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shortest path on a polyhedral surface

shortest paths follow straight lines in unfolding

?

the spider and the fly problem
   Dudeney, The Canterbury Puzzles, 1958
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Shortest paths on a polyhedron, Part I: Computing shortest paths
J Chen, Y Han - International Journal of Computational Geometry & …, 1996 - World Scientific
We present an algorithm for determining the shortest path between any two points along the 
surface of a polyhedron which need not be convex. This algorithm also computes for any 
source point on the surface of a polyhedron the inward layout and the subdivision of the ...
Cited by 115 Related articles All 4 versions Cite Save

From: http://scholar.google.ca/scholar?q=Shortest+paths+on+a+polyhedron%2C+Part+I%3A&btnG=&hl=en&as_sdt=0%2C5

Chen and Han. 1996.

Shortest paths on a polyhedron surface in O(n^2) time, O(n) space.  
Solves single-source version, query target point t.  Builds shortest path map.

Input: polyhedral surface — triangles in 3-space, joined edge-to-edge (every edge in 2 triangles).
n = # triangles. 

Before: continuous Dijkstra O(n^2 log n).  Mitchell, Mount, Papadimitriou  

Rineau and Yvinec

LEDA Kaneva O’Rourke

http://www.worldscientific.com/doi/abs/10.1142/S0218195996000095
http://www.worldscientific.com/doi/abs/10.1142/S0218195996000095
http://www.worldscientific.com/doi/abs/10.1142/S0218195996000095
http://www.worldscientific.com/doi/abs/10.1142/S0218195996000095
http://www.worldscientific.com/doi/abs/10.1142/S0218195996000095
http://www.worldscientific.com/doi/abs/10.1142/S0218195996000095
http://www.worldscientific.com/doi/abs/10.1142/S0218195996000095
http://scholar.google.ca/scholar?cites=11441427044749723592&as_sdt=2005&sciodt=0,5&hl=en
http://scholar.google.ca/scholar?q=related:yMfaJUcdyJ4J:scholar.google.com/&hl=en&as_sdt=0,5
http://scholar.google.ca/scholar?cluster=11441427044749723592&hl=en&as_sdt=0,5
http://scholar.google.ca/scholar?q=Shortest+paths+on+a+polyhedron%2C+Part+I%3A&btnG=&hl=en&as_sdt=0%2C5
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Chen and Han. Shortest paths on polyhedron surface.
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Chen and Han. Shortest paths on polyhedron surface.

intervals split at vertex v ∈ f opposite to e (Figure 2.2), one of the four split intervals cannot
lead to a shortest path. More precisely, if the distance of v from s through the face sequence
determined by I1 is more than its distance from s through the face sequence determined by I2,
then no shortest path crosses both I1 and I12 in Figure 2.2, because the longer geodesic path
cannot yield shorter paths on both sides of v. This implies that it is sufficient to store one split
for each face angle. The number of leaf nodes in the tree then becomes O(n) because each of
the O(n) face angles contributes at most one extra “branch” in the tree. Since there are O(n)
levels, the total number of nodes becomes O(n2).

Note that extending a wedge through a non-convex vertex is not easy, since a geodesic path
can bend at a non-convex vertex. Chen and Han handle this issue by treating the non-convex
vertices as a pseudo-source: they make a new node in the sequence tree each time a non-convex
vertex splits a wedge, and then they start a new set of wedges of geodesic paths around that
vertex. The new node represents the face angle encountered by the “arriving” wedge, and
stores the vertex’s distance from s through the corresponding face/vertex sequence.
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Figure 2.2: One-angle one-split property for sequence tree for shortest Euclidean paths.

The number of nodes can be decreased further to O(n) by deleting the nodes with only one
child, i.e., by removing the intervals for which there is only one “child interval”. This is done
during the time the tree is being expanded level-wise, resulting in an O(n2) time and O(n)
space algorithm to build the tree.

After the tree is constructed, the shortest path to any vertex can be determined in O(n)
time as follows. There can be at most O(n) nodes in the tree for a particular vertex v—one
for each face angle at v. After locating among them the node with the smallest distance from
s, the sequence of faces/vertices is determined by traversing the tree upward to the root. The
shortest path is then computed from the sequence in a trivial manner.

The preprocessing phase of the sequence tree approach is faster than that of the continuous
Dijkstra approach. The query phase of the sequence tree approach is slower, and is limited
to the vertices of the surface while for the continuous Dijkstra approach the query point can
be any point on the surface. The sequence tree approach is easier to implement, and less
vulnerable to inaccuracies in calculations involving floating point numbers because it does not
require a priority queue, and does not require splitting an interval at a point equidistant from
s through two face sequences. However, the sequence tree approach needs to compare two path

9
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A Generalization of the Source Unfolding of
Convex Polyhedra

Erik D. Demaine1 and Anna Lubiw2

1 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
edemaine@mit.edu

2 David R. Cheriton School of Computer Science, University of Waterloo, Canada
alubiw@uwaterloo.ca

Dedicated to Ferran Hurtado on the occasion of his 60th birthday.

