
A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Triangulations of point sets/polygons.  Recall what we’ve seen:

- Delaunay triangulation of point set in Rd, O(n log n) algorithm in R2.

- O(n) algorithm to triangulate any polygon in R2 (Chazelle’s hard algorithm)

Applications and criteria (this is the outline for the next lectures)

- angle criteria - for meshing

- length criteria: minimum weight triangulation

- constrained triangulations (when certain edge must be included)

- meshing - triangulations with Steiner points

- flip distance

- morphing

- curve and surface reconstruction

- medial axis and straight skeleton

CS 763  F22

Recall

today

A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

CS763-Lecture13 1 of 32



A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Application of Triangulations:  Morphing

https://www.youtube.com/watch?v=nUDIoN-_Hxs
500 Years of Female Portraits in Western Art

Warp interpolation
How do we create an intermediate warp at time t?

• Assume t = [0,1]
• Simple linear interpolation of each feature pair
• (1-t)*p1+t*p0 for corresponding features p0 and p1

Alexei Efros 

Choose corresponding points, and make the “same” triangulation on both.
Then morph the triangles.
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HW3: Faces morphing
Overview
In this homework, we are going to morph an image into another. We also create a morph video sequence for the morph processing. To morph an image A to image B, we need to
define some corresponding feature points on two images, then warp the image shape and disslove the colors. This homework is divided into two parts. In part A we manually
select corresponding points from two images, then we morph a face to another face and we can also morph an object to another. In part B we automatically select facial features
for many faces, then an average face is calculated by applying the morphing algorithm. In this part, we also masculinize and feminize a face with the mean man and woman
faces.

Morphing algorithm
The morphing algorithm is composed of the 3 steps: 1. Defining correspondences 2. Computing a triangulation 3. Create the morph. For the face images, the correspondences
should map eyes to eyes, mouth to mouth, chin to chin, ears to ears, etc., to get the smoothest transformations possible. In part A we use 43 points to define a face, in order to
process the background, we also define several points on the image border. Then we use the Delaunay triangulation algorithm to divide the face image into several parts. The
triangulation of different faces should be the same, we compute the triangulation for the mean of the two point sets to decrease the potential deformations.

Résultats
Average Triangulation Average Triangulation

Once we got the triangulation for two faces, we will define the mapping between two triangles. We use a 6-DOF affine matrix for triangulation transformation. These matrices
must be computed independently for each pair of triangles. For each triangle, we compute the inverse affine transform, use it to look up the color associated to each pixel in both
images, and compute their weighted average. To smoothly generate the morphing animation, we use a sigmoid function to control the level of dissolution according to the warp
degree.

Result

PART A

Morphing Animation

Class Photo cat to tiger me to caricaturebean

The feature points define correspondence between two images. Generally, the more points, the better the morph. We create a morphed hand by morph left hand and right hand to
their mid-shape and color. We also morphed a low-pass filtered image with a high-pass filtered image. The images are aligned and warped by the sampled points, the morphed
hybrid looks better than the hybrid image, notice eyes and mouth.

More result

Left Hand Right Hand Morphed
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http://vision.gel.ulaval.ca/~jflalonde/cours/4105/h16/tps/results/tp3/JIZHA16/index.html
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Two aspects to this morphing approach:

1. how to triangulate “compatibly”

2. how to morph compatible triangluations

Compatible triangulations
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Given two (unlabelled) point sets, triangulate them the “same” way.

Two triangulations are compatible if we can map the points p of the first set to 
points f(p) of the second set (one-to-one, onto) s.t. pqr is a clockwise triangle iff 
f(p)f(q)f(r) is a clockwise triangle.
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Conjecture: Given two points sets each with n points total, and h points on the 
convex hull, they have a compatible triangulation.

This assumes no 3 points collinear (otherwise false).

Compatible triangulations

Aichholzer, Oswin, Franz Aurenhammer, Ferran Hurtado, and Hannes Krasser. "Towards 
compatible triangulations." Theoretical Computer Science 296, no. 1 (2003): 3-13.

also see Devadoss O’Rourke book

Theorem.  Two simple polygons on n vertices can be compatibly triangulated with 
Theta(n^2) Steiner points.  

