Basic geometric shortest path algorithms - shortest paths in 2D
polygon

$n=\#$ vertices
$O(n)$
polygonal domain polygon with holes

$\theta(n \log n)$

Basic geometric shortest path algorithms - shortest paths in 2D
polygon

unirine
polygonal domain

not unique

Basic geometric shortest path algorithms - shortest paths in 2D

No one knows a polynomial time algorithm for this question:
Given a path of line segments, is the length $\leq t$?
problem: Sum of square roots
no known poly. bound on \# bits

$$
\text { to decide } \sum \sqrt{a_{i}} \geqslant k
$$

Assume real RAM model of computation.

- square root computations at unit cost.

Basic geometric shortest path algorithms - shortest paths in 2D polygon Given a polygon, two points S, T, find the shortest path from S to T

Funnel algorithm Euclidean shortest paths in the presence of rectilinear barriers
$O(n)$

DT Lee, FP Preparata - Networks, 1984 - Wiley Online Library Cited by 345Related articlesAll 3 versionsCiteSave
From: http://scholar.google.ca/scholar?q=lee+preparata\&btnG=\&hl=en\&as sdt=0\%2C5

First find a triangulation in linear time

- hot implementable

Aside: Triangulations

Fact: every simple polygon of n vertices has a triangulation with $n-3$ chords. Ff. byinduction. Just show 子 one chord.

Good $O(n \log n)$ time algorithms.
$O(n)$ time algorithm, but not implementable:
Triangulating a simple polygon in linear time
B Chazelle - Discrete \& Computational Geometry, 1991 -Springer
Cited by 805 Related articlesAll 18 versionsCiteSave
From: http://scholar.google.ca/scholar?q=chazelle+linear+time+triangulation\&btnG=\&hl=en\&as $s d t=0 \% 2 C 5$
$\mathrm{O}(n)$ time randomized algorithm:

A randomized algorithm for triangulating a simple polygon in linear time
NM Amato, MT Goodrich, EA Ramos - Discrete \& Computational Geometry, 2001 - Springer
Cited by 21 Related articles All 4 versionsCiteSave
From: http://scholar.google.ca/scholar?hl=en\&q=A+Randomized+Algorithm+for+Triangulating+a+Simple+Polygon+in+Linear+Time\&btnG=\&as sdt=1\%2C5\&as dtp=

Fact: every polygonal region of n vertices and h holes has a triangulation with $n+h-3$ chords.

Basic geometric shortest path algorithms - shortest paths in 2D polygon Given a polygon, two points S, T, find the shortest path from S to T

Funnel algorithm

the dual of the triangulation is a tree

Basic geometric shortest path algorithms - shortest paths in 2D polygon Given a polygon, two points S, T, find the shortest path from S to T

Funnel algorithm

find the path of triangles from S to T

Basic geometric shortest path algorithms - shortest paths in 2D polygon Given a polygon, two points S, T, find the shortest path from S to T

Funnel algorithm

go along the path of triangles, maintaining all shortest paths from S leaving the mouth of the current triangle

Basic geometric shortest path algorithms - shortest paths in 2D polygon Given a polygon, two points S, T, find the shortest path from S to T

Funnel algorithm, general step

Running time
Each \triangle may cause $O(n)$ update.
But each vertex is discarded only once so $O(n)$.total

Basic geometric shortest path algorithms - shortest paths in 2D polygon
query version: Given a polygon, point S preprocess to handle query: given T, find the shortest path from S to T.

$$
\begin{aligned}
& P \in O(n) \\
& S \in O(n)
\end{aligned}
$$

Q
$(\log n)$ - for length
$O(\log n+k)-$ for actual
Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons
L Guibas, J Hershberger, D Leven, M Sharir, RE Tarjan - Algorithmica, 1987 - Springer
From: http://scholar.google.ca/scholar?hl=en\&q=Linear-Time+Algorithms+for+Visibility+and+Shortest+Path+Problems+Inside+Triangulated+Simple+Polygons\&btnG=\&as sdt=1\%2C5\&as dtp=
[HTML] Computing minimum length paths of a given homotopy class
J Hershberger, J Snoeyink - Computational geometry, 1994 - Elsevier
Cited by 140 Related articlesAll 2 versionsWeb of Science: 62CiteSave
From: http://scholar.google.ca/scholar?q=Computing+minimum+length + paths + of + a+given + homotopy + class\&btnG=\&hl=en\&as $s d t=0 \% 2 C 5$
simpler
data
structure

