CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Recall | Every simple polygon can be triangulated.

FoIIowéng the proof yields an obvious O(n4) time algorithm, which can be improved
to O(n“).

Today: practical O(n log n) time algorithm.

History:

- 1978. First O(n log n) algorithm. Garey, Johnson, Preparata, Tarjan.

- 1984. Simpler. Fournier and Montuno. — this is what we’ll study

-... O(nloglogn)...O(nlog*n) ...

- 1991. O(n) algorithm. Chazelle. But it is too complicated to implement. (Uses
polygon-cutting theorem, planar separator theorem, but no fancy data structures.)

There is also an O(n log* n) randomized algorithm by Seidel.
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Triangulation Algorithm
Assume points have distinct y coordinates (else imagine tipping slightly).
Note: degeneracy and precision are big topics — we may cover some.

Step 1. Find a trapezoidization of the polygon — from each vertex shoot a
horizontal line inside the polygon until it hits the boundary.

=TS Atoor TMFH«“@—A@ m?g%ﬁm
—> “weto ‘V\&L‘\?Q%@[C S
(each wWHR Rorirzsiial~top = letiom)
Note that a triangle is a degenerate trapezoid.

Step 2. From the trapezoidization, compute a triangulation.
Step 2 takes O(n) time.

Step 1, using plane-sweep, takes O(n log n).
Other algorithms make step 1 faster.
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Step 2. From trapezoids to triangles.

First join trapezoids to form unimonotone polygons.

Every trapezoid has a vertex on the
bottom and on the top (exactly one,
since we assumed distinct
y-coordinates).

If these are not joined by an edge,
then add a chord.
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Step 2. From trapezoids to triangles. \ o F'/\f I
/

Resulting pieces are unimonotone polygons — with vertices in order of

y-coordinate.
76 a unimonotone polygon
/\ &
(— Ty

&
T2

/

7

Proof. | /

‘(;v{fv:j hapezold wot Cut by & rek chemd
(S pllka 405 @k Co e«dﬁ Le
Lollowed Calsve/ Lelo )
by’ R WefA Awmc{«“cee
b oA
o Same Side
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Triangulating a unimonotone polygon in linear time.

Any convex vertex (except p,, p,,) provides an ear, and cutting off the ear
leaves a unimonotone polygon. Note that there is such a convex vertex.

1776
vV :i=p3
& loop
Py while prev(v) # p1 and prev(v) convex
3 cut off the ear at prev(v)
12 update prev( ), next( ) pointers

EXIT if the polygon is now empty

V = next(v)

Correctness: Qj MARCR on

RunTime: () CV\>
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Step 1. Trapezoidization.

Use Plane-Sweep, a basic technique in planar computational geometry.
First used by Bentley and Ottman, 1979 to find intersections of line segments in the
plane.

Plane Sweep (as a general paradigm)

Sweep a horizontal scan line across the plane, from bottom to top, analyzing the
sequence of 1-dimensional cross-sections and the changes to them.

Cross-section = list of edges that cross the scan line (left to right)
33~ Sechovt (S sdaned Pt
FATAS "2
/'\ q ccam Dine. —  2¢ Lo €y €5

The cross section only changes at vertices.
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Plane Sweep Algorithm (for non crossing segments)
order vertices by y coordinate (assume distinct)
initialize cross-section = @ (aty = —»)
for each vertex p in order

update cross-section at p

possible updates:

L ; N0, Qdé}l,/b@?@()@g oo tRe
2. T tuo 2GS Aok ekal
z M +wo zd%zs addead
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Plane Sweep Algorithm (for non crossing segments)
how to update the cross-section at p
locate p in the current cross section

determine which situation (1, 2, or 3) applies and
perform appropriate update

how to locate p in the current cross section

the cross section contains — / \ \ //
edges ordered by x / Y N

(we will store these in a
balanced search tree)

We need an elementary test:

Does p lie left/right of edge e
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Elementary test needed by Plane Sweep:
Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

%: (61)—8 >
P (7)) / ;
A= (Ax,Ay)

How to solve this:

- compale %V\cﬁ{m of Lre = axth 7 — Alis (o by O
"‘E/\chéfa-x/\ 1ssues

Test %%A@ anea. o A PAB = o
2A = o055 produet of B-A and T-A
= G A0 (By=Ay) — (T A )(By Ay

[\\5&,; | arstumetic (i EV\‘Pth S nde %)
PO hptiemnon s

2l | 2.4 ZO
1 we%% ADB §<~:—,7%ZU4<O
eV
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Elementary test needed by Plane Sweep:
Sidedness Test: Input: 3 points, A, B, P. Is P on/left/right of line through A and B?

B: (fo;g >
-P: (Ex)?j> 2] -\j
A= (Ax,Ay)

Exercise: Use the sidedness test to test if two line segments intersect.
Note how this avoids special cases for vertical lines, parallel lines, etc.

e &

-
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Data structure for Plane Sweep

maintain ordered list (the list of edges crossing the scan line) to allow
find, insert, delete

usSea LMMC&&Q §a&/\c@\ Thee
AN Thees red/Macle -

O (Logn) bon find/fnsent /elelo .

