
CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

 Every simple polygon can be triangulated.

Following the proof yields an obvious O(n4) time algorithm, which can be improved
to O(n2).

Today: practical O(n log n) time algorithm.

History:
 - 1978. First O(n log n) algorithm. Garey, Johnson, Preparata, Tarjan.
 - 1984. Simpler. Fournier and Montuno. — this is what we’ll study
 - . . . O(n log log n) . . . O(n log* n) . . .
 - 1991. O(n) algorithm. Chazelle. But it is too complicated to implement. (Uses
polygon-cutting theorem, planar separator theorem, but no fancy data structures.)

There is also an O(n log* n) randomized algorithm by Seidel.

Recall

CS763-Lecture2 1 of 18

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Triangulation Algorithm

Assume points have distinct y coordinates (else imagine tipping slightly).

Note: degeneracy and precision are big topics — we may cover some.

Step 1. Find a trapezoidization of the polygon — from each vertex shoot a
horizontal line inside the polygon until it hits the boundary.

Step 2. From the trapezoidization, compute a triangulation.

Step 2 takes O(n) time.
Step 1, using plane-sweep, takes O(n log n).
Other algorithms make step 1 faster.

Note that a triangle is a degenerate trapezoid.

CS763-Lecture2 2 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Step 2. From trapezoids to triangles.

First join trapezoids to form unimonotone polygons.

Every trapezoid has a vertex on the
bottom and on the top (exactly one,
since we assumed distinct
y-coordinates).

If these are not joined by an edge,
then add a chord.

CS763-Lecture2 3 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Step 2. From trapezoids to triangles.

Resulting pieces are unimonotone polygons — with vertices in order of
y-coordinate.

Proof.

a unimonotone polygon

CS763-Lecture2 4 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Triangulating a unimonotone polygon in linear time.

Any convex vertex (except p1, pn) provides an ear, and cutting off the ear
leaves a unimonotone polygon. Note that there is such a convex vertex.

v := p3
loop

while prev(v) ≠ p1 and prev(v) convex

cut off the ear at prev(v)
update prev(), next() pointers
EXIT if the polygon is now empty

v := next(v)

Correctness:

RunTime:

CS763-Lecture2 5 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Step 1. Trapezoidization.

Plane Sweep (as a general paradigm)

Sweep a horizontal scan line across the plane, from bottom to top, analyzing the
sequence of 1-dimensional cross-sections and the changes to them.

Cross-section = list of edges that cross the scan line (left to right)

The cross section only changes at vertices.

Use Plane-Sweep, a basic technique in planar computational geometry.
First used by Bentley and Ottman, 1979 to find intersections of line segments in the
plane.

CS763-Lecture2 6 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Plane Sweep Algorithm (for non crossing segments)

order vertices by y coordinate (assume distinct)

initialize cross-section = ∅ (at y = −∞)

for each vertex p in order

update cross-section at p

possible updates:

CS763-Lecture2 7 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

how to update the cross-section at p

locate p in the current cross section

determine which situation (1, 2, or 3) applies and
perform appropriate update

how to locate p in the current cross section

the cross section contains
edges ordered by x
(we will store these in a
balanced search tree)

We need an elementary test:

Does p lie left/right of edge e

Plane Sweep Algorithm (for non crossing segments)

CS763-Lecture2 8 of 18

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Elementary test needed by Plane Sweep:
Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

How to solve this:

CS763-Lecture2 9 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Exercise: Use the sidedness test to test if two line segments intersect.
Note how this avoids special cases for vertical lines, parallel lines, etc.

Elementary test needed by Plane Sweep:
Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

CS763-Lecture2 10 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Data structure for Plane Sweep

maintain ordered list (the list of edges crossing the scan line) to allow
find, insert, delete

Timing for Plane Sweep

CS763-Lecture2 11 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Details of plane-sweep for trapezoidization.

As the cross section is updated, collect information on each trapezoid

- left & right polygon edges, bottom and top coordinates
- bottom and top neighbours (note 0, 1, or 2 of each)

CS763-Lecture2 12 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Applications of general plane-sweep

- find all k intersections of n line segments — there may be Theta(n 2)

JD Boissonnat, FP Preparata - SIAM Journal on Computing, 2000 - SIAM

D Eppstein, S Gupta - Proceedings of the 25th ACM SIGSPATIAL …, 2017 - dl.acm.org

general plane sweep can solve this in O(n log n + k log n) time.

Appendix A

Line Sweep

In this chapter we will discuss a simple and widely applicable paradigm to design ge-
ometric algorithms: the so-called Line-Sweep (or Plane-Sweep) technique. It can be
used to solve a variety of different problems, some examples are listed below. The first
part may come as a reminder to many of you, because you should have heard something
about line-sweep in one of the basic CS courses already. However, we will soon proceed
and encounter a couple of additional twists that were most likely not covered there.

