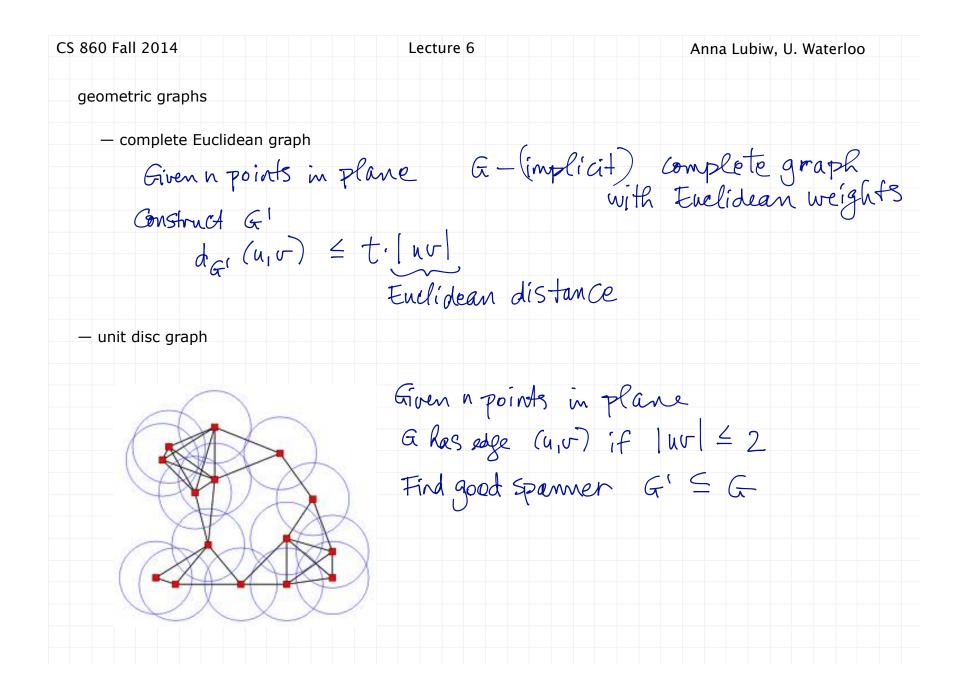
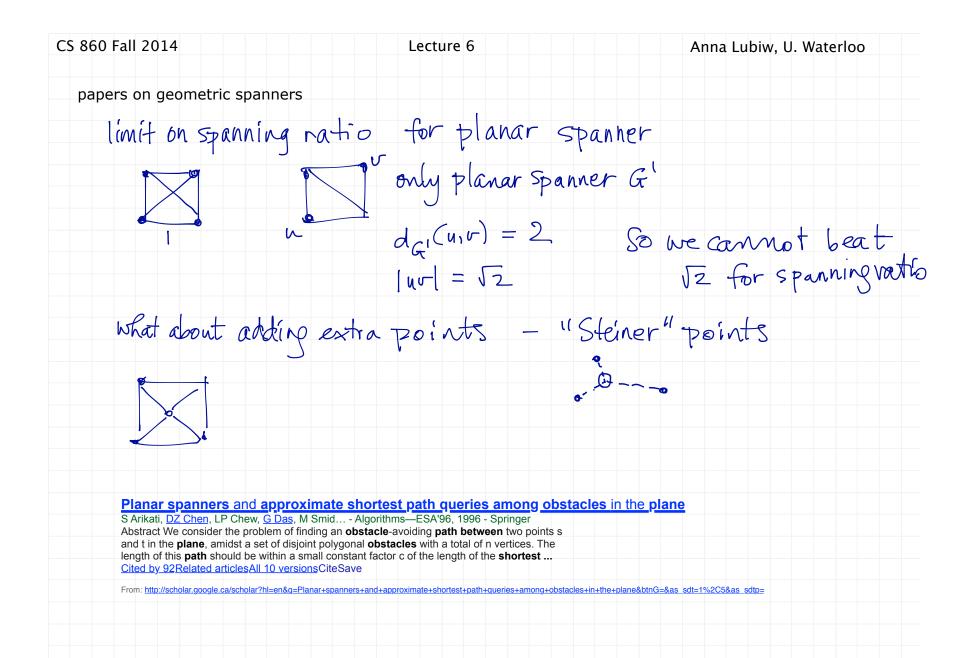
860 Fall 2014	Lecture 6	Anna Lubiw, U. Waterloo
one more paper on dynam	ic graphs (connectivity rather than shorte	st paths)
Efficient edge splitting-off	algorithms maintaining all pairs edge-connect	ivities
Abstract in this paper we present new	ing and Combinatorial Optimization, 2010 - Springer edge splitting-off results maintaining all-pairs edge-	
obtain a deterministic O(r_\max^2 · n^	ve an alternate proof of Mader's theorem, and use it to 2)-time complete edge splitting-off algorithm for	
Cited by 2Related articlesAll 7 version	<u>15</u> CiteSave icient+Edge+Splitting-Off+Algorithms+in+Maintaining+All-Pairs+Edge-Connectivities	&btnG=&hl=en&as_sdt=0%2C5
will sta	r+Rere in F 2015	


