| CS 860 Fall 2014            | Lecture 4          | Anna Lubiw, U. Waterloo |
|-----------------------------|--------------------|-------------------------|
| last days:                  |                    |                         |
| some basic geometric shorte | st path algorithms |                         |
| today:                      |                    |                         |
| more papers                 |                    |                         |
| basic graph algorithms      |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |
|                             |                    |                         |





| 860 Fall 2014                                                                                                                                                                                                                                       | Lecture 4                                                                                                                                                                                                                 | Anna Lubiw, U. Waterloo  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| shortest path on a polyhedra                                                                                                                                                                                                                        | al surface                                                                                                                                                                                                                |                          |
| An optimal-time algorithm fo                                                                                                                                                                                                                        | r shortest paths on a convex polytope in three d                                                                                                                                                                          | limensions (nlogn)       |
| Y Schreiber, M Sharir - Twentieth Anniv<br>Abstract We present an <b>optimal-time a</b><br>the <b>shortest-path</b> map from a fixed sou<br><b>dimensions</b> . Our <b>algorithm</b> runs in O (<br><u>Cited by 40Related articlesAll 18 versio</u> | ersary Volume:, 2009 - Springer<br>Igorithm for computing (an implicit representation of)<br>urce s on the surface of a convex polytope P in three<br>(nlogn) time and requires O (nlogn) space, where n is<br>nsCiteSave | cont. Dijkstra           |
| From: http://scholar.google.ca/scholar?q=An+optim                                                                                                                                                                                                   | al-time+algorithm+for+shortest+paths+on+a+convex+polytope+in+three+dimensions&t                                                                                                                                           | btnG=&hl=en&as_sdt=0%2C5 |
| more papers listed are here                                                                                                                                                                                                                         |                                                                                                                                                                                                                           |                          |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhrd From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                                | on <b>3D surfaces</b><br>er - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                              |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on <b>3D surfaces</b><br>er - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                              |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, <u>S Wuhre</u><br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                      | on <b>3D surfaces</b><br>er - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                              |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                     |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                     |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                     |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>isurvey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                    |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                     |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                     |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                             | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                     |                          |
| A survey of geodesic paths of PBose, A Maheshwari, C Shu, S Wuhre<br>From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                              | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>isurvey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                    |                          |
| A survey of geodesic paths of P Bose, A Maheshwari, C Shu, S Wuhre From: http://scholar.google.ca/scholar?hl=en&q=A+                                                                                                                                | on 3D surfaces<br>gr - Computational Geometry, 2011 - Elsevier<br>survey+of+geodesic+paths+on+3D+surfaces&btnG=&as_sdt=1%2C5&as_sdtp=                                                                                     |                          |

|  | CS 860 Fall 2014 | Lecture 4 |
|--|------------------|-----------|
|--|------------------|-----------|

Anna Lubiw, U. Waterloo

shortest paths in 3D

#### New lower bound techniques for robot motion planning problems

J Canny, J Reif - ... of Computer Science, 1987., 28th Annual ..., 1987 - ieeexplore.ieee.org Cited by 456Related articlesAll 8 versionsCiteSave

From: http://scholar.google.ca/scholar?q=New+lower+bound+techniques+for+robot+motion+planning+problems&btnG=&hl=en&as\_sdt=0%2C5



# don't present

#### An algorithm for shortest-path motion in three dimensions

<u>CH Papadimitriou</u> - Information Processing Letters, 1985 - Elsevier Abstract We describe a fully polynomial approximation scheme for the problem of finding the shortest distance between two points in **three-dimensional** space in the presence of polyhedral obstacles. The fastest **algorithm** known for the exact solution of this problem is .... <u>Cited by 197Related articlesAll 2 versions</u>CiteSave

From: http://scholar.google.ca/scholar?q=An+algorithm+for+shortest-path+motion+in+three+dimensions&btnG=&hl=en&as\_sdt=0%2C5





### Precision-sensitive Euclidean shortest path in 3-Space

J Sellen, J Choi, <u>CK Yap</u> - SIAM Journal on Computing, 2000 - SIAM From: http://scholar.google.ca/scholar?g=Precision-sensitive+Euclidean+shortest+path+in+3-Space&btnG=&hl=en&as\_sdt=0%2C5



