ASSIGNMENT 5

ACKNOWLEDGE YOUR SOURCES.

- 1. [10 marks] The **Smallest Triangle Problem** is to find, given a set S of n points in the plane, three points of S that determine the smallest area triangle. This is a generalization of the problem of testing if three points are collinear (because collinear points give a triangle of area 0). In this question you will use duality and arrangements to solve the Smallest Triangle Problem in $O(n^2)$ time. Assume that no two points of S have the same x-coordinate.
 - (a) First suppose that two points a and b in S are fixed. The goal is to find the point $c \in S$ to minimize the area of triangle abc. (Yes, the problem can then trivially be solved in linear time, but we'll still look at the dual.) Let ℓ be the line through a and b. For any point $p \in S$, let ℓ_p be the line through p parallel to ℓ .
 - Prove that c is the point such that ℓ_c is closest to ℓ . (Don't belabour this, it's high-school geometry.)
 - Express this in terms of the dual, with lines a^*, b^*, c^* and points ℓ^*, ℓ_c^* . (Remember what happens to parallel lines when you dualize. Draw a figure.)
 - Describe how to find c^* in the dual arrangement.
 - (b) Give an $O(n^2)$ time algorithm to solve the Smallest Triangle Problem by constructing the dual arrangement. Give a high-level description of your algorithm, not detailed pseudocode. **Hint:** You will need to revisit the algorithm that constructs the arrangement so you can collect the information that was useful in part (a).
- 2. [10 marks] Design a polynomial time algorithm to find a path from point s to point t among disjoint disc obstacles in the plane. Do not invest too much energy in the best run time, but do be sure to justify correctness. Give a high-level description of your algorithm, not detailed pseudo-code. You may assume some geometric primitives for pairs of discs without giving details—but be sure to say what geometric primitives you assume.