last days:
some basic geometric shortest path algorithms
some possible papers to present
today:
more papers
basic graph algorithms
shortest path on a polyhedral surface generalizes polyhedral domain
shortest paths follow straight•lines in unfolding

the spider and the fly problem -
Dudeney, The Canterbury Puzzles, 1958

shortest path on a polyhedral surface

The discrete geodesic problem

JSB Mitchell, DM Mount, CH Papadimitriou - SIAM Journal on Computing, 1987 - SIAM We present an algorithm for determining the shortest path between a source and a destination on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and distances are measured according to the Euclidean metric. Our ...
$O\left(n^{2} \log n\right)$ Cited by 472 Related articlesAll 39 versionsCiteSave

From: http://scholar.google.ca/scholar?hl=en\&q=THE+DISCRETE+GEODESIC+PROBLEM\&btnG=\&as sdt=1\%2C5\&as sdtp=

Fast exact and approximate geodesics on meshes
V Surazhsky, T Surazhsky, D Kirsanov... - ACM Transactions on ..., 2005-dl.acm.org
From: http://scholar.google.ca/scholar?hl=en\&q=Fast+exact+and+approximate+geodesics+on+meshes\&btnG=\&as $s d t=1 \% 2 C 5 \& a s ~ s d t p=$

Shortest paths on a polyhedron, Part I: Computing shortest paths

J Chen, Y Han - International Journal of Computational Geometry \& ..., 1996 - World Scientific We present an algorithm for determining the shortest path between any two points along the surface of a polyhedron which need not be convex. This algorithm also computes for any source point on the surface of a polyhedron the inward layout and the subdivision of the ... Cited by 115 Related articles All 4 versionsCiteSave

From: http://scholar.google.ca/scholar?q=Shortest+paths+on+a+polyhedron\%2C+Part+|\%3A\&btnG=\&hl=en\&as sdt=0\%2C5
an algorithm by Kapoor claimed $\mathrm{O}\left(n \log ^{2} n\right)$ but it's in doubt
shortest path on a polyhedral surface

An optimal-time algorithm for shortest paths on a convex polytope in three dimensions

Y Schreiber, M Sharir - Twentieth Anniversary Volume:, 2009 - Springer
Abstract We present an optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex polytope P in three dimensions. Our algorithm runs in O (nlogn) time and requires O (nlogn) space, where n is ... Cited by 40 Related articlesAll 18 versionsCiteSave
$O(n \log n)$
Cont. Dijkstra

From: http://scholar.google.ca/scholar? $q=A n+o p t i m a l-t i m e+a l g o r i t h m+f o r+$ shortest+paths+on+a+convex+polytope+in+three+dimensions\&btnG=\&hl=en\&as sdt=0\%2C5
more papers listed are here:

A survey of geodesic paths on 3D surfaces

P Bose, A Maheshwari, C Shu, S Wuhrer - Computational Geometry, 2011 - Elsevier
From: http://scholar.google.ca/scholar?hl=en\&q=A+survey+of+geodesic+paths+on+3D+surfaces\&btnG=\&as sdt=1\%2C5\&as sdtp=

shortest paths in 3D

NP-hard:
New lower bound techniques for robot motion planning, problems J Canny, J Reif - ... of Computer Science, 1987., 28th Annual ..., 1987 - ieeexplore.ieee.org Cited by 456Related articlesAll 8 versionsCiteSave

From: $\underline{\text { http:///scholar.google.ca/scholar?q=New+lower+bound+techniques+for+robot+motion+planning } \pm \text { problems\&btnG=\&hl=en\&as sdt=0\%2C5 }}$

don't present

An algorithm for shortest-path motion in three dimensions
CH Papadimitriou - Information Processing Letters, 1985 - Elsevier
Abstract We describe a fully polynomial approximation scheme for the problem of finding the shortest distance between two points in three-dimensional space in the presence of polyhedral obstacles. The fastest algorithm known for the exact solution of this problem is ...
 Cited by 197Related articlesAll 2 versionsCiteSave

From: http://scholar.google.ca/scholar?q=An+algorithm+for+shortest-path+motion+in+three+dimensions\&btnG=\&hl=en\&as sdt=0\%2C5
fixes above:
Precision-sensitive Euclidean shortest path in 3-Space
J Sellen, J Choi, CK Yap - SIAM Journal on Computing, 2000 - SIAM
From: http://scholar.google.ca/scholar? $\mathrm{q}=$ =Precision-sensitive + Euclidean + shortest+path+in+3-Space\&btnG=\&hl=en\&as sdt=0\%2C5

