CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Shortest paths in the plane with polygonal obstacles

Given some polygons (“obstacles”) in the plane, a start point s and end point t,
find the shortest path from s to t that avoids the obstacles.

o

Note: most solutions actually allow us to find the shortest path from s to every t
(“single source” shortest path problem).
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo
Shortest paths in the plane with polygonal obstacles

Lemma. Any shortest path among obstacles in S

the plane is composed of line segments
between vertices of the obstacles. Also any

locally shortest path.

locally shortest
= no local change can shorten the path r
= taut string solution

Proof.

Any AW B Lowd et s »
af 4 v can be <
Shovlened

2 locally shortest paths from Sto T
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Shortest paths in a simple polygon
In a simple polygon, there is only one locally shortest path from Sto T.

Can be found in O(n) time, after triangulating the polygon. “Funnel algorithm”.
(Recall: triangulation in O(n) time by Chazelle’s algorithm.)

OPEN: can this be done in linear time without Chazelle’s algorithm?
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo
Shortest paths in a simple polygon — the funnel algorithm

- triangulate the polygon and find the path of
triangles from s to t

- go along the path of triangles, maintaining shortest

paths from s to the mouth of the current triangle ”

o|C
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Shortest paths in the plane with polygonal obstacles

Two main approaches:

1. find a shortest path in the visibility graph using Dijkstra’s shortest path
algorithm. O(n?) because the graph may have many edges.

2. “continuous” Dijkstra approach

Note: real-RAM model of computation, since we compare sums of square roots.
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Shortest paths in the plane with polygonal obstacles via Visibility

Visibility graph:
Nodes are vertices of the polygonal obstacles plus S and T.
Edge (a,b) if the line segment ab does not intersect the interior of any obstacle.
weight (a,b) = Euclidean length of segment ab.

Problem becomes: find the shortest path from S to T in the visibility graph.
Use Dijkstra’s shortest path algorithm.

Run time O(m + n log n) S e—
m = #edges.

But m can be Theta(n?).
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Shortest paths in the plane with polygonal obstacles via Visibility
Computing the visibility graph.

Obvious: O(n3)
Plane sweep: O(n? log n)
Line arrangements: O(n?)

Output sensitive: O(n log n + k), k = output size = number of edges of vis. graph.
[Ghosh and Mount, 1991].
Huge efforts went into this line of research, but the bottleneck is that the visibility
graph can have n? edges.

Next: the O(n?) algorithm via line arrangements [Welzl, 1985]
(described for non-degenerate disjoint line segments).

: ] o
/D/'@\‘f

here e Line 4@5 MATS

(i polygenal obstacles)
wmeet at Fo fnd
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Computing the visibility graph in O(n?). [Welzl, 1985]
(described for non-degenerate disjoint line segments).

1. shoot a horizontal ray from every vertex to find which +; ) ‘
segment it sees to the right. vis(v) = segment it sees. vis(s)

O(n log n) via plane sweep. ~ hOATE ,@M@—Fmg«h) Lodlom

2. sweep the direction vector cyclically, T
maintaining vis(v) g 1 'T
_,—}'—
we will find a visibility edge (a,b) when the b

direction vector is parallel to it. /
A

How to sweep the direction vector:
Visibilities only change when the direction vector goes through 2 vertices.

Find all (n choose 2) lines through pairs of points and sort by slope. O(n? log n)
we will see a faster way using arrangements!
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Computing the visibility graph in O(n?).

How to update vis(v) for the line through points a, b. W OUCI—VU& W§( (’&ﬁ
Note: only vis(a) and vis(b) can change. Update vis(a) in O(1): -@0%26
case 1. ab is a segment case 2. adoes not see b
then vis(a) blocks a from seeing b
b\ is (@) | 8 b
Q 5 Q& g1 (a)
vis(w) 1S gen@- Same w5 ()
OUCL’?\/LJC (&, b)
case 3. b is an endpoint of vis(a) case 4. otherwise
Z b\ .
\ ’ \\ﬂé(av
ms(fk) o /-
o @) < vis (L) w5 (@) <= Segment (1)
owtput (a,b) ouﬁ"ﬂ“ (a,b)
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Computing the visibility graph in O(n?).
Each update is O(1). Total cost of updates is O(n?).

The bottleneck is O(n? log n) to sort the slopes. Do we need to do that?
NO. We just need that the n-1 lines through any one point a must be handled in
the correct order.

