
Linear Pattern Matching of Repeated Substrings

Alejandro López-Ortiz

Department of Computer Science

University of Waterloo

Waterloo, Ont. N2L 3G1 Canada

e-mail: alopez-o@maytag.UWaterloo.ca

1 Introduction

In 1970, Knuth, Morris, and Pratt proposed their famous linear-time pattern
matching algorithm for two strings. Their algorithm was derived from a
result of Cook that 2-way deterministic pushdown languages are recognizable
on a RAM in linear time [Co71]. In 1973, Weiner [PeWe73] presented a
very original algorithm that performs linear time recognition of repeated
instances of a substring in a string. Weiner’s approach to this problem was
as important as the solution to the problem itself. The relevance of his
work was immediately appreciated. The result was announced in October,
1973 at what was then SWAT (now FOCS) and some selected ideas made
their way to Section 9.5 of the first edition of Aho, Hopcroft and Ullman’s
textbook [AHU74], published half a year later.

Unfortunately, Weiner’s paper may be difficult for modern readers. Fa-
miliar objects such as trees and other data structures are described using
notation drawn from automata theory. Typographical errors and overload-
ing of terms contribute to the difficulty. This paper attempts to explain
Weiner’s result in a more accessible manner.

2 Basic Definitions and Notation

Let X = x1x2 . . . xn be a string over an alphabet Σ and $ a symbol not in the
alphabet. Thus, the end of every string can be determined unambiguously
by adding the symbol $ at the end.

Definition 1 By Xi:j we denote the substring xixi+1 . . . xj of X. The string
Xi denotes the substring xixi+1 . . . xn$, i.e. the substring of X starting in
position i and ending with $.

1

Definition 2 A trie is a labeled tree T such that for each interior vertex v
in T , the edges leaving v have distinct labels in an alphabet Σ.

Definition 3 If σj labels the edge from node q to node t in a trie, we say
that t is the σj-child of q.

Similarly, we define the concept of successor. A node t is the ω-successor
of q (for ω = σ1σ2 . . . σj), if there is a descending path in the tree labeled
σ1σ2 . . . σj from q to t. Formally:

Definition 4 It is said that t is the ω-successor of q is t if either ω = λ
(the empty string) and t = q or u is the σ1-child of q and t is the σ2 . . . σj
successor of u, and ω = σ1σ2 . . . σj.

The word associated with a node q is the concatenation of the symbols down
the path from the root of the tree to the node itself. We denote this word
as W (q). Clearly, if r is the root of the tree, then for any node q, q is the
W (q) successor of r.

Definition 5 A bi-tree is a pair of tries P and S, sharing the same set
of nodes (but not edges), such that the depth of a node is the same on
both tries. Further, the edges in P and S are labeled in such a way that
WP (q) = WS(q)

R for all nodes q. (See figure 2)

Observation 1 The same node is the root of both P and S. The root of P
and S are the same node.

It is not immediately clear that bi-trees can be constructed, given the
set of constrains. If the nodes need not be shared, then it would be simple
to have two trees, in one of which strings are in reverse order. The following
sections characterizes in which cases a bi-tree exists.

3 Basic Properties of Tries

The following lemma states that a bi-tree can be constructed from a position
tree if and only if all suffixes of a node’s word are words themselves in the
P tree.

Lemma 1 Given a trie P , it is possible to construct an adjoining trie S to
obtain a bi-tree if and only if for every node q with W (q) = σ1 . . . σn there
exists a node t such that W (t) = σ2 . . . σn.

2

Proof. First, we assume that a bi-tree can be constructed on P and show
that the suffix that drops the first letter in a word, i.e. WP (q)2:k for k =
|WP (q)| is a word in the tree.

From the definition of the bi-tree containing P , we know that for all nodes
q, WP (q)

R is a word in the adjoining S tree of the bi-tree. Moreover, since
WP (q)

R is a path in the S tree, then there is a node t with [WP (q)
R]1:k−1

as a word in S (i.e. t is the immediate ancestor of q in S). But from
the definition of bi-tree this implies that q has as word in P the reverse of
the word in S, namely WP (t) = WS(t)

R = (WS(q)1:k−1)
R = WP (q)2:k as

required.
Now assume that for every word ω in the P -tree ω2:|ω| is also in the P

tree. We construct an adjoining tree S by induction on the length of words
as follows:

Basis of Induction. Since W (q) = W (q)R for all words of length one, we
add S edges from the root to its children, labeled with the same character
as the respective edge in P .