Consider the following geometric problems.

Problem A.1 (Simple Polygon Test). Given a sequence P =
(p1, . . . , pn) of points in R2, does P describe the boundary
of a simple polygon?

?

Problem A.2 (Polygon Intersection). Given two simple
polygons P and Q in R2 as a (counterclockwise) sequence
of their vertices, is P \Q = ;?

?

Problem A.3 (Segment Intersection Test). Given a set S of
n closed line segments in R2, do any two of them inter-
sect?

?

Remark: In principle it is clear what is meant by “two segments intersect”. But there
are a few special cases that one may have to consider carefully. For instance, does it count
if an endpoint lies on another segment? What if two segments share an endpoint? What
about overlapping segments and segments of length zero? In general, let us count all
these as intersections. However, sometimes we may want to exclude some of these cases.
For instance, in a simple polygon test, we do not want to consider the shared endpoint
between two consecutive edges of the boundary as an intersection.

Problem A.4 (Segment Intersections). Given a set S of n
closed line segments in R2, compute all pairs of segments
that intersect.

)

167
[Zurich notes]

Robust plane sweep for intersecting segments

Crossing patterns in nonplanar road networks

https://doi.org/10.1137/S0097539797329373

https://doi.org/10.1145/3139958.3139999

CS763-Lecture2 13 of 18

https://epubs.siam.org/doi/abs/10.1137/S0097539797329373?casa_token=vRM7JlKkihgAAAAA:kNXL2RxuHQ79bwJ07g9IFdJhn5qRELAhfH9ICrklsVPZA2b6dSUX4eXP0_ewLD_EZmbdLxmZ8w
https://dl.acm.org/doi/abs/10.1145/3139958.3139999?casa_token=nZGzrXv_za8AAAAA:t5X2aW4R3ImgptxNJGPFlXK7vq2OIhzothDnljUYaIfwUZrAbhI6tb4H52EMc8vIC_F1gxKs5AO1
https://doi.org/10.1137/S0097539797329373
https://doi.org/10.1145/3139958.3139999
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Applications of general plane-sweep

- map overlay Section 2.4
BOOLEAN OPERATIONS

8. Label each face of O(S1,S2) with the names of the faces of S1 and S2
containing it, as explained above.

Theorem 2.6 Let S1 be a planar subdivision of complexity n1, let S2 be a
subdivision of complexity n2, and let n := n1 + n2. The overlay of S1 and S2
can be constructed in O(n logn+ k logn) time, where k is the complexity of the
overlay.

Proof. Copying the doubly-connected edge lists in line 1 takes O(n) time, and
the plane sweep of line 2 takes O(n logn+k logn) time by Lemma 2.3. Steps 4–
7, where we fill in the face records, takes time linear in the complexity of
O(S1,S2). (The connected components of a graph can be determined in linear
time by a simple depth first search.) Finally, labeling each face in the resulting
subdivision with the faces of the original subdivisions that contain it can be
done in O(n logn+ k logn) time.

2.4 Boolean Operations

The map overlay algorithm is a powerful instrument that can be used for various
other applications. One particular useful one is performing the Boolean opera-
tions union, intersection, and difference on two polygons P1 and P2. See Figure
2.7 for an example. Note that the output of the operations might no longer be a
polygon. It can consist of a number of polygonal regions, some with holes.

P1 P2

P1 P2 P1 P2

union

intersection difference

Figure 2.7
The Boolean operations union,
intersection and difference on two
polygons P1 and P2

To perform the Boolean operation we regard the polygons as planar maps
whose bounded faces are labeled P1 and P2, respectively. We compute the
overlay of these maps, and we extract the faces in the overlay whose labels
correspond to the particular Boolean operation we want to perform. If we want
to compute the intersection P1 ∩P2, we extract the faces in the overlay that are
labeled with P1 and P2. If we want to compute the union P1∪P2, we extract the 39

- Boolean operations on polygons

U Finke, KH Hinrichs - Proceedings of the eleventh annual symposium …, 1995 - dl.acm.org

[CGAA]

Appendix A. Line Sweep Geometry: C&A 2019

Problem A.5 (Segment Arrangement). Given a set S of n
closed line segments in R2, construct the arrangement
induced by S, that is, the subdivision of R2 induced by S.

)

Problem A.6 (Map Overlay). Given two sets S and T of
n and m, respectively, pairwise interior disjoint line seg-
ments in R2, construct the arrangement induced by S[T .

)

In the following we will use Problem A.4 as our flagship example.

Trivial Algorithm. Test all the
�
n

2

�
pairs of segments from S in O(n2) time and O(n) space.

For Problem A.4 this is worst-case optimal because there may by ⌦(n2) intersecting
pairs.