Basic geometric shortest path algorithms - shortest paths in 2D polygon
Given a polygon, point S preprocess to handle query: given T, find the shortest path from S to T

Idea of algorithm

traverse dual tree
root (ats) to leaves

find funnels to all polygon edges implicit: shortest paths from S do not cross

Basic geometric shortest path algorithms - shortest paths in 2D polygon Given a polygon, point S preprocess to handle query: given T, find the shortest path from S to T

Idea of algorithm
Issues
how to split funnels efficiently

Store funnel of dequeue $u_{k} \cdots u_{1} r v_{1} \cdots v_{l}$
discard from both ends. Linear search O($n \log n$)
Binary search $O(n)$. No details
 what if query point T is not a vertex?
subdivide funnels further to get Shortest Path Map - in each region, all pts. hare same vertex reg. for shortest path

Aside: Planar Point Location

Fact: Given a straight-line planar decomposition of size n, can preprocess in time $O(n)$, to data structure of size $O(n)$ to handle query of the following type in time $O(\log n)$: given a point p, which region is it in?

slab method
(easy)

$$
\begin{aligned}
P=S & =O\left(n^{2}\right) \\
Q & =O(\log n)
\end{aligned}
$$

W http://en.wikipedia.org/wiki/Point_location

trapezoidal decomposition

Seidel

Basic geometric shortest path algorithms - shortest paths in 2D polygon

2-Point Query Version: Given a polygon, preprocess to handle query: given S, T, find the shortest path from S to T.
$\mathrm{P}=\mathrm{S}=\mathrm{O}(n)$
$\mathrm{Q}=\mathrm{O}(\log n+k)$
[HTML] Optimal shortest path queries in a simple polygon
LJ Guibas, J Hershberger - Journal of Computer and System Sciences, 1989 - Elsevier
From: http://scholar.google.ca/scholar?cluster=8433806075988061775\&hl=en\&as sdt=0,5

A new data structure for shortest path queries in a simple polygon

JHershberger - Information Processing Letters, 1991 - Elsevier
From: http://scholar.google.ca/scholar?q=A+new+data+structure+for+shortest+path+queries+in+a+simple
\pm polygon\&btnG=\&hl=en\&as sdt=2005\&sciodt=0\%2C5\&cites=8433806075988061775\&scipsc $=$
Could present.

Basic geometric shortest path algorithms - shortest paths in 2D polygonal domain Given a polygonal domain, two points S, T, find the shortest path from S to T

Why $\mathrm{n} \log \mathrm{n}$ is a lower bound if we can only compare numbers
input n numbers to sort: $x_{1} \ldots x_{n}$
construct this input for shortest path problem:

x_{i} - positive integers
create hole for x_{i} at $\left(x_{i}, x_{i}^{2}\right)$ (going up)
The shortest path $S \rightarrow T$ gives sorted order of x_{i}^{\prime} s So $\Omega(n \log n)$ for sh. paths in comparison model (trandom access) Actually $\Omega(h \log h)$

Basic geometric shortest path algorithms - shortest paths in 2D polygonal domain Given a polygonal domain, two points S, T, find the shortest path from S to T

Reducing to a graph problem

Claim. The shortest path uses segments that join pairs of vertices of the polygonal domain.

Algorithm:

construct the visibility graph
apply Dijkstra's algorithm

$$
\begin{aligned}
& \text { Cad edge }(u, v) \text { if } \\
& \text { line segment }(u, v) \\
& \text { does not enter any hole } \\
& w(u, v)=\text { length of segment }
\end{aligned}
$$

Basic geometric shortest path algorithms - shortest paths in 2D polygonal domain Given a polygonal domain, two points S, T, find the shortest path from S to T

Reducing to a graph problem

Algorithm:
$\left(\begin{array}{l}\text { construct the visibility graph } \\ \text { apply Dijkstra's algorithm } \\ \text { Run time } O(m+n \log n) \quad m=\# \operatorname{ldges}-\operatorname{con} b e n^{2}\end{array}\right.$
An output-sensitive algorithm for computing visibility_graphs Cited by 191 Meant - SIAM
From: hitp://scholar.google.ca/scholar?q=An+output-sensitive+algorithm+for+computing+visibility+graphs\&btnG=\&hl=en\&as sdt=0\%2C5

vis. graphs are dense

OPEN: test (in poly. time) if a graph is a visibility graph (of a simple polygon).