Induction Step. Assume that all nodes with words of length at most k−1
are in the S tree and consider a node q with a word of length k. Let t be
the node in P such that W (t) = W (q)2:k. Then, by induction hypothesis t
is in S and WS(t) = [W (q)2:k]

R.
In S, we add the edge from t to q and label it W (q)1:1. It follows then,

from the recursive definition of ω descendants, thatWS(q) = WS(t)W (q)1:1 =
[W (q)2:k]

RW (q)1:1 = W (q)R as required. �

4 Position Trees

Definition 6 We say that a substring U identifies position i in string X if
X = Y UZ, |Y | = i− 1, and X cannot be written as Y ′UZ ′ unless Y ′ = Y .
That is, the only occurrence of U within X begins at position i.

Observation 2 A string X terminated with the $ character has at least one
identifier for each position i, namely Xi = xixi+1 . . . xn$.

Definition 7 The substring identifier for position i in X, denoted Di, is
the shortest string that identifies position i in X$.

Definition 8 A position tree for a string X$ = x1 . . . xn+1, is a trie with
the leaves labeled 1, 2, . . . n + 1 such that the word associated with leaf i, is
the substring identifier of position i, i.e., W (leafi) = Di. (See figure 1)

3

$

b $

b

b c

b c $

a b c

Figure 1: Position Tree for
abbbcab$

a

ba b

cb $

a
b

a b c $

b

$b b c

b c $
b

b

a

Figure 2: Bi-Tree for abbbcab$

Lemma 2 Let Di be the substring identifier for position i of X$. Then
|Di| ≤ |Di+1|+ 1.

Proof. Let j = |Di+1|. If Di has length greater than j + 1 it implies
that the string Xi:i+j does not uniquely identify position i, i.e. there is
another position k such that Xk:k+j = Xi:i+j . This contradicts the fact that
Di = Xi+1:i+j is a unique string in X. �

Corollary 1 No substring identifier is a proper prefix of another.

Observation 3 All proper prefixes of a substring identifier Di are prefixes
of a substring identifier Dj, for i ̸= j. (Otherwise, the prefix would be a
shorter string identifying the position).

Observation 4 All leaf nodes of a position tree have siblings. (This follows
from observation 3).

Theorem 1 For every string X over Σ, there exists a bi-tree B such that
the P component of B is the position tree of X.

Proof. We will show that the position tree P of the substring satisfies the
conditions of Lemma 1, from which the theorem follows.

Let q be a node in P . From the definition of P , W (q) is a prefix of a
substring identifier Di for some i. Lemma 2 implies that Di+1 is at least as
long as Di. It follows then that there exists a node t in the path of Di+1 in
P such that xiW (t) = W (q). �

4

5 Construction of a Position tree.

We construct a position tree in an iterative process, parsing the input string
X from right to left. Because of this we need to introduce some notation
for shortened strings.

Definition 9 Let Xi be as in definition 1. Let P i denote the position tree
of Xi. Di

j denotes the substring identifier of position j in Xi for i ≤ j,
where position numbers are as in X.

Observation 5 Let l be the position in Xi+1 such that Di+1
l and Di

i have
the longest common prefix. Then Di

j ≡ Di+1
j for all i < j ≤ n+1 and j ̸= l.

In other words, the position trees of strings Xi and Xi+1 differ only in two
substrings at the most, namely Di

i which was not in P i+1 to start with, and
Di

l ⊆ Di+1
l which might need to be extended, so as to distinguish it from

Di
i.
From this a straightforward algorithm for the construction of position

trees can be deduced: Build Pn, Pn−1, . . . , P1 = P in that order by means
of inserting the new prefix of Xi in the trie for i = n . . . 1.

Trivially such an algorithm would take at least linear time on the size of
the tree. Unfortunately, a position tree may be quadratic on the size of the
string (viz. strings of the form 0m1m0m1m$). Further, even on trees which
are not of quadratic size, this simple algorithm may require Ω(n2) to build
the tree (viz. strings of the form 03mY where Y ∈ Σm).

On the other hand, any position tree has exactly n leaves since each
leaf corresponds to a substring identifier, and there are only n positions to
be identified. With this in mind, for an arbitrary position tree, is possible
to compress each path with no branching into a single edge obtaining a
compressed tree of Θ(n) size. Even on such a compressed tree, the algorithm
described above takes Ω(n log n) time in the worst case.

6 Construction of a Bi-tree

Now consider the construction of a bi-tree. A bi-tree can be constructed
by adding, in a straightforward manner S-edges during the construction of
the position tree described above. Such method does not takes advantage
of information encoded by the S-edges.

The following observations and enhancements allows us to propose an
algorithm that will be the basis of a linear time repeated pattern matching
algorithm.

5

Observation 6 Suppose that the symbol xi occurs within Xi+1. Let Y be
the longest prefix of Di+1

i+1 such that xiY occurs elsewhere in Xi+1, say po-
sition j. Then the substring identifier of position i and of position j is a
string starting with xi followed by Y and terminated with the extra charac-
ter following Y in each position, i.e. Di

i = xiY x|Y |+i+1 = Xi:|Y |+i+1 and
Di

j = xjY x|Y |+j+1 = Xj:|Y |+j+1.

