CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Recall | Every simple polygon can be triangulated.

FoIIowéng the proof yields an obvious O(n4) time algorithm, which can be improved
to O(n“).

Today: practical O(n log n) time algorithm.

History:

- 1978. First O(n log n) algorithm. Garey, Johnson, Preparata, Tarjan.

- 1984. Simpler. Fournier and Montuno. — this is what we’ll study

-... O(nloglogn)...O(nlog*n) ...

- 1991. O(n) algorithm. Chazelle. But it is too complicated to implement. (Uses
polygon-cutting theorem, planar separator theorem, but no fancy data structures.)

There is also an O(n log* n) randomized algorithm by Seidel.

CS763-Lecture2 10f18

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Triangulation Algorithm
Assume points have distinct y coordinates (else imagine tipping slightly).
Note: degeneracy and precision are big topics — we may cover some.

Step 1. Find a trapezoidization of the polygon — from each vertex shoot a
horizontal line inside the polygon until it hits the boundary.

=TS Atoor TMFH«“@—A@ m?g%ﬁm
—> “weto ‘V\&L‘\?Q%@[C S
(each wWHR Rorirzsiial~top = letiom)
Note that a triangle is a degenerate trapezoid.

Step 2. From the trapezoidization, compute a triangulation.
Step 2 takes O(n) time.

Step 1, using plane-sweep, takes O(n log n).
Other algorithms make step 1 faster.

CS763-Lecture2 2 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Step 2. From trapezoids to triangles.

First join trapezoids to form unimonotone polygons.

Every trapezoid has a vertex on the
bottom and on the top (exactly one,
since we assumed distinct
y-coordinates).

If these are not joined by an edge,
then add a chord.

CS763-Lecture2 3 0f18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Step 2. From trapezoids to triangles. \ o F'/\f I
/

Resulting pieces are unimonotone polygons — with vertices in order of

y-coordinate.
76 a unimonotone polygon
/\ &
(— Ty

&
T2

/

7

Proof. | /

‘(;v{fv:j hapezold wot Cut by & rek chemd
(S pllka 405 @k Co e«dﬁ Le
Lollowed Calsve/ Lelo)
by’ R WefA Awmc{«“cee
b oA
o Same Side

CS763-Lecture2 4 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Triangulating a unimonotone polygon in linear time.

Any convex vertex (except p,, p,,) provides an ear, and cutting off the ear
leaves a unimonotone polygon. Note that there is such a convex vertex.

1776
vV :i=p3
& loop
Py while prev(v) # p1 and prev(v) convex
3 cut off the ear at prev(v)
12 update prev(), next() pointers

EXIT if the polygon is now empty

V = next(v)

Correctness: Qj MARCR on

RunTime: () CV\>

CS763-Lecture2 50f18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Step 1. Trapezoidization.

Use Plane-Sweep, a basic technique in planar computational geometry.
First used by Bentley and Ottman, 1979 to find intersections of line segments in the
plane.

Plane Sweep (as a general paradigm)

Sweep a horizontal scan line across the plane, from bottom to top, analyzing the
sequence of 1-dimensional cross-sections and the changes to them.

Cross-section = list of edges that cross the scan line (left to right)
33~ Sechovt (S sdaned Pt
FATAS "2
/'\ q ccam Dine. — 2¢ Lo €y €5

The cross section only changes at vertices.

CS763-Lecture2 6 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Plane Sweep Algorithm (for non crossing segments)
order vertices by y coordinate (assume distinct)
initialize cross-section = @ (aty = —»)
for each vertex p in order

update cross-section at p

possible updates:

L ; N0, Qdé}l,/b@?@()@g oo tRe
2. T tuo 2GS Aok ekal
z M +wo zd%zs addead

CS763-Lecture2 7 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Plane Sweep Algorithm (for non crossing segments)
how to update the cross-section at p
locate p in the current cross section

determine which situation (1, 2, or 3) applies and
perform appropriate update

how to locate p in the current cross section

the cross section contains — / \ \ //
edges ordered by x / Y N

(we will store these in a
balanced search tree)

