CS 763 F22 Lecture 12: Triangulations A. Lubiw, U. Waterloo

Triangulations of point sets/polygons. Recall what we’ve seen:
- Delaunay triangulation of point set in RY, O(n log n) algorithm in R2.

- O(n) algorithm to triangulate any polygon in R? (Chazelle’s hard algorithm)

Applications and criteria (this is the outline for the next lectures)
- angle criteria - for meshing
- length criteria: minimum weight triangulation
- constrained triangulations (when certain edge must be included)
- meshing - triangulations with Steiner points
- flip distance
- morphing
- curve and surface reconstruction

- medial axis and straight skeleton
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Angle conditions for triangulations

The motivation is meshing for finite element methods (more on this later)
where small and large angles are bad.

A

bad triangles

Problems:

1. given a point set, find a triangulation that maximizes the min. angle
The Delaunay triangulation does this.

2. given a point set, find a triangulation that minimizes the max. angle

EX. Show that these two can be different.
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There is a poly time algorithm to find a triangulation that minimizes the maximum
angle.

It uses a solution for the case of triangulating a polygon (via dynamic
programming).

Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S. and Tan, T.S., 1993.
Edge insertion for optimal triangulations. Discrete & Computational Geometry,
10(1), pp.47-65.

d https://doi.org/10.1007/BF02573962
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Length conditions: Minimum weight triangulation

Given a point set find a triangulation that minimizes the sum of the lengths of the
edges.

Solved by dynamic programming for triangulations of a simple polygon.

For point sets, proved NP-hard in 2008 (had been open since 1979).
Note: not known to be in NP because of square root computations.

Mulzer, Wolfgang, and Gunter Rote. "Minimum-weight triangulation is
NP-hard." Journal of the ACM (JACM) 55.2 (2008): 11.

d https://doi.org/10.1145/1346330.1346336

Approximations (how do various triangulations compare to min weight)

- approximation ratio of Delaunay triangulation: Theta(n)
- approximation ratio of greedy triangulation (add edges in order of weight):
Theta(\sqgrt(n))

- quasi-poly time approximation scheme:

Remy, Jan, and Angelika Steger. "A quasi-polynomial time approximation
scheme for minimum weight triangulation." Journal of the ACM (JACM)
56.3 (2009): 15.

d https://doi.org/10.1145/1516512.1516517
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Constrained triangulations

Given points P in R? and some non-crossing edges F (the “fixed” edges), add more
edges to get a triangulation optimizing some criterion.

This generalizes polygon triangulation (though note that the above problem asks to
triangulate the inside AND the outside of a polygon).

F =red edges
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The Constrained Delaunay triangulation (CDT) consists of triangles abc not

crossed by any edge of F such that Circle(a,b,c) contains no point of P visible from
inside triangle abc. T

< oot c9sming fixed edges

Must be proved that these triangles form a triangulation.
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CS 763 F22

Lecture 12: Triangulations

Examples of Constrained Delaunay triangulations

A. Lubiw, U. Waterloo
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Most results for Delaunay triangulations carry over to Constrained Delaunay
triangulations.

The edge empty circle condition carries over:

(a,b) is an edge of the Constrained Delaunay triangulation iff no edge of F crosses
(a,b) and there is a circle through a and b that does not contain any point p in P
visible to a point on edge (a,b).

lllegal edge flipping carries over.

There is an O(n log n) time algorithm to compute the Constrained Delaunay
triangulation.

The Constrained Delaunay triangulation maximizes the min angle (among all
constrained triangulations).
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Triangulations for finite element methods

Example problem: find how a solid body deforms under stress.

Requires solving partial differential equations, which is done by approximating on a
“mesh” (often a triangulation)

Meshing. Given a region of R? with a polygonal boundary, subdivide it into disjoint
triangles meeting edge-to-edge and conforming to the boundary, i.e. every
boundary edge is a union of triangle edges. Use “nicely shaped” triangles.

Note: can add new points called “Steiner points”
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Meshing. Given a region of R? with a polygonal boundary, subdivide it into disjoint
triangles meeting edge-to-edge and conforming to the boundary, i.e. every
boundary edge is a union of triangle edges. Use “nicely shaped” triangles.
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We concentrate on unstructured meshes.