Aronov, Boris, Raimund Seidel, and Diane Souvaine. "On compatible 
triangulations of simple polygons." Computational Geometry 3.1 (1993): 
27-35.

https://doi.org/10.1016/0925-7721(93)90028-5

https://doi.org/10.1016/S0304-3975(02)00428-0
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an interesting open side question:

back to what’s relevant for morphing:
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compatible triangulations
using 1 Steiner point inside 
and 1 Steiner point outside

compatible triangulations of polygons

Fig. 3. Embedding polygons in compatible triangulations. (a) Source polygon. (b) Target polygon. (c), (d) Compatible triangulations of
(a) and (b). Note that one Steiner (black) vertex is used in the polygon's interiors in order to achieve compatibility. (e), (f ) Each polygon is
enclosed by a rectangle and the annuli compatibly triangulated. Here too one Steiner vertex is used.

able to compatibly triangulate the source and target
polygon interiors and exteriors, preferable with a small
number of Steiner vertices. In this section we present
a novel algorithm to achieve this goal, having the follow-
ing characteristics:

! The number and location of Steiner vertices correlates
with the relative shape, size and similarity of the input
polygons.

! The compatible triangulations do not contain degen-
erate small and skinny triangles.

! The number of Steiner vertices is small, but not too
small, since the optimum may result in degenerate
triangles.

In the next two subsections we show how to compatibly
triangulate the interiors of two simple polygons, and how
to compatibly triangulate the annuli between the given
polygons and certain convex enclosures. These annuli are
polygons with a single hole, i.e. genus 1.

4.1. Simple polygons

The method we present is an improvement of the
second method for building compatible triangulations

of polygons described by Aronov et al. [19], based on
a so-called universal triangulation. This universal tri-
angulation has the form of a spiderweb consisting of
concentric layers of n-gons and one central vertex, where
all corresponding vertices on adjacent layers are connec-
ted by radial edges. Our variant, however, may have
incomplete concentric layers and, thus, di!erent radial
path lengths from the polygon vertices to the central
vertex. This reduced spiderweb will reduce the number
of Steiner vertices by exploiting the shape and similarity
of the polygons. This contrasts with the method of
Kranakis and Urrutia [21] for compatibly triangulating
polygons with a small number of Steiner vertices, exploit-
ing the re#ex vertices of the polygons, which might result
in degenerate triangles and does not account for the
shape similarity between the polygons.

Given a cyclic sequence of n non-negative integers, the
spiderweb connectivity associated with this sequence is
a graph of incomplete concentric cycles such that the
depth (distance from the central vertex) of the boundary
vertices is the given sequence (see Fig. 4(a)) for an
example.

Our compatible triangulation algorithm proceeds as
follows: Given a simple polygon, we may triangulate it
and consider the dual graph of the triangulation, which

70 C. Gotsman, V. Surazhsky / Computers & Graphics 25 (2001) 67}75

Craig Gotsman, Vitaly Surazhsky
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Morphing compatible triangulations

Planarity preserving morphs

The face morphing projects just use a linear mapping of each triangle. 

such morphs do not preserve planarity in general

- existence first proved by Cairns, 1944

- solution by Floater, Gotsman, Surazhky 2000, using Tutte’s graph drawing 
algorithm.  No explicit vertex trajectories.

- piecewise linear soluton

Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T.M., Da Lozzo, G., Di Battista, G., Frati, F., Haxell, 
P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkinson, B., 2017. How to morph planar graph 
drawings. SIAM J. Comput.

https://doi.org/10.1137/16M1069171
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Fig. 8. Morph sequences of texture mapped polygons generated by our algorithm. Top: Input polygons of 33 vertices. The morph uses
35 interior and 359 exterior Steiner vertices. Bottom: Input polygons of 49 vertices. The morph uses 112 interior and 1179 exterior
Steiner vertices.

vertex correspondence and compatibility throughout the
morph. Due to this rotation, 24 exterior Steiner vertices
are used in order to achieve a natural morph.

The second example is a morph of the letter U to the
letter S. The two input polygons contain 30 vertices each,
and another 69 interior and 3043 exterior Steiner vertices
are generated by our system (see Fig. 7). It required a few
seconds on a 233 MHz PC to generate each frame of the
morph.

Fig. 8 contains some examples of morphed polygons,
where the triangulated interiors were exploited for tex-
ture mapping.

6. Discussion and conclusion

This paper has shown how to morph simple polygons
in a manner that guarantees that the intermediate shapes
are also simple. This is the "rst morphing method which
relies on a solid mathematical (as opposed to heuristic)
basis to achieve this. It is also a completely automatic
process.