An approximation algorithm for computing shortest paths in weighted 3-d domains L Aleksandrov, H Djidjev, A Maheshwari... - Discrete & Computational (..., 2013 - Springer

L Aleksandrov, H Djidjev, A Maheshwari... - Discrete & Computational ..., 2013 - Springer From: http://scholar.google.ca/scholar?q=An+approximation+algorithm+for+computing+shortest+paths+iv+weighted+3-d +domains&btnG=&hl=en&as\_sdt=2005&sciodt=0%2C5&cites=13772326056646696620&scips













| CS 860 Fall 2014             | Lecture 4        | Anna Lubiw, U. Waterloo |
|------------------------------|------------------|-------------------------|
|                              |                  |                         |
| problems related to weighted | d region problem |                         |

shortest descending path on a terrain

OPEN polytime? NP-hard?



also related to watersheds

| anisotropic<br>approximation | 201                     |   |  |  |
|------------------------------|-------------------------|---|--|--|
| weighted region              | shortest descending pat | h |  |  |
|                              |                         |   |  |  |
|                              |                         |   |  |  |

| CS 8  | 60 Fall 2014                                                                                                                                 | Lecture 4                                                                                                                                                          | Anna Lubiw, U. Waterloo                           |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| рі    | roblems related to weighted                                                                                                                  | region problem                                                                                                                                                     |                                                   |
|       | shortest descending path o                                                                                                                   | n a terrain alg. to                                                                                                                                                | decide: is there an s = t path                    |
|       | Trekking in the Alps without from<br>M De Berg, M van Kreveld - Algorithmica,<br>From: http://scholar.google.ca/scholar?q=trekking+in+th     | Pering or getting tired<br>1997 - Springer<br>1e+alps+without+freezing&btnG=&hl=en&as_sdt=0%2C5                                                                    |                                                   |
|       | [HTML] Approximation algorithm<br>M Ahmed, S Das, S Lodha, <u>A Lubiw</u><br>From: http://scholar.google.ca/scholar?hl=en&q=Approx           | s for shortest descending paths in terrains<br>of Discrete Algorithms, 2010 - Elsevier<br>imation+algorithms+for+shortest+descending+paths+in+terrains&btnG=&as_sc | include S<br>It=1%2C5&as soft=                    |
|       | Shortest descending paths: To<br>M Ahmed, <u>A Lubiw</u> - International Journal of<br>From: http://scholar.google.ca/scholar?q=Shortest+des | wards an exact algorithm<br>of Computational, 2011 - World Scientific<br>cending+paths%3A+Towards+an+exact+algorithm&btnG=&hl=en&as_sdt=2005                       | i&sciodt=0%2C5&cites=13807659110083868733&scipsc= |
| new [ | Approximate shortest descent<br>SW Cheng, J Jin - SIAM Journal on Comp<br>From: http://scholar.google.ca/scholar?g=Approximate+              | <b>ling paths</b><br>uting, 2014 - SIAM<br>shortest+descending+paths&btnG=&hl=en&as_sdt=2005&sciodt=0%2C5&cites                                                    | s=15807659110083868738&scipsc=                    |
| X     |                                                                                                                                              |                                                                                                                                                                    |                                                   |
|       |                                                                                                                                              | shortest gently des                                                                                                                                                | scending                                          |
|       |                                                                                                                                              | path on a terrain                                                                                                                                                  |                                                   |
|       |                                                                                                                                              |                                                                                                                                                                    |                                                   |

| CS 860 Fall 2014                              | Lecture 4               | Anna Lubiw, U. Waterloo |
|-----------------------------------------------|-------------------------|-------------------------|
| discussion of Dijkstra's paper                |                         |                         |
| - reviews well done or<br>- many did more tha | the whole<br>nnecessary |                         |
| - be careful to ach                           | nowledge sources        |                         |
|                                               |                         |                         |

other problem is min spanning tree — algorithm is known as Prim's algorithm though actually due to others earlier:

Jeff Erickson's algorithms notes:

## 20.4 Jarník's ('Prim's') Algorithm

The next oldest minimum spanning tree algorithm was first described by the Czech mathematician Vojtěch Jarník in a 1929 letter to Borůvka; Jarník published his discovery the following year. The algorithm was independently rediscovered by Kruskal in 1956, by Prim in 1957, by Loberman and Weinberger in 1957, and finally by Dijkstra in 1958. Prim, Loberman, Weinberger, and Dijkstra all (eventually) knew of and even cited Kruskal's paper, but since Kruskal also described two other minimum-spanning-tree algorithms in the same paper, *this* algorithm is usually called 'Prim's algorithm', or sometimes 'the Prim/Dijkstra algorithm', even though by 1958 Dijkstra already had another algorithm (inappropriately) named after him.