Delaunay Mesh
Generation

Shewchuk, Jonathan Richard. "Unstructured mesh
generation." Combinatorial Scientific Computing
(2011): 259-297.

= https://people.eecs.berkeley.edu/~jrs/papers/umg.pdf

Theoretically Guaranteed Delaunay
Mesh Generation—In Practice (slides) ~~m:-~.~'«vv-»-u

= https://people.eecs.berkeley.edu/~jrs/papers/imrialk.pdf
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bad for finite element methods:
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Also want as few triangles as possible, but this conflicts with angle constraints.
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Well-Shaped Elements vs. Few Elements
somewhat contradictory goals
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15° minimum angle 25° minimum angle 34.2° minimum angle
917 elements 1,427 elements 4,886 elements

These meshes generated by Ruppert’s Delaunay refinement algorithm.

Jonathan Shewchuk
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Delaunay refinement algorithm

Start with Delaunay triangulation and add more points to improve angles.

kill skinny triangle by adding point v at center of circumcircle

Ruppert, Jim. "A Delaunay refinement algorithm for quality 2-dimensional
mesh generation." Journal of algorithms 18.3 (1995): 548-585.

d https://doi.org/10.1006/jagm.1995.1021
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A related puzzle problem (Martin Gardner)

Given a square or an obtuse triangle, dissect into smallest number of acute triangles.
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Solictien with 14 hiangles
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A related puzzle problem (Martin Gardner)

Given a square or an obtuse triangle, dissect into smallest number of acute
triangles.

min 15 4 min 16 7
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CS 763 F22 Lecture 12: Triangulations A. Lubiw, U. Waterloo

Flip distance
Reconfiguration problem: changing one structure to another via discrete steps

Examples:
- edit distance of strings
- sorting via swaps
- solving Rubik’s cube
- pivot operations for simplex method
of linear programming

Questions:
- can we get from every configuration to every other one? Yes
- worst case bound on number of steps?
- how many steps between a given pair of configurations? 20 (God's nu,w&oef?

These can be viewed as connectivity and shortest path questions
in a reconfiguration graph — vertex for each configuration,
edge for each step

{
Reconfiguration graphs are large, so we don’t explore them H2x%10 9
explicitly.
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e vv\&y @CCV any org e

Flip distance /
Reconfiguring triangulations of a given point set via flips
GHRe rans ghenp H wﬁm@mmwd ggwgcw\vex

- can we get from any triangulation to any other? Yes, via Delaunay triangulation aL"WWMWQ

- what is the worst case flip distance (= number of flips)? O(n?) o £l

'F095c}£7e
Thigngnlation L V\QTH@’VL 2

LL@\:{& W/ O (n*) Hzps

0 (v{L) Ded Ahin 0 17 @\bol&orﬁm

- can we find the flip distance between two given triangulations?

This is NP-complete, but OPEN for the case of convex polygons = rotation
distance between binary trees.
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Flip distance lower bound of Omega(n?)

This example (generalized from 7 to n) shows that n? flips may be needed to get
from one triangulation to another.

T &nﬂwﬂo\‘%ﬂ\ 1

the edi cdge
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Flip distance for triangulations of a convex polygon.
= us€ as
LT LenrG ol :
In this case the flip distance is O(n) (easy)
and there is a lower bound of 2n-6
(hard! — due to Sleator, Tarjan, Thurston, 1986).

MOVE_ oM BONSien Fournin
~ Joodk project.

The reconfiguration graph is the “associahedron”

a

PN
/®\/@\/@\\ The reconfiguration graph of
S ) triangulations of a hexagon.
N\ S—& 7

_@ S—a @_
N\ @/\ @/\ ®/
\é / see Devadoss O’Rourke book
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Flip distance for triangulations of a convex polygon
= rotation distance for binary search trees.
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a flip corresponds to a rotation

SRR KOBR O
o e < Left Rotation e 6
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OPEN. Is the following problem NP-complete or in P? Given number k and two
triangulations of a convex polygon, is their flip distance <= k?

Why is rotation distance interesting?

- dynamic optimality conjecture for splay trees: splay trees perform within a
constant factor of any offline rotation-based search tree algorithm

- distance between phylogenetic trees
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Summary
- triangulations of point sets, possibly with fixed edges (“constrained”)

- angles, meshing, lengths, flipping, reconfiguration

References

- papers and books listed throughout
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