Geometric Spanners

Given points in the plane, defining a complete graph G with Euclidean lengths, find a sparse subgraph H that approximates distances in G, i.e., we want

$$d_H(u, v) \leq t \cdot d_G(u, v) = t |uv| \quad \forall u, v \in V$$

the min t is called the spannung ratio or “stretch factor” of H. H is a spanner.

(More generally spanners can be defined for any edge-weighted graph G.)

Criteria for H:

- minimize the number of edges
- minimize the sum of edge weights
- make H “nice” — bounded degree, planar, etc.
- fault-tolerance (H should be well-connected)

survey

Joseph SB Mitchell and Wolfgang Mulzer. "PROXIMITY ALGORITHMS." Chapter 32 in Handbook of Discrete and Computational Geometry, 2016. (see Lecture 1 slides for link to the Handbook in the library)
Geometric Spanners

Given points in the plane, defining a complete graph \(G \) with Euclidean lengths, find a sparse subgraph \(H \) that approximates distances in \(G \), i.e., we want

\[
d_H(u, v) \leq t \, d_G(u, v) = t \, |uv| \quad \forall u, v \in V
\]

the min \(t \) is called the \textbf{spanning ratio} or “stretch factor” of \(H \). \(H \) is a \textbf{spanner}.

(More generally spanners can be defined for any edge-weighted graph.)

Can \(H \) be a tree?

The Minimum Spanning Tree (MST) has \(n-1 \) edges, and min sum of weights but its spanning ratio is \(\Theta(n) \) in the worst case.

What about a tree of minimum spanning ratio (called the “minimum dilation spanning tree”)?

NP-hard even for points in the plane

\texttt{https://doi.org/10.1016/j.comgeo.2007.12.001}
The greedy spanner

input: point set and desired spanning ratio \(t \)

\(H := \emptyset \)

For each edge \(e = (u,v) \) of \(G \) in order from min to max weight

if \(d_H(u,v) > t \, d_G(u,v) \) then add \(e \) to \(H \)

Can be implemented in \(O(n^2 \log n) \). For constant \(t \), \(H \) has bounded degree, hence \(O(n) \) edges. Total weight is \(O((\log n)weight(MST)) \).

https://doi.org/10.1007/BF02189308
The Yao graph — a bounded degree spanner

To construct Y_k: Make k equal-size cones around each point, and connect the point to the nearest neighbour in each cone.

Theorem. Y_k is a t-spanner for $t = 1 + O(1/k)$

This is easy to prove.
Planar Spanners

For points in the plane, what is the min spanning ratio achievable by a planar spanner (in the worst case)?

We cannot do better than $\sqrt{2}$ spanner:

This lower bound was improved to 1.4308 in 2016.

Best known upper bound is 1.998 — achieved by the Delaunay triangulation.

Theorem. The Delaunay graph is a t-spanner for $1.5932 \leq t \leq 1.998$

[Xia 2011]
Theorem. The Delaunay graph is a t-spanner for \(1.5932 \leq t \leq 1.998\)

The idea of proving that the Delaunay graph is a t-spanner (for a larger t).

Consider Voronoi regions cut by \(xy\)

This gives a path in Delaunay triangulation (in black)

Replace each black edge by arc on circle (see blue arcs)

Length of black path grows.

And is \(\leq\) length of half circle with diameter \(xy\)

which is \(\frac{\pi}{2}|xy|\)

Bose and Smid
Another interesting planar spanner

Half-\(\Theta_6\) graph = TD-Delaunay graph

two equivalent definitions

defining like Yao graph

defining like Delaunay triangulation

From each point \(p\), put three edges to the “nearest” points in three wedges.

Instead of an edge for an empty circle, put an edge for an empty equilateral triangle (no rotations).