A number of parameters related to the morph of the
compatible triangulations generated during the process
provide some control over the speci"c morph generated.
Another algorithmic parameter which might a!ect the
quality of the morph is the size of the convex enclosure.
Right now we construct the convex enclosure such that
its diameter is approximately twice that of the maximum
of the source and target polygon diameters. This seems to
be the natural choice, as less than this would over-
constrain the vertex trajectories, and more than this
would not add any extra #exibility.

Many interactive morphing systems allow the user
some control over the vertex trajectories, e.g. by specify-
ing the locations of some of the vertices in some of the

intermediate frames. While not demonstrated here, our
method supports this since the underlying techniques of
Surazhsky and Gotsman [17] for morphing compatible
triangulations also support it.

A central ingredient in our method is the compatible
triangulation of the source and target polygons using
a small number of Steiner vertices and maintaining this
compatibility throughout the morph. The fact that the
triangulation is valid throughout the morph has the extra
bene"t that texture mapping is well de"ned in the poly-
gon interior (as well as its exterior) throughout the
morph, so the method may be used to morph images
while avoiding the common foldover artifacts that occur
in many other methods.

Our method of compatible triangulating simple poly-
gons and polygons with one hole is of independent inter-
est, and generates quite fair triangulations using a small
number of Steiner vertices. In general there is a tradeo!
between the number of Steiner points and the fairness of
the triangulation, in the sense that a very small number of
Steiner points will not allow a very fair triangulation, and
a large number of Steiner points gives a lot of #exibility.
The crux of the matter is to carefully position as few
Steiner points as possible in order to optimize the
tradeo!. We are able to do this by taking into account
the relative shapes and feature points of the input poly-
gons. Reducing the number of Steiner points reduces the
complexity of the morphing problem, and the number of
compatibility constraints. A more detailed description of
the triangulation algorithms and some enhancements,
which further reduce the number of Steiner vertices,
along with formal correctness proofs, will be published
separately [22].

In terms of complexity, most of the morphing compu-
tation time is spent on solving a set of linear equations
per intermediate frame. Our implementation has not

74 C. Gotsman, V. Surazhsky / Computers & Graphics 25 (2001) 67}75
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Fig. 6. Morphing simple quadrilaterals: (a) Source polygon embedded in triangulation generated by our algorithm. (e) Embedded target
polygon. Colored vertices denote correspondence. Non-colored vertices are (exterior) Steiner vertices. (b), (c), (d) Intermediate
(triangulations and) polygons generated using our methods. (f ) Morph vertex trajectories.

Fig. 7. Morphing simple polygons: (a) Source polygon. (e) Target polygon. Colored vertices denote some of the correspondence. (b), (c),
(d) Intermediate polygons generated using our methods. (f ) Morph vertex trajectories.

Assume the source and target polygons have the same
number of vertices on the interior and exterior bound-
aries, with some correspondence between these bound-
aries. We "rst triangulate both annuli and build the
corresponding dual graphs. Note that the dual graphs
have exactly one loop due to the connectivity, which we
denote by depth 0. Depths of triangles interior to this
loop will be negative, and depths of triangles exterior to
the loop will be positive. Milestones for the interior poly-
gon vertices are de"ned to be the minimal depth asso-
ciated with incident triangulation faces. Milestones for
exterior vertices are de"ned as the di!erence between the
topological distance between corresponding interior and
exterior vertices in the dual, and the interior vertex mile-
stone (see Fig. 5(b) and (c)).

We then use the cyclic milestone sequences of each of
the two input polygon boundaries as inputs for con-
structing the spiderweb connectivities associated with the
polygons (see Fig. 5(d) and (e)). The two spiderweb con-
nectivities are merged and a new (common) spiderweb
connectivity based on the new sequence of depths is
constructed (see Fig. 5(f)). Plane graphs with boundaries
equivalent to the input polygons and interior Steiner
vertices having the same connectivity as the new spider-

web connectivity may then be constructed (see Fig. 5(g)
and (h)).

Note that the faces of these compatible graphs are not
necessarily triangular. If so, these (non-convex) faces
may be compatibly triangulated using the methods of
Section 4.1.

5. Experimental results

In this section, we demonstrate a number of sample
morphs generated by our algorithm. Each morph is illus-
trated by a number of snapshots during the morph.
Animated GIFs of these morphs may be found at
http://www.cs.technion.ac.il/gotsman/poly}morphs
along with the analogous linear morphs.

