CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

Moving objects in space with obstacles/constraints.

Objects = robots, vehicles, jointed linkages (robot arm), tools (e.g. on automated
assembly line), foldable/bendable objects.
Objects need not be physical (e.g. “fly-through” animation).

We will concentrate on moving from one position to another, though visiting a
sequence of positions is also very interesting.

PLANNING
ALGORITHMS

Joint 3
Outline: Joint 2

- translational motion (one rigid object)

- linkage motion (robot arm) Joint 1
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Translational motion
k a polygon translating
» among polygonal obstacles.

—

Start with a point moving among polygonal obstacles.
Then we can use the shortest path algorithm from previous lecture.

But we do not really need the shortest path.
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A point moving among polygonal obstacles

How to find if there is some path from point s to point t among polygonal obstacles.

the blue graph is called a roadmap

- construct trapezoidal map of space outside obstacles
- construct dual graph (in blue above)
- check if Trapezoid(s) and Trapezoid(t) are connected in the dual graph

- time O(n log n)
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A point moving among polygonal obstacles

An alternative roadmap: the Voronoi diagram of the obstacles.

Then, for a given route, the point stays as far as possible from the obstacles.
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A disc moving among polygonal obstacles.
Model as a point (the center of the disc) moving among enlarged obstacles.

disc radius = r
the center of the disc must stay distance = r from the obstacles

(a)

O’Rourke
the disc cannot follow this path

“Enlarging the obstacles” is captured more formally via Minkowski sum, A © B
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Minkowski sum
Let A and B be sets of points in the plane.
Definition. The Minkowski sum of A and B is

APB ={x+y:xeA yeB}
as vector addition of points

Xo® B={x,+Yy:yeB} =translate B by vector x,
so A @ B = translate B by all possible points in A

Let P = polygon, D = disc centered at (0,0)
Then P @ D = union of copies of D placed at each point of P

O

= P® D
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A convex polygon moving among polygons — by translation only

R = moving polygon
P = obstacle polygon

Replace R by a reference point at the origin. We will move the reference point.

Enlarge P to compensate — weneed P® (-R)={x-y:xeP,yeR}

P®(-R)

where can the reference point be =P ® (-R)
when R touches P?
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

Can polygon R move (via translations) from initial to final position among
polygonal obstacles?

work space configuration space

pposs |
\' \"'// “ﬁ‘QQ?FKCe/

|

reference point [CGAA]

High level idea

1. compute the Minkowski sum P & (-R) for each obstacle P

2. take the union, to obtain new polygonal obstacles

3. test if a point (the reference point) can move from initial to final position
mong the new enlarged obstacles

in +he e Space
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo
Can polygon R move (via translations) from initial to final position among
polygonal obstacles?

High level idea
1. compute the Minkowski sum P @ (-R) for each obstacle P
2. take the union, to obtain new polygonal obstacles

3. test if a point (the reference point) can move from initial to final position
among the new enlarged obstacles

What we will cover:
- the case where obstacles and R are convex

- computing the Minkowski sum of two convex polygons
- computing the union of convex Minkowski sums

- the idea of handling non-convex polygons
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The Minkowski sum of two convex polygons

Theorem. If P and R are convex polygons with n and m edges, respectively, then
P @ R is convex with at most n+m edges and can be found in O(n+m) time.

Proof Let P have vertices py, p,, ... p,,. Let R have verticesr,,r,,...,r_.

Claim. Vertices of P ®@ R have the form p, +r..
Stronger Claim. The vertex (extreme point) of P @ R in direction d is the sum of
the extreme points of P and R in direction d.

4

\
P\ R
- |\ \
How to find P ® R

rohete direction d

Bach Bwme dpe extreme MJ\(IZ\( (o”f 7or ?? cﬁ\axﬁrﬂzé)
o wtput ém&”a?mc&iuf rnders £ PR
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

Computing the union of convex Minkowski sums
The complexity of the union is reduced due to the following:

two convex polygons’ boundaries they form pseudodiscs if their
can intersect many times boundaries intersect at most twice

Note: need a more
careful definition in
case of shared
boundary segments

Theorem 1: Let P1 and P2 be disjoint convex polygons, and let R be convex.
Then P1 @ R and P2 @ R form pseudodiscs.

