CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Recall

Triangulations of point sets/polygons. Recall what we’ve seen:
- Delaunay triangulation of point set in RY, O(n log n) algorithm in R2.
- O(n) algorithm to triangulate any polygon in R? (Chazelle’s hard algorithm)
Applications and criteria (this is the outline for the next lectures)
- angle criteria - for meshing
- length criteria: minimum weight triangulation
- constrained triangulations (when certain edge must be included)
- meshing - triangulations with Steiner points
- flip distance
- morphing
today | - curve and surface reconstruction

- medial axis and straight skeleton
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Application of Triangulations: Morphing

500 Years of Female Portraits in Western Art

D https://www.youtube.com/watch?v=nUDIoN-_Hxs

Choose corresponding points, and make the “same” triangulation on both.
Then morph the triangles.

Alexei Efros
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

«" http://vision.gel.ulaval.ca/~jflalonde/cours/4105/h16/tps/results/tp3/JIZHA16/index.html
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CS 763 F22 Lecture 13: Triangulations, continued

Two aspects to this morphing approach:
1. how to triangulate “compatibly”

2. how to morph compatible triangluations

Compatible triangulations

A. Lubiw, U. Waterloo

Given two (unlabelled) point sets, triangulate them the “same” way.

. ‘ ame
same
same

4 \(

Two triangulations are compatible if we can map the points p of the first set to
points f(p) of the second set (one-to-one, onto) s.t. pgr is a clockwise triangle iff

f(p)f(q)f(r) is a clockwise triangle.

EX. T¢ 4o %vﬁ\mﬁ&m[ ~fo «%\vag SAM\E.
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Compatible triangulations

an interesting open side question:
Conjecture: Given two points sets each with n points total, and h points on the
convex hull, they have a compatible triangulation.

This assumes no 3 points collinear (otherwise false).

Aichholzer, Oswin, Franz Aurenhammer, Ferran Hurtado, and Hannes Krasser. "Towards
compatible triangulations." Theoretical Computer Science 296, no. 1 (2003): 3-13.

d https://doi.org/10.1016/S0304-3975(02)00428-0

also see Devadoss O’Rourke book

back to what’s relevant for morphing:
Theorem. Two simple polygons on n vertices can be compatibly triangulated with
Theta(n”2) Steiner points.

Aronov, Boris, Raimund Seidel, and Diane Souvaine. "On compatible
triangulations of simple polygons." Computational Geometry 3.1 (1993):
27-35.

d https://doi.org/10.1016/0925-7721(93)90028-5
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

compatible triangulations of polygons

compatible triangulations
using 1 Steiner point inside
and 1 Steiner point outside

(a)

(b)

Craig Gotsman, Vitaly Surazhsky
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Morphing compatible triangulations

The face morphing projects just use a linear mapping of each triangle.

rotatea 7‘/\)0/2%.

Q inverded “\Ti«ﬁ%&.

such morphs do not preserve planarity in general

Planarity preserving morphs  — (WWJC 15 -0 C@VVY{?@‘MQ—U\?MXV\QK‘HWS :

- existence first proved by Cairns, 1944

- solution by Floater, Gotsman, Surazhky 2000, using Tutte’s graph drawing
algorithm. No explicit vertex trajectories.

- piecewise linear soluton

Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T.M., Da Lozzo, G., Di Battista, G., Frati, F., Haxell,
P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkinson, B., 2017. How to morph planar graph
drawings. SIAM J. Comput.

d https://doi.org/10.1137/16M1069171
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

morphing using Floater, Gotsman, Surazhky method

e A
; —

Craig Gotsman, Vitaly Surazhsky
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Curve and surface reconstruction

Approximately 12 Minutes
Hundreds of Thousands Points Connected

Original

Point Cloud

CS763-Lecture13
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Curve and surface reconstruction

CS763-Lecture13

digital Michaelangelo project

€ MeshLab v0.5 - [weaver.ply]
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CS 763 F22

Curve and surface reconstruction

alpha-shapes and alpha-hulls
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pushing lines against a point set
gives the convex hull

line = infinite radius circle

the alpha-hull,

alpha = disc radius

CS763-Lecture13

Lecture 13: Triangulations, continued

A. Lubiw, U. Waterloo

pushing discs of smaller radius
gives more refined “shape”
and detects holes
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A. Lubiw, U. Waterloo

Lecture 13: Triangulations, continued
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CS 763 F22 Lecture 13: Triangulations, continued

alpha-shapes and alpha-hulls

issues:
- what is the “right” value of alpha?

- if points are not uniform then no single value of alpha will work.