For the construction of a bi-tree associated to a string Y , nodes in the
bi-tree are labeled with an array of integers with an entry for each letter
of the alphabet. The σj-entry of the array contains the index i if the word
σjW (q) is a substring of Y and W (q) is a prefix of the substring identifier
of position i (in those cases where there are two or more strings with the
conditions above, the largest index is selected). What makes this algorithm
superior over the standard construction of position trees is that edges in the
S tree allow us to move between different branches of P in one step without
requiring to backtrack all the way up to a common ancestor in P of the two
branches and then going downwards from it.

Algorithm for the construction of the bi-tree of Xi given the bi-tree of Xi+1

and a pointer to leaf qi+1 identifying position i + 1. Each node is a record
containing pointers to its parents and children in S and P , an indicator of its
depth in tree, and a label vector as described above.

1. Each node is a record containing pointers to its parents and children in S
and P , an indicator of its depth in tree, and a label vector as described
above.

2. Let qi+1 be the node in Bi+1 such that W (qi+1) is the substring identifier
of position i+ 1 in Xi+1.

3. Let t← qi+1.

4. Repeat until t has an xi-child in S or t is the root:

(a) First update the labeling
If the xi label of t is uninitialized, then set its value to i+ 1.
Else if b is uninitialized, let b be the value of the xi-th label of t.
Now b holds the starting position of the longest substring Y in Xi+1

such that Y is a prefix of Xi+1; xb−1 = xi; and b ̸= i+ 1.
(b) Then move upwards in the tree.

Let t← parentP (t).

5. If t has no xi-child in S this implies that xi is not in Xi+1, and thus t is
the root r. In this case add the xi-child to r in P which will also be the
xi-child of r in S. Set the labels accordingly. Return qi ≡ childP (r, xi).

6

6. Let q be the xi-child in S of t and let d be the depth of t.

Descend from t down the tree P , while creating a parallel path downwards
from q in P until xi+1+d ̸= xb+d as follows:

(a) If the xi+1+d-child of t is not labeled b in its xi position then we have
found the first mismatch between Xi+1 and Xb and thus positions i
and b−1 are about to be substring identified. Insert the xi+1+d and
xb+d-children of q. Let q′, q′′ be such children. Further, t must also
have xi+1+d and xb+d-children, t

′ and t′′. Make q′ (q′′) the xi-child
of t′ (t′′) in S. Return qi ≡ q′.

(b) Else note that q has no xb+d-child, otherwise q would be the xi-child
in S of a proper descendant of t down the t → qi+1 path, but by
construction, t was the deepest such node in the path. Insert the
xb+d-child for q; set it’s label accordingly, and let this new node
be the xi-child of t in tree S. Let q ← childP (q, xi+1+d) and
t← childP (t, xi+d). Continue the descent.

Notice that this algorithm runs in linear time on the number of nodes
of the bi-tree, since for each edge traversed upwards, an edge is eventually
added while traversing downwards. In this sense this algorithm is an im-
provement over the position tree construction, where even on a linear size
tree the algorithm could take quadratic time.

7 Compact bi-trees

Because of the observation that there are only n leaves in a bi-tree, and
the fact that now we know how to construct a bi-tree in time linear in its
size, it is natural to ask whether a compacted version of a bi-tree could be
constructed in linear time.

Definition 10 A compact position tree is a position tree where all non-
branching paths of length greater than two are compressed into two edges.
The label of the first edge is the same as the label of the first edge in the
original path and the second edge, which represents all the other compressed
edges, is labeled ∗.

Observation 7 A node of the position tree is in the corresponding compact
position tree if and only if either it has outdegree bigger than or equal to 2
or its parent does.

7

q

σ

k

k

xi

u
ix

xii+1+dx

qi

t

xi+1+d

qi+1

ix i+1x

i+1x

σ

Figure 3: Case 5(a) (New edges in
boldface)

i

w

xi

t

q

k x
σ

xi xi+1

xi

iq i+1q
i+1+d

i+1+dxσk

xi

xi

u’

u
x

Figure 4: Case 5(d)

Definition 11 A compact bi-tree C is a bi-tree constructed over the com-
pact position tree of string X$. All the edges of the S tree in the uncompacted
bi-tree of X$ whose end nodes have not been compacted out form the com-
pacted S tree in C. Edges in S whose parent is in the compacted tree but
their child is not are marked ∗ in the compact bi-tree and are left dangling.

Lemma 3 If a node q is in the compact bi-tree then its S-parent t is in the
compact bi-tree as well.