Theorem 2: If Q1. .. Qk are pairwise pseudodiscs of total size n then their union
has size O(n).
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Theorem 1: Let P1 and P2 be disjoint convex polygons, and let R be convex.
Then P1 @ R and P2 & R form pseudodiscs.

Suppose P1 @ Rand P2 @ R

are not pseudodiscs.

Then around the union we can find
tangent lines d,, d,, dj, d,,

at extreme points

alternating between the two.

These extreme points correspond to extreme
points of P1 and P2, respectively. (by the Stronger Claim.)

But that’s impossible for two disjoint convex polygons.
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

Theorem 2: If Q1. .. Qk are pairwise pseudodiscs of total size n then their union
has size O(n).

Proof.
Vertices of the union are of two types:

1. vertices of the Qi’s i

2. intersections of edges @

We just need to bound the number of type 2 vertices.

From a type 2 vertex p, follow the two edges into the interior to endpoints u, v.

Claim. At least one of u, v is interior to the union.

v
otherwise / /

u M then they are not pseudodiscs!

Charge p to that vertex.
Observe: Each interior vertex is charged at most 2 times (from its two edges).
Thus there are at most 2n vertices of type 2. wKa, Ve

Aba: e 7 15 not on e How o we shouy =Hie LN Qi doesat
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

Recall

Can polygon R move (via translations) from initial to final position among
polygonal obstacles?

work space configuration space

AL 4 .
/ \— N
> 4 P A4

' '
reference point [CGAA]

High level idea

1. compute the Minkowski sum P & (-R) for each obstacle P )
vue/gk('d/\/\"” give g{é‘ﬁrﬂ%
N éa-mq?oc{'fr\_f Wi en
3. test if a point (the reference point) can move from initial to final position
among the new enlarged obstacles

2. take the union, to obtain new polygonal obstacles
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

How to deal with non-convex obstacles
Cut them into triangles. (We assume R is convex.)
P®R = Union{T, ® R: T, atriangle of P}

T, @ Ris a convex Minkowski sum, and we know how to take their union.

Examples of more complicated Minkowski sums:

P non-convex ERIE BRI BRI P non-convex
R convex ——P+R R non-convex

.E.-" o
N \,/>

Figure 83: Minkowski sum of O(nm) complexity.
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Completing the plan.
Suppose obstacles have total size n and the robot is convex of fixed size.

Forbidden space = union of enlarged convex polygons = |J { P & (-R): P an obstacle }
Free space = complement of forbidden space.

Forbidden space has size O(n) by Theorems 1 and 2.
FACT: Forbidden space can be computed in O(n log n) time (complicated),

or via a simpler O(n log? n) time divide and conquer algorithm.
Details in [CGAA].

Then the problem is reduced to finding a path for a point in a polygonal region
of size O(n).
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Translational motion planning in higher dimensions
in 2D O(n log n) by above method (for convex robot of fixed size)

in 3D O(n? log? n) by similar method (for convex robot of fixed size)
(Note that this finds a path, not necessarily a shortest path.)

General road map algorithm of Canny O(n¢ log n) where d is the number of
degrees of freedom — this applies to rotational motion as well.
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Robot Arm Motion (Linkages)

The study of linkages is old, e.g. Peaucellier linkage to convert rotary motion to
linear motion

4:} https://www.geogebra.org/m/RTgjzeJ4

as P moves on a circle, Q moves on a line

We will just look at a chain (not a general graph, which gets into “rigidity theory”).
Input is a polygonal chain where the segments (“links”) have fixed lengths and the
angles between successive links may change.