CS 860 Fall 2014 Lecture 6 Anna Lubiw, U. Waterloo In edge-weighted graph, make it sparse while $a_{\mu\nu}$. briginal graph G, new graph G' $\forall u, v \in V$ d_{G} , $(u, v) \leq t \cdot d_{G}(u, v)$ a_{G} , $(u, v) \leq t - spanning ratio$ = stetch - factorspanners Given an edge-weighted graph, make it sparse while approximately preserving shortest paths. criteria min. # edges in Gl min Zwr(e) PEGI make G' "nice" e.g. planar, bounded degree

CS 860 Fall 2014 Lecture 6 Anna Lubiw, U. Waterloo spanners of general graphs greedy: given factor t Rewristic initialize E(G') = Ø consider $e \in E(G)$ ordered from min w to max "(u,v) if d_{G} , (u,v) > t. d_{G} (u,v) then add (u, v) to G'.

On sparse spanners of weighted graphs


I Althöfer, <u>G Das</u>, D Dobkin, D Joseph... - Discrete & Computational ..., 1993 - Springer Abstract Given a **graph** G, a subgraph G'is at-**spanner** of G if, for every u, v ε V, the distance from u to v in G'is at most t times longer than the distance in G. In this paper we give a simple algorithm for constructing **sparse spanners** for arbitrary **weighted graphs**. We then apply ... <u>Cited by 383Related articlesAll 6 versionsCiteSave</u>

From: http://scholar.google.ca/scholar?hl=en&q=On+sparse+spanners+of+weighted+graphs&btnG=&as sdt=1%2C5&as sdtp=

S 860 Fall 2014	Lecture 6	Anna Lubiw, U. Waterloo
spanners	(not to present, just for re	sfevence)
This survey covers topics in connect a collection of n site	omputational geometry, 1999 - books.google.com geometric network design theory. The problem is easy to state: s by a "good" network. For instance, one may wish to connect t by networks of wires, in a way that uses little surface area on	
From: http://scholar.google.ca/schola	r?hl=en&q=Spanning+trees+and+spanners&btnG=&as_sdt=1%2C5&as_sdtp=	
		Geometric
11.4 Establishing the length- property 205 11.6 Dumbbell <u>Cited by 262Related articles</u>		Spanner Networks
Prom. <u>mp://scholar.google.ca/schola</u>	u m=enaq=yeumema+spanner+nerworksaouna=aas sut=1∞203aas sutp=	Giri Narasimhan Michiel Smid
P Bose, M Smid - Computat Given a weighted graph G=(subgraph G' with the proper	spanners : A survey and open problems ional Geometry , 2013 - Elsevier V, E) and a real number t≥ 1, a t- spanner of G is a spanning by that for every edge xy in G, there exists a path between x no more than t times the weight of the edge xy. We review <u>Ill 8 versions</u> CiteSave	
From: http://scholar.google.ca/schola	r?q=On+plane+geometric+spanners%3A+A+survey+and+open+problems&btnG=&hl=en&as	sdt=2005&sciodt=0%2C5&cites=10723818189643881305&scipsc=

CS 860 Fall 2014 Lecture 6 Anna Lubiw, U. Waterloo papers on geometric spanners - for complete Euclidean graph planar spanners - O(n) edge 5 P. Chew, There are planar graphs almost as good as the complete graph, Journal of Computer and System Sciences 39 (1989) 205-219. -used type of Delaunay graph -spanning ratio 2 -easier pf. of above - bounded degree **Competitive routing** in the half- θ 6-graph P Bose, R Fagerberg, A van Renssen... - Proceedings of the ..., 2012 - dl.acm.org Page 1. Competitive Routing in the Half-06-Graph * ... D 4 Routing in the Half-06-Graph In this section, we give matching upper and lower bounds for the competitive routing ratio on the half-86- graph. We begin by defining our model. ... Cited by 11Related articlesAll 28 versionsCiteSave From: http://scholar.google.ca/scholar?g=Competitive+routing+in+the+half-%CE%B86-graph&btnG=&hl=en&as sdt=0%2C5 standard Del. triangulation standard Delaunay as a spanner? break-through The stretch factor of the Delaunay triangulation is less than (1.998) G Xia - SIAM Journal on Computing, 2013 - SIAM Let S be a finite set of points in the Euclidean plane. Let D be a Delaunay triangulation of S. The stretch factor (also known as dilation or spanning ratio) of D is the maximum ratio, among all points p and g in S, of the shortest path distance from p to g in D over the ... lover bound 1.581 Cited by 6Related articlesAll 11 versionsCiteSave From: http://scholar.google.ca/scholar?cites=16099590622383505695&as_sdt=2005&sciodt=0.5&hl=en

