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ABSTRACT
Building on our prior work on the SPOT and SPOT+ Smart
Personalized Office Thermal control systems, this paper
presents SPOT*, a cost-effective, flexible system for person-
alized heating and cooling. Like its predecessors, SPOT*
senses occupancy and worker comfort to reactively control
office temperature. Specifically, it uses the Predicted Mean
Vote equation to determine worker comfort and actuates a
fan or a heater to adjust the comfort level so that it lies
between -0.5 and +0.5 in the ASHRAE comfort scale. Un-
like the two prior systems, however, which use many sensors
and a per-user compute engine, SPOT* greatly reduces costs
by using the fewest possible sensors and a lightweight com-
pute engine that can optionally even be located in the cloud.
Moreover, SPOT* provides both cooling and heating using
a speed-controlled desktop fan, rather than only controlling
heating using a radiant heater. Finally, SPOT* is less in-
trusive in that it does not use a camera. We find that the
per-user cost for SPOT* is about $185 compared to $1000
for SPOT. Moreover, in a preliminary deployment, SPOT*
is able to improve user comfort by 78%.

1. INTRODUCTION
Heating, Ventilation and Air-Conditioning (HVAC) in resi-
dential and commercial buildings consumes significant
amounts of energy in most developed countries, account-
ing for 15%-20% of their overall energy use [?, ?]. Reducing
the energy consumption of HVAC systems is, therefore, an
important and necessary step in reducing their carbon foot-
print [?, ?].

We present SPOT*, a low-cost, flexible, legacy-compatible
personal thermal comfort system. SPOT* augments an ex-
isting central HVAC system by bridging the gap between
the comfort provided by the central HVAC and individual
worker preferences. By allowing the central HVAC to use
higher temperature set points in summer and lower ones in
winter, we believe that SPOT* can reduce energy usage.
Our overall goal is to reduce building energy use yet ensure

that workers are always comfortable.

This work extends prior work on the SPOT and SPOT+
personal thermal control systems [?, ?]. Both systems use
the Predicted Personal Vote (PPV) model (described be-
low) to automatically adjust room heating to maintain a
desired comfort level. SPOT is reactive, in that it only
heats the room when the worker is actually present, and
SPOT+ is pro-active, pre-heating the workspace before the
arrival of the worker, or turn off heating in anticipation of
the worker’s departure. SPOT* differs from both systems in
five significant ways. First, it controls both heating and cool-
ing, so can be used both in winter and in summer. Second,
it is about an order of magnitude less expensive. Third, it
implements an innovative software architecture that allows
flexible tradeoffs between cost, privacy, and data durability.
Specifically, it allows most software components to execute
either on the thermal controller, in the Internet cloud, or on
the worker’s smartphone. Fourth, the use of a fan instead of
a radiant heater makes it possible to rapidly react to worker
discomfort. Finally, it is far less intrusive than our two prior
systems, because it does not use a camera.

SPOT* is composed from five components: sensors, actua-
tors, control logic, data store, and user interface. Sensors
detect worker comfort. Actuators turn on a fan or a fan
as well as a heater to cool or heat the worker, respectively.
Logic computes the PPV from sensed data and decides on
actuation levels. The data store stores historical sensor data
and system events. Finally, the user interface allows the user
to correct for errors in the PPV model and to override con-
trol decisions. By flexible composition and location of these
elements, SPOT* allows tradeoffs between cost, privacy, and
data durability. For instance, if all the elements are in the
workspace, the system is expensive, but private. If software
elements are in the cloud, instead, the cost is reduced but
privacy can be compromised.

Our work makes the following contributions:

• We have designed SPOT*, a low-cost, flexible person-
alized workspace thermal control system.

• We have built four SPOT* devices in two different con-
figurations in a real testbed.

• We find that SPOT* improves average user comfort by
78% in our deployment.



The rest of this paper is laid out as follows. Section 2
presents a background on quantitative comfort modelling
and an overview of SPOT systems. In Section 3 we explain
our design goals and SPOT*’s architecture. Implementation
details and different hardware and software components of
SPOT* are presented in Section 4. Section 5 evaluates ac-
curacy, cost, effectiveness, and efficiency in SPOT*. Finally,
in Section 6, we discuss different configurations of SPOT*,
and how it can be integrated with the central HVAC system
to optimize energy consumption and conclude this paper.