We need an elementary test:

Does p lie left/right of edge e

CS763-Lecture2 8 of 18

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Elementary test needed by Plane Sweep:
Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

%: (61)—8 >
P (7)) / ;
A= (Ax,Ay)

How to solve this:

- compale %V\cﬁ{m of Lre = axth 7 — Alis (o by O
"‘E/\chéfa-x/\ 1ssues

Test %%A@ anea. o A PAB = o
2A = o055 produet of B-A and T-A
= G A0 (By=Ay) — (T A)(By Ay

[\\5&,; | arstumetic (i EV\‘Pth S nde %)
PO hptiemnon s

2l | 2.4 ZO
1 we%% ADB §<~:—,7%ZU4<O
eV

CS763-Lecture2 9 0of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Elementary test needed by Plane Sweep:
Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

B: (fo;g >
-P: (Ex)?j> 2] -\j
A= (Ax,Ay)

Exercise: Use the sidedness test to test if two line segments intersect.
Note how this avoids special cases for vertical lines, parallel lines, etc.

e &

-

CS763-Lecture2 10 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Data structure for Plane Sweep

maintain ordered list (the list of edges crossing the scan line) to allow
find, insert, delete

usSea LMMC&&Q §a&/\c@\ Thee
AN Thees red/Macle -

O (Logn) bon find/fnsent /elelo .

Timing for Plane Sweep

St O (wie] ")
+ n M‘Fo\z@ﬁ at O(ﬁg%r@ cachh

Olwleg)

CS763-Lecture2 11 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Details of plane-sweep for trapezoidization.
As the cross section is updated, collect information on each trapezoid

- left & right polygon edges, bottom and top coordinates
- bottom and top neighbours (note 0, 1, or 2 of each)

n A

X ew/b\aq?e%g A onds) TN L»Qﬁ?mg

I o
7= 5

P

Z 0\> _) M@/ﬁ&? S2s2 {C)v Q/\/\AK

v
-~

8) e —ms wo Thapezoids end,
/) <7L 7] AN %szAS

& 5 @ \?/ TN 77\&7&%@() b%?mé

N ow g Dapezod d ends,
% 40 @Q%W\

CS763-Lecture2

12 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Applications of general plane-sweep

- find all k intersections of n line segments — there may be Theta(n ?)

> / <
[Zurich notes] / [Q ::,:t [.V\‘-LQ/\ QQCLHT/\' ?Of”\%

general plane sweep can solve this in O(nlog n+ klog n) time.

a Robust plane sweep for intersecting segments d https://doi.org/10.1137/S0097539797329373
JD Boissonnat, FP Preparata - SIAM Journal on Computing, 2000 - SIAM

Crossing patterns in nonplanar road networks d https://doi.org/10.1145/3139958.3139999

CS763-Lecture2 13 of 18

https://epubs.siam.org/doi/abs/10.1137/S0097539797329373?casa_token=vRM7JlKkihgAAAAA:kNXL2RxuHQ79bwJ07g9IFdJhn5qRELAhfH9ICrklsVPZA2b6dSUX4eXP0_ewLD_EZmbdLxmZ8w
https://dl.acm.org/doi/abs/10.1145/3139958.3139999?casa_token=nZGzrXv_za8AAAAA:t5X2aW4R3ImgptxNJGPFlXK7vq2OIhzothDnljUYaIfwUZrAbhI6tb4H52EMc8vIC_F1gxKs5AO1
https://doi.org/10.1137/S0097539797329373
https://doi.org/10.1145/3139958.3139999
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Applications of general plane-sweep

- map overlay

/7)

[Zurich notes]

Overlaying simply connected planar subdivisions in linear time d htips://doi.org/10.1145/220279.220292
U Finke, KH Hinrichs - Proceedings of the eleventh annual symposium ..., 1995 - dl.acm.org

- Boolean operations on polygons - Is a polygon simple?