But in case that the number of intersecting pairs is, say, linear in n there is still hope
to obtain a subquadratic algorithm. Given that there is a lower bound of ⌦(n logn) for
Element Uniqueness (Given x1, . . . , xn 2 R, is there an i 6= j such that xi = xj?) in the
algebraic computation tree model, all we can hope for is an output-sensitive runtime of
the form O(n logn+ k), where k denotes the number of intersecting pairs (output size).

A.1 Interval Intersections

As a warmup let us consider the corresponding problem in R1.

Problem A.7. Given a set I of n intervals [`i, ri] ⇢ R, 1 6 i 6 n. Compute all pairs of
intervals from I that intersect.

Theorem A.8. Problem A.7 can be solved in O(n logn+k) time and O(n) space, where
k is the number of intersecting pairs from

�
I

2

�
.

Proof. First observe that two real intervals intersect if and only if one contains the right
endpoint of the other.

Sort the set {(`i, 0) | 1 6 i 6 n} [{(ri, 1) | 1 6 i 6 n} in increasing lexicographic order
and denote the resulting sequence by P. Store along with each point from P its origin
(i). Walk through P from start to end while maintaining a list L of intervals that contain
the current point p 2 P.

Whenever p = (`i, 0), 1 6 i 6 n, insert i into L. Whenever p = (ri, 1), 1 6 i 6 n,
remove i from L and then report for all j 2 L the pair {i, j} as intersecting.

A.2 Segment Intersections

How can we transfer the (optimal) algorithm for the corresponding problem in R1 to the
plane? In R1 we moved a point from left to right and at any point resolved the situation
locally around this point. More precisely, at any point during the algorithm, we knew all

168

Appendix A

Line Sweep

In this chapter we will discuss a simple and widely applicable paradigm to design ge-
ometric algorithms: the so-called Line-Sweep (or Plane-Sweep) technique. It can be
used to solve a variety of different problems, some examples are listed below. The first
part may come as a reminder to many of you, because you should have heard something
about line-sweep in one of the basic CS courses already. However, we will soon proceed
and encounter a couple of additional twists that were most likely not covered there.

Consider the following geometric problems.

Problem A.1 (Simple Polygon Test). Given a sequence P =
(p1, . . . , pn) of points in R2, does P describe the boundary
of a simple polygon?

?

Problem A.2 (Polygon Intersection). Given two simple
polygons P and Q in R2 as a (counterclockwise) sequence
of their vertices, is P \Q = ;?

?

Problem A.3 (Segment Intersection Test). Given a set S of
n closed line segments in R2, do any two of them inter-
sect?

?

Remark: In principle it is clear what is meant by “two segments intersect”. But there
are a few special cases that one may have to consider carefully. For instance, does it count
if an endpoint lies on another segment? What if two segments share an endpoint? What
about overlapping segments and segments of length zero? In general, let us count all
these as intersections. However, sometimes we may want to exclude some of these cases.
For instance, in a simple polygon test, we do not want to consider the shared endpoint
between two consecutive edges of the boundary as an intersection.

Problem A.4 (Segment Intersections). Given a set S of n
closed line segments in R2, compute all pairs of segments
that intersect.

)

167

- Is a polygon simple?

[Zurich notes]

[Zurich notes]

O(n log n)

Overlaying simply connected planar subdivisions in linear time https://doi.org/10.1145/220279.220292

CS763-Lecture2 14 of 18

https://dl.acm.org/doi/pdf/10.1145/220279.220292?casa_token=EQAS6CPXGoQAAAAA:YQt5XIbjZqZXsJTnU0fyHSy9Kh6lEki-V3X2eH7A6K8MTwnkPPetGwS2YYOkeRqnwQdp8A0AAgLs
https://doi.org/10.1145/220279.220292
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

An optimal algorithm for finding segments intersections
IJ Balaban - Proceedings of the eleventh annual symposium on …, 1995 - dl.acm.org

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

(The above plane sweep assumed that segments do not cross.)

initialize cross-section = ∅ (at y = −∞)
initialize PQ to contain vertices
while PQ not empty

get next event from Priority Queue
update cross-section at the event
if a new pair of edges becomes consecutive in the cross section, test

for intersection and add event

Chapter 2
LINE SEGMENT INTERSECTION

segments. While we sweep the imaginary line, we keep track of all segments
intersecting it—the details of this will be explained later—so that we can find
the pairs we need.

This type of algorithm is called a plane sweep algorithm and the line ! is called

!

event point the sweep line. The status of the sweep line is the set of segments intersecting it.
The status changes while the sweep line moves downwards, but not continuously.
Only at particular points is an update of the status required. We call these points
the event points of the plane sweep algorithm. In this algorithm the event points
are the endpoints of the segments.

