

CS 860 Fall 2014 polygon - funnel alg. Anna Lubiw, U. Waterloo Aside: Triangulations computational geometry books Fact: every simple polygon of *n* vertices has a triangulation with *n*-3 chords. Pf. by induction. Just show I one chord. Mark de Be Othied Che Marc wan Kreve Computationa Geometry <u> http://www.cs.uu.nl/geobook/</u> **Daniel Vlasic** Good $O(n \log n)$ time algorithms. COMPUTATIONA GEOMETRYIN O(n) time algorithm, but not implementable: Triangulating a simple polygon in linear time B Chazelle - Discrete & Computational Geometry, 1991 - Springer Cited by 805Related articlesAll 18 versionsCiteSave From: http://scholar.google.ca/scholar?g=chazelle+linear+time+triangulation&btnG=&hl=en&as_sdt=0%2C5 - to present O(n) time randomized algorithm: JOSEPH O'ROURKE A randomized algorithm for triangulating a simple polygon in linear time http://books.google.ca/books/about/Computational Ge NM Amato, MT Goodrich, EA Ramos - Discrete & Computational Geometry, 2001 - Springer Cited by 21Related articlesAll 4 versionsCiteSave From: http://scholar.google.ca/scholar?hl=en&g=A+Randomized+Algorithm+for+Triangulating+a+Simple+Polygon+in+Linear+Time&btnG=&as sdt=1%2C5&as sdtp= Fact: every polygonal region of *n* vertices and *h* holes has a triangulation with n+h-3 chords.

CS 860 Fall 2014	polygon - funnel alg.	Anna Lubiw, U. Waterloo
Basic geometric shortest p Given a polygon, two p	bath algorithms — shortest paths in 2D polygor oints S , T , find the shortest path from S to T	ח
Funnel algorithm, gene Funnel $algorithm, gene Mouth (a, b)2reflex dainsr \rightarrow b1s$	ral step	Add new & a b c mowth a, c worke b ack wards from b to recover reflex chain.
Running time Each 1 May But each be	1 cause O(n) update. Iter is discarded only once	So O(n).total

-

CS 860 Fall 2014 polygon - funnel alg. Anna Lubiw, U. Waterloo Basic geometric shortest path algorithms — shortest paths in 2D polygon query version: Given a polygon, point S preprocess to handle query: given T, find the shortest path from S to T. $P \in O(n)$ measure P, S, Q - every time - space - preprocessing time $S \in O(n)$ preprocessing time $Q \in O(\log n) - \text{ for length}$ $O(\log n + k) - \text{ for actual}$ Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons Path L Guibas, J Hershberger, D Leven, M Sharir, RE Tarian - Algorithmica, 1987 - Springer k=#vertices onpath From: http://scholar.google.ca/scholar?hl=en&g=Linear-Time+Algorithms+for+Visibility+and+Shortest+Path+Problems+Inside+Triangulated+Simple+Polygons&btnG=&as sdt=1%2C5&as sdtp= [HTML] Computing minimum length paths of a given homotopy class J Hershberger, J Snoeyink - Computational geometry, 1994 - Elsevier Cited by 140Related articlesAll 2 versionsWeb of Science: 62CiteSave From: http://scholar.google.ca/scholar?g=Computing+minimum+length+paths+of+a+given+homotopy+class&btnG=&hl=en&as sdt=0%2C5 R simpler data structure

CS 860 Fall 2014 polygon - funnel alg. Anna Lubiw, U. Waterloo Basic geometric shortest path algorithms — shortest paths in 2D polygon Given a polygon, point S preprocess to handle query: given T, find the shortest path from S to T Idea of algorithm Issues how to split funnels efficiently A Then use planar point location to find region containing store finnel of dequeue up ·· u, r v. · Vy discord from both ends. Linear search O(nlogn) Binary search O(n). No details gnery T what if S is not a vertex? what if query point T is not a vertex? subdivide furnels further to get Shortest Path Map -in each region, all pts. have same vertex seq. for shortest path Solve 3 sh. path problems

asic geometric shortest pa	th algorithms — shortest paths in 2D polyg	jon
2-Point Query Version: C path from S to T.	iven a polygon, preprocess to handle quer	y: given <i>S</i> , <i>T</i> , find the shortest
P = S = O(n)		
$Q = O(\log n + k)$		
[HTML] Optimal shortest path qu LJ Guibas, J Hershberger - Journal of From: http://scholar.google.ca/scholar?cluster=843	Ieries in a simple polygon Computer and System Sciences, 1989 - Elsevier 3806075988061775&hl=en&as_sdt=0.5	
A new data structure for she J Hershberger - Information Processin From: http://scholar.google.ca/scholar?g=A+new+ +polygon&btnG=&hl=en&as_sdt=2005&sciodt=0%	rtest path queries in a simple polygon Letters, 1991 - Elsevier lata+structure+for+shortest+path+queries+in+a+simple 2C5&cites=8433806075988061775&scipsc≡	
could preser	t.	

CS 860 Fall 2014 Lecture 2 Anna Lubiw, U. Waterloo Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain Given a polygonal domain, two points S, T, find the shortest path from S to T hale # holes = h #vertices = n -total Why n log n is a lower bound if we can only compare numbers x: positive integers input *n* numbers to sort: $x_1 \dots x_n$ construct this input for shortest path problem: (إيا) = create hole for xi at (ki, zi) (going up) The shortest path S-2T gives sorted order of Ki's So S2 (nlogn) for sh. paths in comparison model (+ random access) $(o_{\gamma}o)$ X; $ly \int (h \log h)$

CS 860 Fall 2014 Lecture 2 Anna Lubiw, U. Waterloo Basic geometric shortest path algorithms — shortest paths in 2D polygonal domain Given a polygonal domain, two points S, T, find the shortest path from S to T Reducing to a graph problem Algorithm: construct the visibility graph apply Dijkstra's algorithm (m+nlogn) m=#ekges - can be n² Run time An output-sensitive algorithm for computing visibility graphs SK Ghosh, DM Mount - SIAM Journal on Computing, 1991 - SIAM Cited by 191Related articlesAll 4 versionsWeb of Science: 73CiteSave ar?g=An+output-sensitive+algorithm+for+computing+visibility+graphs&btnG=&bl=en&as_sdt=0%2C5 S vis, graphs are dense OPEN: Lest (in poly. time) if a graph is a visibility graph (of a simple polygon).