Case 3 is crucial — we need vis(b) to be correct when case 3. b is an endpoint of vis(a)
we handle direction ab. But that’s ok if we have the

correct order around b. \

Plan. Take the dual. aé‘% ‘

Vertices (points) become lines. ()
Directions (lines through 2 points) becomes points.

line. —for Verlenx a

we want to deal with the points on line a in order.

Compute the arrangement. O(n?). Direct edges left to right.
This gives a directed acyclic graph. Now use a “topological order” of the graph.
This avoids sorting.
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Recall

Shortest paths in the plane with polygonal obstacles

Two main approaches:

1. find a shortest path in the visibility graph using Dijkstra’s shortest path
algorithm. O(n?) because the graph may have many edges.

2. “continuous” Dijkstra approach

Note: real-RAM model of computation, since we compare sums of square roots.
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CS 763 F16 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Reminder of Dijkstra’s algorithm
single source shortest paths for non-negative edge weights.

d(v) = shortest path from sto v
using vertices in S plus one edge to v

Shortest patih oo un AR

Initialize: S =null d(s) =0 d(u) = infinity for all other u
update step:

pick vin V - S to minimize d(v)

addvto S
for edge (v, u), uinV-3S
d(u) <— min{d(u), d(v) + w(v,u) } ()

line (*) takes O(m) in total. Use a priority queue to store d(v) values.
Total time O(m + n log n)
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Geometric visualization of Dijkstra’s algorithm — imagine paint flowing along edges
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Shortest paths in the plane with polygonal obstacles via continuous Dijkstra

due to Mitchell "96.
O(n log n), Hershberger, Suri ‘99

wavefront expands from point S
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Continuous Dijkstra approach. Wavefront expands from point S.

€ G \@
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Continuous Dijkstra approach. Wavefront expands from point S.
: » J
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Continuous Dijkstra approach.

Implementation issues:
- keep track of events where the wave front changes combinatorially
- find which event occurs next (use a priority queue)

- make updates for that event

Original version was O(n? log n).

Improved to O(n log n) by Hershberger, Suri

complicated! ‘
. o w e R
involves subdividing space and | HEEEES
approximating the wavefront B .
cell by cell N -
s A\ee
Eute

Note: Theta(n Iog n) is a lower bound Schreiber & Sharir
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Shortest paths in 3D with polyhedral obstacles

Note that a shortest path does not
have to travel on segments between
vertices.
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Shortest paths in 3D with polyhedral obstacles

NP-hard — Canny & Reif, 1987
even for the case of parallel floating triangles
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Shortest paths in 3D with polyhedral obstacles
Exact PSPACE algorithm. Canny ’'88. Uses decidability theory of real closed fields.

Approximation algorithm. Papadimitriou ’85;
idea: put many points along each edge and use Dijkstra (on graph)
details are a bit tricky:

- points are placed in geometric
progression along edges (not placed uniformly)

- this divides the edge into segments which
become the vertices of the graph

Main Claim. If S and T are at distance d then
the approximate path has length

<(1+¢€)d

In 2000, Choi, Sellen, Yap, found and corrected
an error caused by mixing the algebraic model,
where we compute distance using \sqrt,

with the bit model used in approximation analysis
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Shortest paths on a polyhedral surface

Surface is made up of polygons (usually triangles) joined at edges.
Paths may cut across faces.
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includes shortest paths on surface of polyhedron

Fast Exact and Approximate Geodesics on Meshes
SIGRAPH 2005

d https://doi.org/10.1145/1073204.1073228
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo
Shortest path on a polyhedral surface

shortest paths among C shortest pathsona C  shortest paths among
obstacles in the plane polyhedral surface obstacles in 3D

S o—

¢
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Shortest path on a polyhedral surface

shortest paths among C  shortest paths on a
obstacles in the plane polyhedral surface
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How does a locally shortest path move from one face to another?

the spider and the fly problem. Dudeney, The Canterbury Puzzles, 1958

12 fE.
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CS 763 F22

How does a locally shortest path move from one face to another?

locally shortest paths are straight lines in unfoldings

Lecture 16: Shortest Paths
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Shortest paths on a polyhedral surface

History
O(n®°) O’'Rourke and students, 85

O(n? log n) Mitchell, Mount, Papadimitriou, ’87 — using continuous Dijkstra approach

O(n®) Chen and Han, 96

-Otreg=mkapeer-99— no longer believed

O(n log n) for the special case of a convex polyhedron. Schreiber, Sharir, 2006
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Chen and Han algorithm to find shortest paths on a polyhedral surface
Input: polyhedral surface made up of triangles in 3-space, joined edge-to-edge
(every non-boundary edge is in 2 triangles). Source point s, destination point t.
n = # triangles.

