CS 860 Fall 2014 Lecture 8 notes Anna Lubiw, U. Waterloo Chen and Han. Shortest paths on polyhedron surface. Pruning the Tree Lemma ("one-vertes one-cut") suppose 2 segments I1, I2 I_{12} both split at vertex u In Iz in tree e I_2 I_1 I12 I21 I22 III Then we can trim one of the 4 children. Pf. Ji = shortest path S > J in cone through II V2 - - - S->U - . I7 Suppose $|\sigma_2| \leq |\sigma_1|$ Claim I12 is never shortest

CS 860 Fall 2014 Lecture 8 notes Anna Lubiw, U. Waterloo Chen and Han. Shortest paths on polyhedron surface. will show shorter path $|\sigma_2| < |\sigma_1|$ Claim1 I12 is useless I_{11} 22 If consider path TI, S, -> x in I12 Crosses J2 at C e11 2 notation J(a,b)-subpath a-> 6 σ_2 $Claim_2 | T_1(s_1, c) \geq |\sigma_2(s_2, c) |$ ^s2 Thus $|T_1| \ge |\sigma_2(s_2,c)| + |T_1(c,z)|$ sso-this is better than TT, and I12 is useless. Pf. of claim ~ $\left|\Pi_{1}(S_{1}, C)\right| + \left|\sigma_{2}(C_{1}, \sigma)\right| \geq \left|\sigma_{1}\right| \geq \left|\sigma_{2}\right|$ = $| \sigma_2(s_2, c) + | \sigma_2(c, \sigma) +$

CS 860 Fall 2014 Lecture 8 notes Anna Lubiw, U. Waterloo Chen and Han. Shortest paths on polyhedron surface. Size of segment tree: O(n) leaves because each vertex vintriangle T contributes one "branch" height O(n) (no path goes through > n triangles) Thus O(n2) size of tree. Time O(nz) to construct level by level (each new level Further reduce space has O(n) children) $\left(\begin{array}{c} \text{compress chain of single vertices} \\ \text{(= come through successive } \Delta's) \end{array} \right)$ binary tree w o(n) leaves has O(n) nodes 6 Ò Time D(n2)

CS 860 Fall 2014 Lecture 8 notes Anna Lubiw, U. Waterloo Chen and Han. Shortest paths on polyhedron surface. Dealing with non-convex vertices - actually negative curvature vertices. Shortest paths may go through these vertices (think saddle-points us. mountain tops). vertes of negative curvature range of locally shortest paths vertex is treated as a "pseudo-source"

CS 860 Fall 2014	Lecture 8 notes	Anna Lubiw, U. Waterloo
Chen and Han. Shortest pat	hs on polyhedron surface.	
Implementation		
[PS] An implementation of Chen B Kaneva, J O'Rourke - 2000 - cs.smith.edu Abstract In 1990 Chen and Han proposed a from one source point to all vertices on a po implementation of their algorithm, to our kn Cited by 58Related articlesAll 5 versionsCite	Han's shortest paths algorithm quadratic algorithm for nding the shortest paths lyhedral surface. We report on a C++ owledge the rst publicly available eSaveMore	
From: http://scholar.google.ca/scholar?hl=en&q=an+imple	mentation+of+chen+and+han%27s+&btnG=&as_sdt=1%2C5&as_sdtp=	
		- THE
main numerical issue: which of two paths to a vert	ex v is shorter.	
		ZAKK JA

CS 860 Fall 2014	Lecture 8 notes	Anna Lubiw, U. Waterloo
3 extensions of Chen and Han		
1. with Stephen Kiazyk		
source s is a segment, not j	ust a point	

CS 860 Fall 2014 Lecture 8 notes Anna Lubiw, U. Waterloo 3 extensions of Chen and Han O(n2) time O(n) space 2. with Daniela Maftuleac and Megan Owen a curvature constraint s.t. locally shortest paths are unique. shortest paths in 2D CAT(0) complexes v_i v_i v_i v_1 coord2coord1 v_i Fx v_2 prechow to expand a segment into 2 "next" triangles. v_3 can have >2 triangles attached to an edge.

CS 860 Fall 2014	Lecture 8 notes	Anna Lubiw, U. Waterloo
3 extensions of Chen and Ha	an	
3. with Mustaq Ahmed		
shortest descending path on polyhedral terrain		S
P vs NP-complete		
Chen and Han needs		
- method to extend a	shortest path into "next" face	an do - Snell's law
- method to find short	test path to specified target through spec	ified face sequence K
- one-vertex one-cut	to prune the segment tree $-$ true	
	this is the h	ard part.