?1 / fP2 J:'l

O(nlog n)
AT 0 (VD @)y C ﬁ\@%eﬁi

[
| — | -
I

intersection difference

CS763-Lecture2

[Zurich notes]

14 of 18

https://dl.acm.org/doi/pdf/10.1145/220279.220292?casa_token=EQAS6CPXGoQAAAAA:YQt5XIbjZqZXsJTnU0fyHSy9Kh6lEki-V3X2eH7A6K8MTwnkPPetGwS2YYOkeRqnwQdp8A0AAgLs
https://doi.org/10.1145/220279.220292
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Sorrys 1—1:0V“36|;-—|'0 covelr s Suﬂl@c\,

General Plane Sweep — segments may cross
(The above plane sweep assumed that segments do not cross.)

The order of segments changes at an intersection
point — we must add the intersection point as an
£ “event” (in addition to the endpoints).

How do we find these events? By checking pairs
(CGAA] of adjacent edges in cross-sections.
Use a Priority Queue (PQ) to store events.

initialize cross-section = @ (aty = —»)
initialize PQ to contain vertices
while PQ not empty
get next event from Priority Queue
update cross-section at the event

if a new pair of edges becomes consecutive in the cross section, test
for intersection and add event

O(nlog n+ klog n) k= number of intersections (might be n?)
See [CGAA], or [Zurich Notes] — discusses primitives

improvement to O(nlog n+ k) (hard)
further improvement to O(n) Space d https:/doi.org/10.1145/220279.220302

An optimal algorithm for finding segments intersections
IJ Balaban - Proceedings of the eleventh annual symposium on ..., 1995 - dl.acm.org

2 4.5

https://doi.org/10.1145/220279.220302
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Triangulating a polygonal region.

More general than polygon — polygonal region = polygon with holes

~
hele

Plane Sweep for non-crossing segments still works. O(n log n)
(Note that we did not require connectedness of the boundary.)

But faster algorithms (e.g. Chazelle’s linear time algorithm) do not work.

CS763-Lecture2 15 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

A lower bound for triangulating a polygonal region.

Asano, Asano, Pinter, 1986.
|dea: the problem is as hard as sorting, so requires Omega(n log n).
Must be careful of the model of computation.

Reduce sorting to triangulation. .
Given n distinct integers x,, X,, . . . X, to sort, construct a polygonal region such

that triangulating gives the sorted order.

polygonal region = rectangle with n square holes

T

(
((
Mivx%%;g" \ X -

1
(

Ay Tiangul abon st Linle
Nl side of Rolo o =
by ottt side of newt ‘DCJ‘]
Tolloos Links Yo ef Sected endorr

CS763-Lecture2 16 of 18

iy
+
N~

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

A lower bound for triangulating a polygonal region.
Note that this requires indirect addressing.

Thus, we need a stronger model of computation than the comparison-based
model where sorting has an easy Omega(n log n) lower bound.

Model: unit cost RAM (Random Access Machine) with
- indirect addressing
- branching based on comparisons <

- arithmetic +, - , X

There is an Omega(n log n) lower bound for sorting on this model
(Paul and Simon, 1982).

Twus WMWQ@H% ?@Bﬁfﬂwﬁ reg teun dakeos
S (nlogn) on fis model

CS763-Lecture2 17 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Summary
- plane sweep algorithm (basic tool in 2D)
- O(n log n) triangulation for polygons and polygonal regions

- pay attention to basic steps of geometric algorithms — <y d\QM\E§% 4@5{’

- pay attention to model of computing for lower bounds

References
- [CGAA] Sections 3.2, 3.3 (slightly different algorithm)
- [Zurich notes] Appendix A

- [O’'Rourke] 2.1 - 2.4

CS763-Lecture2 18 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

	intro and history
	main idea of algorithm
	trapezoids to triangles
	trapezoids to triangles
	triangulating unimonotone polygons
	trapezoidization via plane-sweep
	Plane Sweep Algorithm
	Plane Sweep Algorithm
	Sidedness Test
	Sidedness Test
	analysis of plane sweep
	Trapezoidization - final details
	other applications of plane sweep
	other applications of plane sweep
	polygonal region
	lower bound
	lower bound
	Summary
	general plane sweep