To prove this lemma we need the following observation:

Observation 8 A node q in an uncompacted bi-tree has outdegree less than
or equal to that of its S parent t. (This follows from the same argument that
proves lemma 2).

Proof (Lemma 3). If q is in the compacted bi-tree, because of observation
7, either it or its parent has outdegree ≥ 2. In the first case, by observation
8, t has outdegree ≥ 2 and thus it appears in the compacted bi-tree. For
the second case, the P parent u of q has outdegree ≥ 2; which implies that
the S parent of u is in the compact bi-tree and has outdegree ≥ 2. Now,
the S parent of u is in the bi-tree with outdegree ≥ 2 and is the P parent
of t thus, by observation 7, t is in the compact bi-tree as well. �
Algorithm for the construction of the compact bi-tree of Xi given the bi-tree
of Xi+1 and a pointer to leaf qi+1 identifying position i+ 1:

8

1. Let t← qi+1.

2. While the xi label of t is uninitialized set its value to i+ 1 and if t is not
the root then let t← parentP (t).

3. If t is the root insert its xi-child in P . This node should also be set to be
the xi-child of the root in S. Let qi ← childP (t, xi). Return qi.

4. Let l be the label of xi in t and d its depth. Let q ← childP (t, xl+d).
(Notice that xi+1+d is necessarily different from xl+d). At this point,
the algorithm has identified the longest string in Xi+1 which shares a
prefix with Xi. This step corresponds to step 4.a in the construction of
a non-compacted bi-tree.

5. There are six posible cases (see figures 3 & 4):

(a) Both q and t have an xi-child in S.
Let u← childS(t, xi).

(b) The node q has an xi-child but t has an xi-edge in S marked ∗ and
dangling.
Let v be the xi-child of q in S. In this case the edge in P between
v and its parent in P is labeled ∗. Insert a new node u dividing this
edge in two. The upper part remains marked ∗ if the difference in
depth is bigger than one, else is marked xl+d−1. The lower part is
marked xl+d. Make u the xi-child of t in S.

(c) The node q has a dangling xi-edge in S but t has an xi-child in S.
Let u ← childS(t, xi). Thus, there is only one edge out of u in P
and is marked ∗. Divide this edge in two. Let v be the new node in
between. Label the upper half of the edge xl+d and the lower part
∗ (or xl+d+1, if the height difference is less than two). Make v the
xi-child of q in S.

(d) Both q and t have dangling xi-edges in S.
Let w ← t. While w has a dangling xi edge do w ← parentP (w).
Now, as in 5.c, w has an xi-child in S, say u′, and its child in P
has a dangling xi-edge in S. Thus, there is only one edge out of u′

in P and must be marked ∗. Divide this edge in two. Upper part is
labeled ∗, lower part is labeled xl+d, the node in the middle is u.

(e) Node q has no xi-edge in S but t has an xi-child in S.
Let u ← childS(t, xi). Then, u is a leaf. Insert the xl+d-child of u
in P .

(f) Both q and t have no xi-edge in S.
Let w ← t. While w has no xi-child mark the xi-edge of w with ∗

9

and leave it dangling; let w ← parentP (w).
Let u′ be the xi-child of w in S. Insert a child u of u′ labeled ∗.
Insert the xl+d-child of u in P .

6. Insert the xi+1+d-child of u in P . Let qi be that child. Make qi the
xi-child in S of the xi+1+d-child of t in P . Return qi.

Let hi be the height of the node qi in the compact tree corresponding
to Xi. Each iteration of this algorithm takes time proportional to (hi+1 −
hi+6). This can be seen from the fact that the insertion algorithm consists
of a sequence of constant time operations being performed while traversing
the tree, starting from node qi+1 and going up to a node t or w and then
proceeding downwards to node qi. The node qi is at most three edges down
from t or w, thus giving the desired bound.

Total time for the construction of a compact bi-tree is then proportional
to

1∑
i=n

hi+1 − hi + 6 = 6n− h1 = O(n)

which proves that the compact bi-tree can be constructed in linear time. It
is important to note that the constant number of operations is proportional
to the alphabet size, thus the algorithm takes time O(nk) where k = |Σ|.

In 1976, McCreight proposed a more space efficient algorithm, which is
now often used instead of Weiner’s construction. The ideas behind both
algorithms are the same, although the approaches differ somewhat [McC76].

References

[AHU74] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, 1974.

[Co71] S.A. Cook, Linear time simulation of deterministic two-way push-
down automata. Proceedings of IFIP Congress, North-Holland,
1971.

[McC76] E.M. McCreight, A space-economical suffix tree construction al-
gorithm. Journal of the ACM, v. 23, pp.262-272, 1976.

[PeWe73] P. Weiner, Linear Pattern Matching Algorithms. 14th Annual
Symposium on Switching and Automata Theory. IEEE.

10