2. BACKGROUND
We first review the Predicted Personal Vote (PPV) comfort
metric introduced in [?], which is used to evaluate personal
thermal comfort in indoor environments. We then describe
SPOT and SPOT+ systems and explain their shortcomings
which motivate SPOT*. Finally, we present the occupancy
detection method that we use in this paper.

2.1 Predicted Personal Vote (PPV) Model
The PPV model is a generalization of the well-known Pre-
dicted Mean Vote (PMV) model [?, ?]. The PMV model
estimates an average worker’s comfort level on the 7-point
ASHRAE scale1 using a function fpmv(·):

pmv = fpmv(x) = fpmv(ta, t̄r, var, pa,M, Icl) (1)

where pmv is the predicted mean vote and x denotes the
following environmental and personal variables:

• ta is the air temperature
• t̄r is the mean background radiant temperature
• var is the air velocity
• pa is the humidity level
• M is the metabolic rate of a worker
• Icl is the worker’s clothing insulation factor

For reasons of space, we refer the reader to [?] for details of
the function fpmv.

To evaluate comfort in workspaces occupied by a single worker,
SPOT* computes a Predicted Personal Vote (PPV) as an
affine transform of pmv:

ppv = fppv(pmv) (2)

This function is learnt using least squares linear regression
during a training phase, with the worker providing ground
truth on comfort level.

2.2 SPOT and SPOT+
SPOT and SPOT+[?, ?] , the predecessors to SPOT*, con-
trol comfort in a personal workspace. SPOT reactively con-
trols a space heater to increase temperature gradually, and
maintain comfort (i.e. PPV) in winters. SPOT+ takes a
step further and uses occupancy patterns for prediction to
implement pre-heating and pre-cooling. SPOT+ also takes
advantage of an optimal control strategy for heating to min-
imize energy consumption.

1Cold (-3), Cool (-2), Slightly Cool (-1), Neutral (0), Slightly
Warm (+1), Warm (+2), and Hot (+3).

Shortcomings. While these two systems prove to be effec-
tive and efficient, they have some important shortcomings
that we address in SPOT*:

• Cost. The use of multiple fine-grained sensors in SPOT
and SPOT+ makes them expensive. For instance,
both systems use a Kinect camera and a PC to pro-
cess the video feed from the Kinect. Although this
high level of sensing makes them accurate, the $1000
per-office cost is a strong barrier to adoption.

• Heating only. In both systems, a space heater is
used to increase temperature and bring comfort level
above a threshold in winters. They are inadequate for
situations where the user feels warm or hot, for exam-
ple, during summers; or with mis-configured HVAC
systems, even in winter.

• Standalone deployment.. Because they process video
images in real time, and the need for worker privacy,
the SPOT and SPOT+ systems are not network-enabled.
This prevents making smarter central HVAC control
decisions based on inputs from multiple SPOT instances.

• Intrusiveness. A camera points to the user at all
times in both systems, and a moving infrared sensor
tracks movements of the user. Some SPOT/SPOT+
users found this both intrusive and unnerving.

We address these shortcomings in SPOT*.

2.3 Occupancy Detection
Happily, occupancy detection is, by now, a solved problem.
Hailemariam et al [?], propose a way to infer occupancy
based on motion sensor data with 97.9% accuracy [?]. They
use the AMN23111 motion sensor [?], and record motion val-
ues with a 2Hz frequency. After two minutes, they compute
the standard deviation of these values and declare the sta-
tion occupied if it is above a threshold. We detect occupancy
using a similar approach.

3. DESIGN
We now discuss the design goals, and the overall system
architecture of the SPOT* system. For ease of writing, from
now on, when we refer to SPOT, we mean both the SPOT
and SPOT+ systems.