First consider a convex surface.
Then a shortest path will not go through any vertices.

Claim 1. Shortest paths unfold to straight lines.
Claim 2. A shortest path does not enter a face twice (or we could short-cut).

Claim 3. Two shortest s-t paths do not intersect (except at s and t).

Idea. Start unfolding from the triangle containing s.

- at each edge there is a unique “next” triangle to glue on
- triangles may appear multiple times

- the target t may appear multiple times

- the unfolding will self-overlap in general

CS763-Lecture16 28 of 36
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Chen and Han algorithm to find shortest paths on a polyhedral surface

Shortest paths reach a segment on edge e via a cone.

e
>0 >
Seq ot
Cone.
How a cone expands into the next triangle
€
¢
< 4 o new %‘W\@Wk
— ene new
Segment Cone splects ym ~hwo
/

NV\(L\r\) A

Plan: keep track of segments and of the rays of cones reaching the segment
endpoints.
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Chen and Han algorithm to find shortest paths on a polyhedral surface

Build a tree. Nodes are the segments.

Initial tree Each node has one or two children
¢ a!k Y
<

= 5 52 53 Xy

Lemma. After depth n, the tree contains all shortest paths from s to any point.

Proot i shordest path dos not repeat A foce
Go it Jees Hnough £ n Haces (= 'Mmz%z@gs)

Then just compare all straight line paths from s to a copy of t in the tree to find the
shortest.

well, ok — but this is exponential size and time!
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Chen and Han algorithm to find shortest paths on a polyhedral surface

How to prune the segment tree:
Lemma. (“one vertex one cut”) Suppose triangle T appears twice and in both
cases, a segment splits at vertex v in triangle T. Then we can discard one of the

four children.
U g
|

segments s, and s, both split at
vertex v in copies of triangle T

Su 22 S S22 overlaying the copies of T

More precisely, if d, <d, then s,, can be discarded (|t never gives shortest paths).

Consequence. The S|ze of the segment tree is O(n?):

There are @) (w) Leaves w R oo

lOQ,Ca,(/LSQ/ He ':FU(L/i \)— an (O(v@ ‘irdlt/l6> XF\{\
Contribntes just ena e
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo

Chen and Han algorithm to find shortest paths on a polyhedral surface

More precisely, if d, < d, then s, can be discarded (it never gives shortest paths).

Proof.
Let o, be the path from s to v through segment s,

Let o, be the path from s to v through segment s,
Then lo,l =d, and lo,| = d,.

Consider a path o through s,
O crosses o, at x

Notation: 0,(s,x) = subpath of g, from s to x

Claim. lo(s,x)l > lo,(s,x)l. Thus s, never gives
shortest paths.

Proof.
(¢ (5,20 4’@ _da

>la (5,0)] = \d‘;__#l> | | (by asswmption)
=[gq, (5,29 + |5 (= v X
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CS 763 F22 Lecture 16: Shortest Paths A. Lubiw, U. Waterloo
Chen and Han algorithm to find shortest paths on a polyhedral surface
Dealing with non-convex vertices — actually negative curvature vertices.

Shortest paths may go through these vertices (think of saddle-points versus
mountain tops).

range of shortest paths
through the vertex
vertex of negative A
curvature ’

Solution: Each such vertex is treated as a “pseudo-source”.
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Application of shortest paths on convex polyhedron: unfolding problem

S et R

gt e A

e el fiogis frbyefie fgen

i

Durer 98

Open problem: can every convex polyhedron be cut on its edges to a planar unfolding?
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Application of shortest paths on convex polyhedron: unfolding problem
Every convex polyhedron can be unfolded via the source and star unfolding

star unfolding source unfolding
cut shortest path from x to every vertex cut Voronoi diagram of x (“ridge tree”)

?
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Summary
- shortest paths:
- polygons O(n)
- polygonal domains O(n log n)
- 3D NP-hard
- polyhedral surfaces O(n?)

References

- [CGAA] Chapter 15
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