Theorem. The Half-\(\Theta_6\) graph has spanning ratio 2.

https://doi.org/10.1007/978-3-642-16926-7_25
Another interesting planar spanner

Half-θ_6 graph = TD-Delaunay graph

two equivalent definitions

Example

the result is a Schnyder drawing

https://doi.org/10.1007/978-3-642-16926-7_25
Planar Spanners of bounded degree

The Delaunay triangulation may have unbounded degree

There are bounded degree planar spanners:

- 20-spanner of degree 4
- 6-spanner of degree 6
Routing. Given a network whose nodes are points in the plane, find a path from source to target just using local information (= coordinates of nodes).

Greedy routing.
From the current node, go to the neighbour that is closest to the target.

Greedy routing always succeeds for the Delaunay triangulation (the Voronoi path is greedy).
But the path that is found may be long.
Routing. Given a network whose nodes are points in the plane, find a path from source to target just using local information (= coordinates of nodes).

Compass routing.
From the current node, go to the neighbour in the best direction.

Compass routing always succeeds for Delaunay triangulations (needs proof).

Compass routing fails on this triangulation

Compass routing always succeeds for Delaunay triangulations (needs proof).
Routing. Given a network whose nodes are points in the plane, find a path from source to target just using local information (= coordinates of nodes).

Face routing.
Take the face containing the start of the segment SD. Walk around it to the intersection point with SD. Hop to the next face and repeat. Works for any planar graph.
Routing in “ad hoc wireless networks”

A wifi node is a point in the plane.
All nodes have the same range, a disc.
Two nodes can communicate iff their disks intersect.

This is called a **unit disc graph**, UDG(P) of point set P.

Routing in a unit disc graph:

We can find a planar subgraph and use face routing.

Recall the **Gabriel Graph**, GG(P) — has an edge (u,v) if the circle with diameter uv is empty of other points. GG(P) is planar (it’s a subgraph of the Delaunay triangulation).

Claim. If UDG(P) is connected then UDG(P) ∩ GG(P) is connected — because it contains MST(P).

UDG(P) \(\cap \) GG(P) planar and connected

Frey, Ingelrest, Simplot-Ryl
Routing in a network

Routing is usually done via a routing table:

\[R (\text{current node, destination}) = \text{next node to go to} \]

The size of routing tables is a barrier to efficiency.

Grand idea: Associate each node with a point in the plane ("virtual coordinates") such that greedy routing works. Then a routing table is not needed! You only need to store the virtual coordinates.

Conjecture. [Papadimitriou and Ratajczak, 2005] Every 3-connected planar graph has a greedy embedding.

Note: not every 3-connected planar graph has an embedding as a Delaunay triangulation! (If this was true, it would prove the conjecture.)
Routing in a network

Grand idea: Associate each node with a point in the plane ("virtual coordinates") such that greedy routing works. Then a routing table is not needed! You only need to store the virtual coordinates.

Conjecture. [Papadimitriou and Ratajczak, 2005] Every 3-connected planar graph has a greedy embedding.

https://doi.org/10.1016/j.tcs.2005.06.022

The conjecture was proved in 2010 (by several groups independently) but unfortunately, the number of bits required for the virtual coordinates is too large to make this practical.

Furthermore, the number of bits MUST be large in the worst case:

https://doi.org/10.1002/net.21449

There is a solution if you change the metric a bit:

https://doi.org/10.1007/s00453-012-9682-y
Summary so far:

- spanners — sparse graphs approximately preserving distances
- local routing in a given network
 but here we didn’t care about the length of the path that was found

Combining spanners and local routing: find a spanner that permits local routing, and s.t. the local route is within a constant of the Euclidean distance

Use the half θ_6-graph

There is a local routing scheme that finds a uv-path with length $\leq t \|uv\|
for $t = 2.886$

And this is a lower bound for any local routing scheme in the half θ_6-graph.
Which is interesting since the graph is a 2-spanner.

A more practical perspective:

Summary

- idea of spanners, some spanner constructions

- idea of local routing, some approaches

References - see papers listed in slides