3.1 Design Goals
We have four main design goals, that we denote D1-D4.

D1: Reduce Cost. Our primary design goal is to reduce
the price of SPOT*, compared to SPOT. The main rea-
son our two prior systems were expensive was because they
monitored workers using a Kinect camera that is directly
connected to a powerful processing unit (i.e. a PC with
Microsoft Windows) which accounts for about 50% of the
overall system cost.

D2: Allow both Cooling and Heating. A secondary de-
sign goal is for SPOT* to provide comfort both in summer
and in winter, unlike SPOT, which only addressed heating.



D3: Keep User Data Private. User occupancy data is
inherently private information that should not be exposed
to third parties. We would like to guarantee this despite
allowing SPOT* to be on the Internet.

D4: Improve User Experience. SPOT’s infrared camera,
used for clothing level detection, closely tracks user move-
ments. Some users found this unnerving, and therefore, one
of our goals in building SPOT* is to not require observation
of users with a web or infrared camera.
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Figure 1: SPOT* has 5 main components. Ac-
tuation and sensing (left box), control application,
data storage, web application, and graphical user
interface. All software components communicate
through RPC to allow easy deployment of different
configurations.

3.2 System Architecture
Our overall system architecture is shown in Figure 1. Each
of the software components shown on the right hand side can
be executed on a per-office embedded compute platform, in
the cloud, or even on a worker’s smartphone. We now discuss
how this architecture is motivated by our four design goals,
D1-D4.

Goal D1 results in a complete redesign of our hardware plat-
form. We replace the expensive Kinect sensor and the per-
office PC-based processing unit with a simple motion sensor
and a Raspberry Pi B+ (RPi) [?]. This has the following
repercussions.

First, without the Kinect, we are unable to automatically
detect the worker’s clothing level. Instead, we assume that
the clothing insulation factor is 0.6clo, and provide a sim-
ple web-based user interface for workers to tune their com-
fort setpoint to reflect a different clothing insulation factor.
For instance, if they are wearing lighter clothes, they would
tune their setpoint to a higher ASHRAE comfort level. The
Kinect also was used for occupancy detection. In SPOT*,
this is done using an inexpensive passive infrared motion
sensor.

Second, even if we don’t need a PC to process video data
from the Kinect, we still need an in-office compute plat-
form for sensing and actuation. We selected the RPi as the
replacement. The RPi, which we have extended to allow
actuation in addition to sensing (see Section 4), costs only

about $40 compared to $500-PC used in SPOT. The cost of
the in-office compute platform can be reduced even further if
compute logic and storage occur primarily to the cloud. This
allows further cost reductions by replacing the RPi with a
tiny embedded processor (see Section 6). Moreover, moving
processing and storage to the cloud makes the system much
easier to deploy, albeit with reduced worker privacy.

We further reduced costs by reducing the number of sen-
sors: SPOT* measures air temperature using a temperature
sensor and assumes that this temperature is identical to the
background radiant temperature. It also computes air ve-
locity as a function of the fan speed (which is known), and
given that SPOT* is deployed in an HVAC-controlled office
space, it assumes that the humidity is controlled to 50%,
and that the worker’s metabolic rate is 1.2met.

We address D2 by replacing the space heater with a desktop
fan/heater that we modify so that its speed can be controlled
by the RPi (Section 4.1.3). Varying the fan speed allows us
to respond to user comfort. This change in hardware has the
added benefit that SPOT* can react nearly immediately to
a change in user comfort.

SPOT* has five software components: actuation and sens-
ing, control logic, data storage, web application, and user
interface. Software components, except actuation and sens-
ing, can execute either on the RPi, in the cloud, or on
the user’s smartphone, using python’s RPyC library in SSL
mode [?] for communications. This software architecture
allows movement of software components to meet the user’s
privacy requirements, to meet D3. For example, in the
most-privacy-preserving configuration, SPOT* operates stan-
dalone without transmitting data outside the office. In other
configurations, occupancy data will securely leave the office
and must be securely stored in the cloud.

Replacing the Kinect with a passive infrared occupancy sen-
sor also partly addresses D4. In addition, as described in
Section 4.5, a manual override option in the GUI allows the
user to tune the system operation.

Thus, our system meets all four design goals.