Abstract. We present a new method for unfolding a convex polyhedron
into one piece without overlap, based on shortest paths to a convex curve
on the polyhedron. Our “sun unfoldings” encompass source unfolding
from a point, source unfolding from an open geodesic curve, and a variant
of a recent method of Itoh, O’Rourke, and Vı̂lcu.

1 Introduction

The easiest way to show that any convex polyhedron can be unfolded is via the
source unfolding from a point s, where the polyhedron surface is cut at the ridge
tree of points that have more than one shortest path to s, [10], or see [3]. The
unfolding does not overlap because the shortest paths from s to every other point
on the surface develop to straight lines radiating from s, forming a star-shaped
unfolding. See Figure 1(b).

(b)(a) (c)

C

Fig. 1. [based on O’Rourke [9]] Unfolding a box from a point on the middle of the base:
(b) source unfolding with some shortest paths shown. The source unfolding is the same
as the sun unfolding relative to circle C. (c) star unfolding, with ridge tree shown.

Our main result is a generalized unfolding, called a sun unfolding, that pre-
serves the property that shortest paths emanate in a radially monotone way,
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unfolding was introduced by Alexandrov in 1948 [Ale50, p. 181][Ale05, p. 195]1
but only proved to avoid overlap more recently [AO92].

If P has n vertices, the unfolding has 2n vertices, n of which are images of
x, which alternate with the n images of the vertices of P. Because x can be any
generic point on the surface (and there is only a finite network of nongeneric
points to avoid), the star unfolding provides an entire class of unfoldings for a
given P.
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Figure 8: (a) 2⇥1⇥1 box. Box faces are labeled: Bt,F,T,R,L,Bk for Bottom,
Front, Top, Left, Right, and Back respectively. (b) Star unfolding with respect
to x.

The second general unfolding for a convex polyhedron is the source unfolding.
Again we start with a source point x 2 P, but this time we follow shortest paths
�(x, y) from x to every point y 2 P. The closure of the set of points y such
that �(x, y) is not unique forms the cut locus C(x) ⇢ P of x. The notion of cut
locus was introduced by Poincaré in 1905 [Poi05], and since then has become a
central concept in global Riemannian geometry. Its name reflects the fact that
shortest paths are “cut” or terminated when they reach the cut locus. The cut
locus for the box example is shown in Figure 9(a). Notice that the cut locus is
indeed a spanning tree of the vertices of P (this the reason for the closure in the
definition). So cutting C(x) will enable flattening the surface. The resulting
source unfolding for the box example is shown in (b) of the figure. That this does
not overlap is clear, because one can view it as composed of straight-segment
“spokes” of length �(x, y) for each y 2 C(x), emanating around x at every angle.

Returning to the star unfolding, the cut locus C(x) unfolds to a tree in U

⇤(x)
that spans the n vertices of U

⇤(x) which are the images of the vertices of P.

3.2 Nonconvex

Now that we have seen that all convex polyhedra have (many) general unfold-
ings, it is natural to ask whether nonconvex polyhedra do also. Here again the

1
And so sometimes called an “Alexandrov unfolding” [MP08].
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Figure 9: (a) 2⇥1⇥1 box, with cut locus C(x) marked. (b) Source unfolding
with respect to x.

answer is unknown: there is neither a counterexample, nor a general algorithm.
Progress has been made recently on orthogonal polyhedra.

3.2.1 Orthogonal Polyhedra

We saw one special class of orthogonal polyhedra that can be edge unfolded,
and one example (Figure 3(b)) of an orthogonal polyhedron that cannot be edge
unfolded. However, if we permit ourselves arbitrary cuts, it is not di�cult to
unfold this edge-ununfoldable example into a number of thin, connected strips.
See Figure 10 for one way, the result of applying a variation on the algorithm
from Section 1 for orthogonal terrains.

The idea of slicing an orthogonal polyhedron into strips was explored in a
series of papers handling special classes (summarized in [O’R08]), finally culmi-
nating in an algorithm that unfolds any orthogonal polyhedron P (of genus zero)
into a single, non-overlapping piece [DFO07]. This algorithm “peels” the sur-
face into a thin strip, following a recursively-nested helical path on the surface
of P. Although the cuts are arbitrary, they are parallel to polyhedron edges,
which is natural in this context. Unfortunately, the resulting unfolding can be
exponentially thin and exponentially long: if P has n vertices and has longest
dimension 1, strips might have width 1/2O(n) and stretch out to length 2O(n).