CS 860 Fall 2014  
Lecture 4  
Anna Lubiw, U. Waterloo  
Bellman-Ford - single source shortest path algorithm for no negative weight cycle  

$$d_i(v) = [ength of shortest path  $s \Rightarrow v$  using  $\leq i$  edges  
initialize  
 $d_1(v) = \begin{cases} w(s, v) & \text{if } (s, v) \in t \\ \infty & \text{else} \\ d_1(s) = 0 \end{cases}$   
Want  $d_{n-1}(v)$  — no neg. weight cycle  
Compute  $d_i$  from  $d_{i-1}$   
For  $i = 2$  · ·  $n-1$   
For each edge  $(u, v)$   
 $d_i(v) \leq min \{ d_{i+1}(v), d_{i+1}(w) + w(u, v) \} \}$   
end$$

CS 860 Fall 2014 Anna Lubiw, U. Waterloo Lecture 4 Bellman-Ford - single source shortest path algorithm for no negative weight cycle don't need i mitialize  $d(\sigma) = \infty, \ d(s) = 0$ -i=1...h=1for each edge (u,v)  $d(v) \leftarrow min \ \xi \ d(v), \ d(u) \leftarrow w(u,v) \ \xi$ for i= 1 ... N-1 end n=#vertices, m=#edges best known strongly poly. alg.  $\mathcal{O}(n.m)$ EX. Find actual path EX, Jest for heg. cycles. Can we do this faster?

CS 860 Fall 2014 Lecture 4 Anna Lubiw, U. Waterloo  
all pairs shortest path algorithms. Given digraph G with weights w:E -> R, and no negative weight  
cycle, find shortest path from i to j for all vertices i, j.  
Floyd-Warshall  

$$V = \{i \cdot \cdot n\}$$
  
 $A_i(j_j,k) = length of shortest path  $j = k$  using intermediate vertices  
 $d_{ij} \cdot prog - solve$   $i = 0, \cdot n$   $d_i(j_jk) \forall j_jk$  in  $\{1, \cdot \cdot, i\}$   
Want  $d_n$   
initially  $d_0(j_jk) = \{v(j_jk), i\} (j_jk) \in E$   
 $d_i(j_jk) = win \{d_{i-1}, (j_j,k)\} - d_0$  not use i  
 $d_i(j_jk) = win \{d_{i-1}, (j_j, i) + d_{i-1}, (i_j,k)\}$  Use vertex i  
just reuse space  $d(j_jk)$$ 

| CS 860 Fall 2014                                                | Lecture 4                                                              | Anna Lubiw, U. Waterloo        |
|-----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------|
| all pairs shortest path algorith cycle, find shortest path from | nms. Given digraph G with weights w:E<br>i to j for all vertices i, j. | E -> R, and no negative weight |
| Floyd-Warshall                                                  |                                                                        |                                |
| initialize dijk                                                 | ) as above                                                             |                                |
| -for i=1n                                                       |                                                                        |                                |
| $for \tilde{y} = 1$                                             | n                                                                      |                                |
| for k =                                                         | h.n.                                                                   | 16157                          |
| d (j, k)                                                        | $\in \min \{d(j,k), d(j,i) \}$                                         | alisk) s                       |
| end                                                             |                                                                        |                                |
| O(3)                                                            |                                                                        |                                |
| O(n')                                                           | N                                                                      |                                |
| Space O(n <sup>2</sup>                                          |                                                                        |                                |
| F.X. dotert nog                                                 | Curlos                                                                 |                                |
|                                                                 | . cycles                                                               |                                |
| EX. tine actua                                                  | el path                                                                |                                |
|                                                                 |                                                                        |                                |