Two models:

- intersection of links allowed, e.g. above, where linkage is essentially planar, but
each link is slightly higher (in 3rd dimension) than previous

- intersections forbidden, e.g. protein folding, robot arm in 3D
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We will study two problems:

1. Given a chain with one endpoint fixed, where can the other endpoint reach?
Allow intersections.

~

} Joint 3

Joint 2

2. Given a chain, can we go from any configuration to any other?
Forbid intersections.

P e, G (= (<

different views not to scale
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

Theorem. Given a chainv,, ..., v withlinklenghtsL,, ..., L and with v, pinned
in the plane, the reachability region of v is an annulus with
outerradius= S = } L, S =sum
. M = max, R = the rest
infer radils = M-R,where M=maxLi,R=S-M
0O ifR>M
U3
Uy
Uo
Uz
Ug U—L| John Hopcroft, Deborah Joseph, and Sue Whitesides.

"On the movement of robot arms in 2-dimensional bounded regions." 1985

Idea of proof

- trivial for n =1 6)
-forn=2 > 4’;”‘
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Theorem. Given a chainv,, ..., v withlinklengthsL,, ..., L and with v, pinned
in the plane, the reachability region of v is an annulus with
outerradius= S = } L, S =sum
. M = max, R = the rest
infer radils = M-R,where M=maxLi,R=S-M
0O ifR>M

Idea of proof

General case by induction on n.
The first n-1 links yield an annulus. Adding the last link, gives the Minkowski sum
of the annulus and a disc — which is an annulus.

The formulas for outer and inner radius
are clear if L, is the longest link,
but note that the order does not matter!

L

=/

by

Devadoss and O’Rourke
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The theorem tells us WHICH points can be reached.
It is also possible to find HOW to reach any point in the annulus.

In fact, it is possible to reach any point using only two of the joints and locking
the others (just ensure that S, M, R are the same)

Jo Vg '( UtH Uwn
0——0- o—0O— O—8@&——o

5/a

So it suffices to find out how to reach a point with 3 links.

reorder to put M over the midpoint

(Details omitted)
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Recall

We will study two problems:

1. Given a chain with one endpoint fixed, where can the other endpoint reach?
Allow intersections.

Joint 3

2. Given a chain, can we go from any configuration to any other?
Forbid intersections.

L e, G (= (<

different views not to scale
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2. Given a linkage, can we go from any configuration to any other?
Forbid intersections.

I

ok 4o sc«ﬂe, Erik Demaine

Biedl, T., Demaine, E., Demaine, M., Lazard, S., Lubiw, A.,
O'Rourke, J., Overmars, M., Robbins, S., Streinu, I.,
Toussaint, G. and Whitesides, S.,

Locked and unlocked polygonal chains in three dimensions.

2001

Fig.1. A locked, open chain K with long “knitting needles” at the ends.

OPEN. Can a chain of unit length links be locked? re,le.\/@vr} +or ?ro#ew\ oﬁ\qinﬁ :

OPEN. Find a polynomial time algorithm to test if a 3D polygonal chain is locked.
(It is PSPACE-hard to test if we can get from one configuration to another.)
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CS 763 F22 Lecture 17: Motion Planning A. Lubiw, U. Waterloo

Theorem. In 2D, any chain can be straightened. Any closed chain can be made
convex.

Robert Connelly, Erik D. Demaine, and Guinter Rote.

"Straightening Polygonal Arcs and Convexifying Polygonal Cycles." 2003

(Erik Demain’s PhD thesis work)

il A, A8

This implies that a linkage can go from any configuration to any other.

A\

initial config. —> straight config. <€— final config.
—>

idea of proof: they show that it suffices to use expansive motions — the distance
between any two vertices never decreases.
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A better way to go from initial to final configuration — avoid going through
intermediate straight/convex chain.

Hayley Iben, James F. O’Brien, and Erik D. Demaine.
"Refolding planar polygons." 2009.

—

Fig. 2 The top row demonstrates how using the vertex-position metric alone will, as expected, generate a

sequence with self intersections. The bottom row illustrates how the collision-avoidance machinery alters
the vertex motions to avoid self intersection. Computation times were less than one second
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Summary
- Motion planning

- convex robot translating among 2D obstacles
- linkages

References
- [CGAA] Chapter 13

- [Zurich notes] Appendix D
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