The "rst example is a simple rotation of a non-convex
quadrilateral (see Fig. 6). While many methods (including
[4]) solve for global transformations between the source
and target, e.g. translation, rotation using some sort of
optimization procedure, this is unnecessary using our
technique. The system automatically `detectsa the rota-
tion, without the user having to hint at it, as it is the only
possible transformation which preserves both the given
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18 · V. Surazhsky and C. Gotsman

(a)

(b)

(c)

(d)

Fig. 13. Morphing simple polygons—the shapes of two letters S and U : (a) The linear morph is invalid — the polygon
self-intersects. (b) The convex combination morph is valid, but unnatural. (c) Morph generated by the local scheme that
averages polar coordinates. It behaves naturally, accounting for the rotation of the lower part of the S, but shrinks in an
exaggerated manner. (d) Morph generated by the local scheme with area improvement. It is similar to the morph in (c),
but with much less shrinking of the shape.

and in particular, with none when it is possible, is still open. In general, the main difficulty stems from
the fact that our morphing techniques use neighborhood matrices, which always result in a global solution
to the morphing problem, making it virtually impossible to precisely control an individual vertex location
(or trajectory).

In Section 3.3, two conjectures are used to generate a morph that approaches the linear morph. Numer-
ous examples support these conjectures, but a proof still eludes us. Since the matrices used to generate
morphs by that method are not legal neighborhood matrices, the proof requires more a profound com-
prehension of the method.

Section 4.3 presents a heuristic for improving the evolution of triangle areas. Further analysis of the
correlation between vertex trajectories as well as triangle area behavior within the stars and behavior of
these elements in the triangulation, may provide insight to more successful heuristics, perhaps even some
optimal approximation to the desired triangle areas.

It is important to make the techniques presented in this work applicable to real-world scenarios. As
mentioned in Section 5, the techniques have already been applied to morph simple planar polygons and
stick figures by embedding them in triangulations. In practice, the triangulations are built around them.
For example, the triangulations in which simple polygons are embedded are constructed by compatibly
triangulating the interior of the polygons and an annular region in the exterior of the polygon between
the polygon boundary and a fixed convex enclosure. See [Gotsman and Surazhsky 2001; Surazhsky and
Gotsman 2001] for more details. These works have yet to be extended to morph planar figures with
arbitrary (e.g. disconnected) topologies.
ACM Transactions on Graphics, Vol. 20, No. 4, October 2001.

morphing using Floater, Gotsman, Surazhky method
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Curve and surface reconstruction
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Curve and surface reconstruction

digital Michaelangelo project
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Curve and surface reconstruction

alpha-shapes and alpha-hulls

pushing lines against a point set
gives the convex hull
line = infinite radius circle

pushing discs of smaller radius 
gives more refined “shape”
and detects holes

the alpha-hull,
alpha = disc radius
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when alpha is small, the 
points remain isolated;
when alpha is large the 
alpha-hull approaches 
the convex hull

alpha-shapes and alpha-hulls
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alpha-shapes and alpha-hulls

issues:  
- what is the “right” value of alpha?
- if points are not uniform then no single value of alpha will work.  

Teichmann, Capps

Edelsbrunner, Herbert, and Ernst P. Mücke. "Three-dimensional alpha 
shapes." ACM Transactions on Graphics (TOG) 13.1 (1994): 43-72.
cited by 1939

https://doi.org/10.1145/174462.156635

CS 763  F22 A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

CS763-Lecture13 13 of 32

https://doi.org/10.1145/174462.156635


A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Crust Algorithm for surface reconstruction

in 2D this is curve reconstruction

points on the curve must be sufficiently dense in order to reconstruct the curve

figures from Devadoss, O’Rourke

Dey, Tamal K. Curve and surface reconstruction: algorithms with 
mathematical analysis. Vol. 23. Cambridge University Press, 2006.

Amenta, Nina, Marshall Bern, and David Eppstein. "The crust and the β-
skeleton: Combinatorial curve reconstruction." Graphical models and 
image processing 60.2 (1998): 125-135.

https://doi.org/10.1006/gmip.1998.0465
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Voronoi diagraminput points

Delaunay triangulation of original 
points S + Voronoi vertices

edges with both endpoints in S
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Medial axis of a convex polygon = Voronoi diagram of edges of polygon

= locus of centers of circles inside polygon that touch boundary at 2 or more points
   (centers of maximal inscribed discs)
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continuedThe Straight Skeleton

each straight skeleton edge is a 
bisector of two polygon edges.