Timing for Plane Sweep

St O (wie] ")
+ n M‘Fo\z@ﬁ at O(ﬁg%r@ cachh

Olwleg )
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Details of plane-sweep for trapezoidization.
As the cross section is updated, collect information on each trapezoid

- left & right polygon edges, bottom and top coordinates
- bottom and top neighbours (note 0, 1, or 2 of each)

n A

X ew/b\aq?e%g A onds ) TN L»Qﬁ?mg

I o
7= 5

P

Z 0\> _ ) M@/ﬁ&? S2s2 {C)v Q/\/\AK

v
-~

8 ) e —ms  wo Thapezoids end,
/) <7L 7] AN %szAS

& 5 @ \?/ TN 77\&7&%@() b%?mé

N ow g Dapezod d ends,
% 40 @Q%W\
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Applications of general plane-sweep

- find all k intersections of n line segments — there may be Theta(n ?)

> / <
[Zurich notes] / [Q ::,:t [.V\‘-LQ/\ QQCLHT/\' ?Of”\%

general plane sweep can solve this in O(nlog n+ klog n) time.

a Robust plane sweep for intersecting segments d https://doi.org/10.1137/S0097539797329373
JD Boissonnat, FP Preparata - SIAM Journal on Computing, 2000 - SIAM

Crossing patterns in nonplanar road networks d https://doi.org/10.1145/3139958.3139999
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Applications of general plane-sweep

- map overlay

/7 )

[Zurich notes]

Overlaying simply connected planar subdivisions in linear time d htips://doi.org/10.1145/220279.220292
U Finke, KH Hinrichs - Proceedings of the eleventh annual symposium ..., 1995 - dl.acm.org

- Boolean operations on polygons - Is a polygon simple?

?1 / fP2 J:'l

O(nlog n)
AT 0 (VD @)y C ﬁ\@%eﬁi

[
| — | -
I

intersection difference

CS763-Lecture2

[Zurich notes]
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Sorrys 1—1:0V“36|;-—|'0 covelr s Suﬂl@c\,

General Plane Sweep — segments may cross
(The above plane sweep assumed that segments do not cross.)

The order of segments changes at an intersection
point — we must add the intersection point as an
£ “event” (in addition to the endpoints).

How do we find these events? By checking pairs
(CGAA] of adjacent edges in cross-sections.
Use a Priority Queue (PQ) to store events.

initialize cross-section = @ (aty = —»)
initialize PQ to contain vertices
while PQ not empty
get next event from Priority Queue
update cross-section at the event

if a new pair of edges becomes consecutive in the cross section, test
for intersection and add event

O(nlog n+ klog n) k= number of intersections (might be n?)
See [CGAA], or [Zurich Notes] — discusses primitives

improvement to O(nlog n+ k) (hard)
further improvement to O(n ) Space d https:/doi.org/10.1145/220279.220302

An optimal algorithm for finding segments intersections
IJ Balaban - Proceedings of the eleventh annual symposium on ..., 1995 - dl.acm.org

2 4.5


https://doi.org/10.1145/220279.220302
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Triangulating a polygonal region.

More general than polygon — polygonal region = polygon with holes

~
hele

Plane Sweep for non-crossing segments still works. O(n log n)
(Note that we did not require connectedness of the boundary.)

But faster algorithms (e.g. Chazelle’s linear time algorithm) do not work.

CS763-Lecture2 15 of 18
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

A lower bound for triangulating a polygonal region.

Asano, Asano, Pinter, 1986.
|dea: the problem is as hard as sorting, so requires Omega(n log n).
Must be careful of the model of computation.

Reduce sorting to triangulation. .
Given n distinct integers x,, X,, . . . X, to sort, construct a polygonal region such

that triangulating gives the sorted order.

polygonal region = rectangle with n square holes

T

(
( (
Mivx%%;g" \ X -

1
(

Ay Tiangul abon st Linle
Nl side of Rolo o =
by ottt side  of newt ‘DCJ‘ ]
Tolloos Links Yo ef Sected endorr
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

A lower bound for triangulating a polygonal region.
Note that this requires indirect addressing.

Thus, we need a stronger model of computation than the comparison-based
model where sorting has an easy Omega(n log n) lower bound.

Model: unit cost RAM (Random Access Machine) with
- indirect addressing
- branching based on comparisons <

- arithmetic +, - , X

There is an Omega(n log n) lower bound for sorting on this model
(Paul and Simon, 1982).

Twus WMWQ@H% ?@Bﬁfﬂwﬁ reg teun dakeos
S (nlogn) on fis model
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CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo

Summary
- plane sweep algorithm (basic tool in 2D)
- O(n log n) triangulation for polygons and polygonal regions

- pay attention to basic steps of geometric algorithms — <y d\QM\E§% 4@5{’

- pay attention to model of computing for lower bounds

References
- [CGAA] Sections 3.2, 3.3 (slightly different algorithm)
- [Zurich notes] Appendix A

- [O’'Rourke] 2.1 - 2.4
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