The moments at which the sweep line reaches an event point are the only
moments when the algorithm actually does something: it updates the status of
the sweep line and performs some intersection tests. In particular, if the event
point is the upper endpoint of a segment, then a new segment starts intersecting
the sweep line and must be added to the status. This segment is tested for
intersection against the ones already intersecting the sweep line. If the event
point is a lower endpoint, a segment stops intersecting the sweep line and must
be deleted from the status. This way we only test pairs of segments for which
there is a horizontal line that intersects both segments. Unfortunately, this is
not enough: there are still situations where we test a quadratic number of pairs,
whereas there is only a small number of intersection points. A simple example
is a set of vertical segments that all intersect the x-axis. So the algorithm is not
output-sensitive. The problem is that two segments that intersect the sweep line
can still be far apart in the horizontal direction.

Let’s order the segments from left to right as they intersect the sweep line,
to include the idea of being close in the horizontal direction. We shall only
test segments when they are adjacent in the horizontal ordering. This means
that we only test any new segment against two segments, namely, the ones
immediately left and right of the upper endpoint. Later, when the sweep line has
moved downwards to another position, a segment can become adjacent to other
segments against which it will be tested. Our new strategy should be reflected in
the status of our algorithm: the status now corresponds to the ordered sequence
of segments intersecting the sweep line. The new status not only changes at
endpoints of segments; it also changes at intersection points, where the order
of the intersected segments changes. When this happens we must test the two

s j sk
sl sm

!

new neighbors

segments that change position against their new neighbors. This is a new type
of event point.

Before trying to turn these ideas into an efficient algorithm, we should
convince ourselves that the approach is correct. We have reduced the number
of pairs to be tested, but do we still find all intersections? In other words, if
two segments si and s j intersect, is there always a position of the sweep line !
where si and s j are adjacent along !? Let’s first ignore some nasty cases: assume
that no segment is horizontal, that any two segments intersect in at most one
point—they do not overlap—, and that no three segments meet in a common
point. Later we shall see that these cases are easy to handle, but for now it
is convenient to forget about them. The intersections where an endpoint of a
segment lies on another segment can easily be detected when the sweep line22

The order of segments changes at an intersection
point — we must add the intersection point as an
“event” (in addition to the endpoints).

How do we find these events? By checking pairs
of adjacent edges in cross-sections.
Use a Priority Queue (PQ) to store events.

[CGAA]

O(n log n + k log n) k = number of intersections (might be n2)
See [CGAA], or [Zurich Notes] — discusses primitives

improvement to O(n log n + k) (hard)
further improvement to O(n) space

General Plane Sweep — segments may cross

https://doi.org/10.1145/220279.220302

https://doi.org/10.1145/220279.220302
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Triangulating a polygonal region.

More general than polygon — polygonal region = polygon with holes

Plane Sweep for non-crossing segments still works. O(n log n)
(Note that we did not require connectedness of the boundary.)

But faster algorithms (e.g. Chazelle’s linear time algorithm) do not work.

CS763-Lecture2 15 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Asano, Asano, Pinter, 1986.
Idea: the problem is as hard as sorting, so requires Omega(n log n).
Must be careful of the model of computation.

A lower bound for triangulating a polygonal region.

Reduce sorting to triangulation.
Given n distinct integers x1, x2, . . . xn to sort, construct a polygonal region such
that triangulating gives the sorted order.

polygonal region = rectangle with n square holes

CS763-Lecture2 16 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Note that this requires indirect addressing.

Thus, we need a stronger model of computation than the comparison-based
model where sorting has an easy Omega(n log n) lower bound.

Model: unit cost RAM (Random Access Machine) with

- indirect addressing
- branching based on comparisons
- arithmetic +, - , x

There is an Omega(n log n) lower bound for sorting on this model
(Paul and Simon, 1982).

A lower bound for triangulating a polygonal region.

CS763-Lecture2 17 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 2: Triangulation Algorithms

Summary

- plane sweep algorithm (basic tool in 2D)

- O(n log n) triangulation for polygons and polygonal regions

- pay attention to basic steps of geometric algorithms

- pay attention to model of computing for lower bounds

References

- [CGAA] Sections 3.2, 3.3 (slightly different algorithm)

- [Zurich notes] Appendix A

- [O’Rourke] 2.1 - 2.4

CS763-Lecture2 18 of 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

	intro and history
	main idea of algorithm
	trapezoids to triangles
	trapezoids to triangles
	triangulating unimonotone polygons
	trapezoidization via plane-sweep
	Plane Sweep Algorithm
	Plane Sweep Algorithm
	Sidedness Test
	Sidedness Test
	analysis of plane sweep
	Trapezoidization - final details
	other applications of plane sweep
	other applications of plane sweep
	polygonal region
	lower bound
	lower bound
	Summary
	general plane sweep