“Grow” the vertex angle bisectors 
by shrinking the polygon.

The trajectories of the vertices 
form the straight skeleton.

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

= grow the vertex angle bisectors by shrinking the polygon.  The trajectories of 
the vertices form the medial axis.  

every edge of the medial 
axis is a bisector of two 
polygon edges

CS 763  F22 A. Lubiw, U. WaterlooLecture 13: Triangulations, continued
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

There is an O(n) time algorithm.  
Here is a simpler O(n log n) algorithm:

CS 763  F22 A. Lubiw, U. WaterlooLecture 13: Triangulations, continued
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Medial axis of a non-convex polygon = locus of centers of maximal inscribed discs

can be found in time O(n)

Joseph O’Rourke
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

A physical model for medial axis

bradmohr

- Imagine the polygon is drawn on the prairie, and you light fires along the 
boundary.  Medial axis = points where fire is quenched (fire meets other 
fire)   

- pouring sand
Voronoi diagram
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A physical model for medial axis
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Applications of medial axis 

Blum transform
for shape recognition

Vadim Shapiro

character recognition

Fig. 10. Boundary signatures: local curvature (a), local feature size (b) showing also the medial axis, Boundary Eccentricity (BE) (c,d)
showing also E(x) over the medial axes, and a matching result using BE (e).

center. As shown in a different shape in (d), BE is also stable
under isometric deformations. With these properties, BE
is a good descriptor for matching 2D shapes that may be
noisy and undergoing large deformations. We demonstrate
this by matching the two curves in (c,d) guided by the
BE values using a simple dynamic algorithm. The resulting
correspondence for several critical points of BE on the first
shape (c) is shown in (e).

7. Conclusion

In this paper, we define a global shape measure (EDF)
over the medial axis that capture shape elongation, a shape
center (EMA) where the elongation is maximal, and rigor-
ously study their properties. Both the EDF and EMA can
be obtained using an extension of Blum’s grassfire analogy
onto the medial axis. The EDF and EMA are demonstrated
by examples, compared to related formulations, and used
in several shape modeling applications.

We have experimentally observed that both EDF and
EMA (as well as the Boundary Eccentricity descriptor) are
stable under boundary perturbations. As a future work, we
would like to theoretically characterize such stability. We
are also confident that the work here opens a new path
for solving the harder problem in 3D - finding global mea-
sures on the 3D medial axis and defining center curves of
3D shapes. Note that the grassfire analogy applies easily
to medial axes of 3D shapes. The extended grassfire propa-
gates geodesically from the border of the medial axis sheet
at uniform speed. The EDF is the burning time at a medial
axis point, and the EMA (the curve skeleton) consists of
the quench sites of the fire. This analogy has already led to
a simple grid-based thinning algorithm that is capable of
extracting significant parts of the 3D medial axis as well as
clean curve skeletons [11]. We plan to study explicit math-
ematical definitions of EDF and EMA in 3D, which will
allow us to investigate their theoretical properties and bet-
ter understand their relation to shape description, as done
in 2D in this work.

Appendix A. Proof of Proposition 1

Proof:
(i) By triangle inequality, for any axes f containing dis-

tinct points x, y, we have R(x) < df (x, y) + R(y).
Hence rf (x) ≥ R(x) with the equality attained iff x
is an end of f . If x ∈ ∂M , all axes containing x will
have x as an end, and hence R̃(x) = R(x). Otherwise,
there is some axes that does not have x as an end,
and so R̃(x) > R(x).

(ii) First, suppose there a subset S ⊂ M containing x
such that ∂S = ∅. Then it is possible to obtain an
axes f where rf (x) = ∞ by extending a path from x
in both directions infinitely without encountering a
boundary. Hence R̃(x) = ∞.
Next, suppose R̃(x) = ∞, which implies rf (x) =

∞ for some axes f . Since O is bounded, R is finite,
and hence both the geodesic distances from x to both
ends of f need to be infinite. Note that O is bounded
by piece-wise analytic curves, hence M contains a
finite set of analytic curve arcs [4], and so M does
not contain an infinite simple path. As a result, both
segments of the axes f on the two sides of x need
to overlap with themselves. It is easy to see that the
subset ofM covered by the segments of f on each side
of x up to the first overlapping event is one without
boundary.