Edelsbrunner, Herbert, and Ernst P. Mucke. "Three-dimensional alpha

shapes." ACM Transactions on Graphics (TOG) 13.1 (1994): 43-72.
cited by 1939

d https://doi.org/10.1145/174462.156635

CS763-Lecture13

N
<

i
ﬂ% ‘/‘»‘:
Vo
i
pa—

\/
™ SRR
A\ \ A0
SRR SN,
B ORI Lo
s N Ceat\,

v

Teichmann, Capps
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Crust Algorithm for surface reconstruction
in 2D this is curve reconstruction

figures from Devadoss, O’Rourke

points on the curve must be sufficiently dense in order to reconstruct the curve

=
t i Curve and Surface

Dey, Tamal K. Curve and surface reconstruction: algorithms with Reconstruction

mathematical analysis. Vol. 23. Cambridge University Press, 2006. o RS

Tamal K Oey

Amenta, Nina, Marshall Bern, and David Eppstein. "The crust and the (3-
skeleton: Combinatorial curve reconstruction." Graphical models and
image processing 60.2 (1998): 125-135.

d hitps://doi.org/10.1006/gmip.1998.0465
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

input points Voronoi diagram

Delaunay triangulation of original edges with both endpoints in S
points S + Voronoi vertices

CS763-Lecture13 15 of 32



CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

(a) (b)

= locus of centers of circles inside polygon that touch boundary at 2 or more points
(centers of maximal inscribed discs)

CS763-Lecture13 16 of 32
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

= grow the vertex angle bisectors by shrinking the polygon. The trajectories of
the vertices form the medial axis.

every edge of the medial
axis is a bisector of two :
polygon edges -

CS763-Lecture13 17 of 32



CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

There is an O(n) time algorithm.
Here is a simpler O(n log n) algorithm:

Uidt: waiedain bisectons of Censocyh yo 20905

o wderseEken ?o&/\% of o secvhing
biserHNS « Hhose are i(Q\/‘Q/\/U?S 1

KQQF &L?/\Tmﬂtj queue of evertds
by g Firet evewd (&6?‘@%5@/\ %M?V\k@

Thp at cach evert % M’V&ﬁoff@, ndo
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Medial axis of a non-convex polygon = locus of centers of maximal inscribed discs

e

Joseph O’Rourke

Figure 5.6: The central arc lies on the parabola determined by the vertex v and the
edge e, where the maximal disks centered on that arc touch e and v.

<

can be found in time O(n)
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

A physical model for medial axis

- Imagine the polygon is drawn on the prairie, and you light fires along the
boundary. Medial axis = points where fire is quenched (fire meets other
fire)

- pouring sand
Voronoi diagram

bradmohr

CS763-Lecture13 20 of 32



CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

A physical model for medial axis

CS763-Lecture13 21 of 32



CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Applications of medial axis

Blum transform / .
for shape recognition \\#/"—*\\

) Vadim Shapiro

character recognition shape matching

N/ 77\

N\ http://www.cs.wustl.edu/~taoju/research/ma_final.pdf

CS763-Lecture13
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Straight Skeleton — similar to medial axis but avoids curved sections

Grow the vertex angle bisectors by shrinking the polygon. The trajectories of the
vertices form the straight skeleton.

For a convex polygon, this is the same as the medial axis

But for a non-convex polygon, it is not the same:

e . Y

CS763-Lecture13 23 of 32




CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Straight Skeleton — similar to medial axis but avoids curved sections

Difference between medial axis and straight skeleton — only for non-convex
polygons:

medial axis straight skeleton

offset curve with mitred caps

CS763-Lecture13 24 of 32
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Straight skeleton algorithms

idea of previous algorithm gives O(n”2 log n) because the next ray intersection
need not be between consecutive rays

improvements:

0(n8/5+€) for any fixed € > 0

Eppstein, David, and Jeff Erickson. "Raising roofs, crashing cycles, and
playing pool: Applications of a data structure for finding pairwise interactions."
Discrete & Computational Geometry 22.4 (1999): 569-592

d https:/doi.org/10.1007/PL0O0009479

O0(n?/3+€) time for any € > 0

Vigneron, Antoine, and Lie Yan. "A faster algorithm for computing motorcycle graphs."
Discrete & Computational Geometry 52.3 (2014): 492-514.

d https://doi.org/10.1007/s00454-014-9625-2
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A. Lubiw, U. Waterloo

13: Triangulations, continu

Lecture

CS 763 F22

applications: designing roofs

Straight skeleton
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CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Straight skeleton application: fold and cut problem

Fold and Cut Theorem. For any (slightly perturbed) polygon on a piece of paper
there is a flat folding of the paper that puts all the polygon edges on one line and
puts the inside and outside of the polygon on opposite sides of the line.

solution for triangle:

CS763-Lecture13 27 of 32



CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

general solution to fold-and-cut

.

MUST use angle bisector at each vertex.
! ! Thus, use straight skeleton.

MAY use perpendiculars on any edge
and we need some of these to get flat folding

CS763-Lecture13 28 of 32



CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Example.

All folds except the pink ones are straight skeleton folds.

In degenerate cases, this bouncing can be infinite.
This is why we may need to perturb the input polygon slightly.

CS763-Lecture13 29 of 32



CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

fold-and-cut examples

Demaine, Erik D., Martin L. Demaine, and Anna Lubiw. "Folding and one straight cut suffice."
Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 1999.

- http://erikdemaine.org/foldcut/
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A. Lubiw, U. Waterloo

Lecture 13: Triangulations, continued

CS 763 F22
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CS 763 F22 Lecture 13: Triangulations, continued

Summary
- compatible triangulations and morphing
- curve and surface reconstruction
- medial axis (Voronoi diagram of edges)

- straight skeleton

References

- papers and books listed throughout
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