4 Summary & Prospects

Table 1 summarizes the status of the main questions on unfolding.
Of course there are many topics we have not discussed. For exam-

ple, the source and star unfoldings have been generalized to “quasigeodesic”
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[PS] An implementation of Chen & Han's shortest paths algorithm
B Kaneva, J O'Rourke - 2000 - cs.smith.edu
Abstract In 1990 Chen and Han proposed a quadratic algorithm for nding the shortest paths 
from one source point to all vertices on a polyhedral surface. We report on a C++ 
implementation of their algorithm, to our knowledge the rst publicly available ...
Cited by 58 Related articles All 5 versions Cite Save More

From: http://scholar.google.ca/scholar?hl=en&q=an+implementation+of+chen+and+han%27s+&btnG=&as_sdt=1%2C5&as_sdtp=

main numerical issue: 
which of two paths to a vertex v is shorter.

Implementation

http://www.cs.smith.edu/~orourke/Papers/shortest.ps.gz
http://www.cs.smith.edu/~orourke/Papers/shortest.ps.gz
http://www.cs.smith.edu/~orourke/Papers/shortest.ps.gz
http://www.cs.smith.edu/~orourke/Papers/shortest.ps.gz
http://www.cs.smith.edu/~orourke/Papers/shortest.ps.gz
http://www.cs.smith.edu/~orourke/Papers/shortest.ps.gz
http://scholar.google.ca/citations?user=uCZ7fPUAAAAJ&hl=en&oi=sra
http://scholar.google.ca/scholar?cites=13525723340790167450&as_sdt=2005&sciodt=0,5&hl=en
http://scholar.google.ca/scholar?q=related:mvcBUrcFtbsJ:scholar.google.com/&hl=en&as_sdt=0,5
http://scholar.google.ca/scholar?cluster=13525723340790167450&hl=en&as_sdt=0,5
http://scholar.google.ca/scholar?hl=en&q=an+implementation+of+chen+and+han%27s+&btnG=&as_sdt=1%2C5&as_sdtp=
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3 extensions of Chen and Han

1. with Stephen Kiazyk

source s is a segment, not just a point

a

l r

b

Figure 3.1: Shortest path cuts to each ver-
tex from a geodesic, with a, b, l, and r la-
belled.

r a

b

l

Figure 3.2: The geodesic star unfolding
produced by the cuts from Figure 3.1, with
the source images labelled.
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3 extensions of Chen and Han

2. with Daniela Maftuleac and Megan Owen

shortest paths in 2D CAT(0) complexes
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Figure 2 – The image of x in the faces incident to x (blue colored).
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Figure 3 – (a) a segment-node (u, v, coord1, coord2, parent� node), (b) a vertex-node (v, parent� node).

N and parent � node(N ). Moreover, we can construct the geodesic ray �(v, v0) inside F , where v0 is the point of
@F so that �(x, v) in K contains v0. Note that v0 can be an inner point of an edge of F if parent � node(N ) is a
segment-node, or v0 can be a vertex if parent� node(N ) is a vertex-node. In the case where parent� node(N ) is
a vertex-node of T (x) then v0 coincides with this vertex, and then constructing �(v, v0) is reduced to constructing
the segment between the two vertices of F . In the case where parent� node(N ) is a segment-node of T (x), using
the information about the children segment-nodes of parent� node(N ), di↵erent from N , we can identify in F the
pentagon formed by their projection (see Fig. 4).
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Figure 4 – Constructing �(v, v0).

Further, after constructing �(v, v0) in direction of x, in the graph Link(v) let ff 0 be the edge corresponding
to F in K. Using the angles formed between �(v, v0) and the edges vu and vw of F , we can determine the inner
point s of ff 0 in Link(v) corresponding to �(v, v0). In the graph Link(v) find all the points s1, s2, . . . , sk situated
at distance 2⇡ from s. Note that since K is a CAT(0) complex, i.e. the sum of disjoint angles with common origin
in an inner point of K is at least 2⇡, and v is an inner vertex there exists at least one such point.
For each point s1, s2, . . . , sk in Link(v), we construct the geodesic rays r(v, u1), r(v, u2), . . . , r(v, uk

) in K in one of
the faces of K incident to v (see Fig. 5).

Note that it is possible for a vertex-node to have no descendants in T (x), this in exactly the case of an inner
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3 extensions of Chen and Han

3. with Mustaq Ahmed

shortest descending paths 
on polyhedral terrain

Chen and Han needs

- method to extend a shortest path into “next” face

- method to find shortest path to specified target through specified face sequence

- one-vertex one-cut to prune the segment tree