!
Appendix B. Proof of Proposition 2

We begin by showing several lemmas that lead to the
proof.

Lemma 1 Extending an axes f from its ends does not re-
duce its radius with respect to some fixed x ∈ f .
Proof: Denote the ends of f as z0, z1, and the ends of the
extended axes f ′ as z′0, z

′
1. For each i ∈ {0, 1}, we have:

df (x, zi) +R(zi) = df ′(x, zi) +R(zi)

≤ df ′(x, zi) + df ′(zi, z
′
i) +R(z′i)

= df ′(x, z′i) +R(z′i)

10

http://www.cs.wustl.edu/~taoju/research/ma_final.pdf

shape matching
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Straight Skeleton  — similar to medial axis but avoids curved sections

Grow the vertex angle bisectors by shrinking the polygon.  The trajectories of the 
vertices form the straight skeleton. 

The Straight Skeleton

each straight skeleton edge is a 
bisector of two polygon edges.

“Grow” the vertex angle bisectors 
by shrinking the polygon.

The trajectories of the vertices 
form the straight skeleton.

The Straight Skeleton of a Non-convex Polygon

The Straight Skeleton of a Non-convex Polygon

For a convex polygon, this is the same as the medial axis

But for a non-convex polygon, it is not the same:

CS 763  F22 A. Lubiw, U. WaterlooLecture 13: Triangulations, continued
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Straight Skeleton  — similar to medial axis but avoids curved sections

Difference between medial axis and straight skeleton —  only for non-convex 
polygons:

medial axis straight skeleton

offset curve with mitred caps
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Straight skeleton algorithms

Vigneron, Antoine, and Lie Yan. "A faster algorithm for computing motorcycle graphs." 
Discrete & Computational Geometry 52.3 (2014): 492-514.

idea of previous algorithm gives O(n^2 log n) because the next ray intersection 
need not be between consecutive rays 

Eppstein, David, and Jeff Erickson. "Raising roofs, crashing cycles, and 
playing pool: Applications of a data structure for finding pairwise interactions." 
Discrete & Computational Geometry 22.4 (1999): 569-592

improvements:

O(n8/5+ε) for any fixed ε > 0 

O(n4/3+ε) time for any ε > 0 

https://doi.org/10.1007/PL00009479

https://doi.org/10.1007/s00454-014-9625-2

CS 763  F22 A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

CS763-Lecture13 25 of 32

https://doi.org/10.1007/PL00009479
https://doi.org/10.1007/s00454-014-9625-2


A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

  

How to fit a roof to these walls?

5

Straight skeleton applications: designing roofs

  

Straight Skeleton and Offset Curves

7
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Straight skeleton application: fold and cut problem

Fold and Cut Theorem.  For any (slightly perturbed) polygon on a piece of paper 
there is a flat folding of the paper that puts all the polygon edges on one line and 
puts the inside and outside of the polygon on opposite sides of the line.

o
o

x x

+
+

Lemma.  For any triangle the three angle bisectors meet at a point.

That point is the incenter of the triangle.

How to Fold and Cut A Triangle

How to Fold and Cut A Triangle

solution for triangle:
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

What does a solution to fold and cut look like at the polygon 
boundary?

MUST use bisector at each vertex

MAY use perpendiculars on any edges

general solution to fold-and-cut

MUST use angle bisector at each vertex.
Thus, use straight skeleton.

MAY use perpendiculars on any edge
and we need some of these to get flat folding

CS 763  F22 A. Lubiw, U. WaterlooLecture 13: Triangulations, continued
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A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Example.  

All folds except the pink ones are straight skeleton folds.

In degenerate cases, this bouncing can be infinite.
This is why we may need to perturb the input polygon slightly.
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fold-and-cut examples

Demaine, Erik D., Martin L. Demaine, and Anna Lubiw. "Folding and one straight cut suffice." 
Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms. Society for 
Industrial and Applied Mathematics, 1999.

http://erikdemaine.org/foldcut/
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CS 763  F22 A. Lubiw, U. WaterlooLecture 13: Triangulations, continued

Summary

- compatible triangulations and morphing

- curve and surface reconstruction 

- medial axis (Voronoi diagram of edges)

- straight skeleton 

References 

- papers and books listed throughout
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