An approximation algorithm for computing shortest paths in weighted 3-d domains
LAleksandrov, H Djidjev, A Maheshwari... - Discrete \& Computational .., 2013 - Springer
\rightarrow From: http://scholar.google.ca/scholar?q=An+approximation+algorithm+for+computing+shortest+paths+id + weighted $+3-d$
 +domains\&btnG=\&hl=en\&as sdt=2005\&sciodt=0\%2C5\&cites=13772326056646696620\&scipsc-
weighted region problem

xkcd
weighted region problem
intuition

Snell's law

- Ibn Sahl, (Baghdad), On Burning Mirrors and Lenses, 984
- Willebrord Snellius, 1621
- René Descartes, 1637

位

 خطـرّ

weighted region problem

The weighted region problem: finding shortest paths through a weighted planar subdivision JSB Mitchell, CH Papadimitriou - Journal of the ACM (JACM), 1991-dl.acm.org
Cited by 264 Related articlesAll 4 versionsCiteSave
From: http://scholar.google.ca/scholar?hl=en\&q=weighted+region\&btnG=\&as sdt=1\%2C5\&as sdtp=
OPEN polytime? NP-hand?
main approach: approximation via Steiner points

Determining approximate shortest paths on weighted polyhedral surfaces
LAleksandrov, A Maheshwari, JR Sack - Journal of the ACM (JACM), 2005-dl.acm.org

On finding approximate optimal paths in weighted regions
Z Sun, JH Reif - Journal of Algorithms, 2006 - Elsevier
From: http://scholar.google.ca/scholar? $q=O n+$ finding + approximate+optimal+paths+in+weighted+regions\&btnG=\&hl=en\&as sdt=0\%2C5
problems related to weighted region problem
anisotropic path problem

cost of travel depends on direction (may be different in different faces)
very engineering oriented papers
problems related to weighted region problem shortest descending path on a terrain open polytime? NP-hard?

also related to watersheds
problems related to weighted region problem
shortest descending path on a terrain
Trekking in the Alps without freezing or getting tired
M De Berg, M van Kreveld - Algorithmica, 1997 -Springer
From: http://scholar.google.ca/scholar?q=trekking+in+the+alps+without+freezing\&btnG=\&hl=en\&as $s \mathrm{dt}=0 \% 2 \mathrm{C} 5$
[HTML] Approximation algorithms for shortest descending, paths in terrains
M Ahmed, S Dis, S Lodha, A Lubiw... - ... of Discrete Algorithms, 2010 - Elsevier
From: http://scholar.google.ca/scholar?hl=en\&q=Approximation+algorithms+for+shortest+descending \pm paths+in+terrains\&btnG=\&as sdt=1\%2C5\&as

Shortest descending, paths: Towards an exact algorithm
M Ahmed, A Lubiw - International Journal of Computational ..., 2011 - World Scientific
From: http://scholar.google.ca/scholar?q=Shortest+descending \pm paths\%3A+Towards+an+exact+algorithm\&btnG=\&hl=en\&as sdt=2005\&sciodt=0\%2C5\&cites=1 \$807659110083868733\&scipsc=

Approximate shortest descending „paths

SW Ching, J Join - SIAM Journal on Computing, 2014 - SIAM
From: http://scholar.google.ca/scholar?q=Approximate+shortest+descending \pm paths\&btnG=\&hl=en\&as sdt=2005\&sciodt=0\%2C5\&cites=1580765911008386873 $2 \&$ scipsc=
shortest gently descending path on a terrain

$$
\text { alg. to decide: is there an } s \rightarrow t \text { path }
$$

discussion of Dijkstra's paper

- reviews well done on the whole
- many did more than necessary
- be careful to acknowledge sources
other problem is min spanning tree - algorithm is known as Prim's algorithm
though actually due to others earlier:

Jeff Erickson's algorithms notes:

20.4 Jarník's ('Prim's') Algorithm

The next oldest minimum spanning tree algorithm was first described by the Czech mathematician Vojtěch Jarník in a 1929 letter to Boru̇vka; Jarník published his discovery the following year. The algorithm was independently rediscovered by Kruskal in 1956, by Prim in 1957, by Loberman and Weinberger in 1957, and finally by Dijkstra in 1958. Prim, Loberman, Weinberger, and Dijkstra all (eventually) knew of and even cited Kruskal's paper, but since Kruskal also described two other minimum-spanning-tree algorithms in the same paper, this algorithm is usually called 'Prim's algorithm', or sometimes 'the Prim/Dijkstra algorithm', even though by 1958 Dijkstra already had another algorithm (inappropriately) named after him.
shortest paths in graphs - NP -complete in general
single source
Dijkstra - no neg. weights.
Bellman-Ford - no neg. weight cycle
all pairs
Floyd-Warshall
all use "relaxation", "label correcting"
Maintain tentative distances $d(v)$, over estimates.
goal

$$
\forall \operatorname{edge}(u, v) \quad d(v) \leqslant d(u)+w(u, v)
$$

Wright of edge
Find edge where this is violated \& update $d(v)$ to satisfy it
Dijkstra - one vertex order suffices
Bellman - Ford - dynamic programming. (The original dyn.prog. alg.)

Bellman-Ford - single source shortest path algorithm for no negative weight cycle
idea of hynamic prog. for shortest paths
 then it consists of
shortest path $u \underbrace{\text { ex shortest path } x v}$ these are subproblem
how are they smaller?

1. Sewer vertices. $\} 2$ passibilites

2 - do not use x lead to different algs.
Bellman Ford - 1 Try paths of ≤ 1 edge, ≤ 2 edges . a a
Floyd-warshall - 2

Bellman-Ford - single source shortest path algorithm for no negative weight cycle
$\phi_{i}(v)$ - length of shortest path $s \rightarrow v$ using $\leq i$ edges
initialize

$$
\begin{aligned}
& d_{1}(v)= \begin{cases}w(s, v) & \text { if }(s, v) \in E \\
\infty & \text { else } \\
d_{1}(s)=0\end{cases}
\end{aligned}
$$

want $d_{n-1}(v)$ - no neg wright cycle
compute d_{i} from d_{i-1}
For $i=2 \cdots n-1$
For each v
For each edge (u, v)

$$
\begin{aligned}
& d_{i}(v) \leftarrow \min \left\{d_{i-1}(v), d_{i-1}(u)+w(u, v)\right\}
\end{aligned}
$$

i.e. \forall edge (u, v)
end

Bellman-Ford - single source shortest path algorithm for no negative weight cycle
don't need i
initialize

$$
d(v)=\infty, d(s)=0
$$

For $i=1 \cdots n-1$
for each edge (u, v)
could use any

$$
d(v) \leftarrow \min \{d(v), d(u)\}+w(u, v)\}
$$

end
\qquad
$O(n \cdot m) \quad n=$ \#vertices, $m=$ \#edges best known strongly poly. alg.
EX. Find actual path
EX, Test for neg. cycles. Can we do this faster?
all pairs shortest path algorithms. Given digraph G with weights w:E-> R, and no negative weight cycle, find shortest path from i to j for all vertices i, j.

Floyd-Warshall

$$
V=\{1 \ldots n\}
$$

$d_{i}(j, k)=$ length of shortest path $j \rightarrow k$ using intermediate vertices
dyn.prog. - solve $i=0, \cdots n \quad d_{i}(j, k) \forall j, k$ in $\{l, \ldots, i\}$
want d_{n}
initidly $d_{0}\left(j_{2} k\right)=\left\{\begin{array}{l}w(j, k) \text { if }(j, k) \in E \\ \infty \text { else }\end{array}\right.$

$$
d_{i}(j, k)=\min _{\min }\left\{\begin{array}{l}
d_{i-1}(j, k) \quad \text { do not use } i \\
d_{i-1}(j, i) t d_{i-1}(i, k) \quad \text { use vertex } i
\end{array}\right.
$$

just reuse space $d(j, k)$
all pairs shortest path algorithms. Given digraph G with weights w: $E->R$, and no negative weight cycle, find shortest path from i to j for all vertices i, j.

Floyd-Warshall
initialize $d(j, k)$ as above
for $i=1 \cdots n$
for $j=1 \cdots n$
for $k=\cdots n$
$d(j, k) \leftarrow \min \{d(j, k), d(j, i)+d(i, k)\}$
end
$O\left(n^{3}\right)$
space $O\left(n^{2}\right)$
Ex. detect nog. cycles
EX. find actual path