We now sketch our system architecture (see Figure 1). De-
tails of the implementation can be found in Section 4.

3.2.1 Actuation, Sensing, and Device App
This part of the system consists of a heating/cooling device,
sensors, actuators, and a ’device app’ executing on the RPi.
The device app communicates with the control app (see Sec-
tion 3.2.2) to send updates, and receive and execute com-
mands. It requires minimal computation, and therefore can
even be executed on an even lighter-weight platform, such as
a mote. In fact, before we decided on using an RPi, we built
a prototype system using a Zolertia Z1 mote [?]. However,
the Z1 turned out to be much more expensive than the RPi!

3.2.2 Control Application
Based on occupancy and comfort, the control app decides
to turn the fan/heater on or off, determines the fan’s speed,
and communicates with the device app to carry out the com-
mand. The control app can run on the RPi or the cloud. The



control app also communicates with the DB app to log all
events–such as changes in temperature and occupancy and
changes in device status–and to receive user feedback.

3.2.3 Data Storage
SPOT* keeps a log of measurements, events, and user feed-
back. The data can be stored on the RPi for better privacy,
or can be moved to the cloud to provide better reliability
and availability, and enable coordination with a centralized
building HVAC system in the future (see Section 6). We use
the data for:

• System administration and debugging,

• Making control decisions based on user input,

• Providing feedback to the user in the form of historical
charts (see Figure 5).

The data storage component consists of a database, and
a DB application that provides an interface for other soft-
ware components. For better security, this component limits
database access to certain functions, such as inserting and
querying occupancy and temperature, querying users, and
inserting device states.

3.2.4 Web Application
The web application both provides information to SPOT*
users and administrators, and receives feedback from them.
The web application can run on the RPi (to provide access
only to the user), or can run in the cloud (to enable uni-
versal access). During the training phase, the web applica-
tion collects votes from the user to determine coefficients for
the PPV equation. Specifically, it computes the anticipated
comfort from the PMV equation and collects user votes on
comfort level. It then computes a linear regression to trans-
late from the PMV value to the PPV value. It also provides
a manual override for users to deal with exceptional condi-
tions. In addition, it visualizes measurements and events for
users to monitor their comfort and occupancy.

3.2.5 Graphical User Interface
The GUI is the only software component of the system visi-
ble to users. In a networked setup, the GUI can be invoked
on any device with an internet browser (e.g. PC, smart
phone, RPi). For standalone installations, we have added a
7-inch touch screen to the RPi and installed it on the SPOT*
box. The user can access the GUI directly from the box (see
Figure 6).

4. IMPLEMENTATION DETAILS
In this section, we discuss the details of our implementation.
The source code for SPOT* is available online on GitHub2.

4.1 Actuation and Sensing
Actuation and sensing consists of a desktop fan/heater (Fig-
ure 2) to maintain user comfort, sensors to measure air tem-
perature and occupancy, actuators to turn the fan/heater
on or off and control its speed, an RPi that acts as both
a network and a compute node, and a device application
that runs on the RPi to communicate with other software
elements of the system.

2https://github.com/AlimoRabbani/SPOTstar

Figure 2: Hardware components of actuation and
sensing in SPOT*. The fan/heater is shown on the
right side, and the actuation box is on the left side.
In this picture, the two independent power cords of
the modified fan/heater are connected to the box.
The modular design of the box, allows usage of dif-
ferent types of fans and heaters.

This component consists of two hardware devices that we
designed and implemented: an actuation box, and a sensing
box. The actuation box contains the RPi and actuators,
and its modular design allows connecting different types of
heaters and fans, as discussed in Section 4.1.1. The sensors
are placed in a separate sensing box that is closer to the
user. Here, we describe how each of these components are
implemented and how they work together.

4.1.1 Heating and Cooling
Unlike SPOT, which uses a space heater for room heating,
SPOT* uses a fan/heater to provide comfort in both winters
and summers. We modified the Royal Sovereign HFN-20
[?], to control its heating coil and cooling fan independently.
The two power cords in the modified version are connected to
the power outlets on the actuation box (See Figure 2). The
relays inside the actuation box determine the state of the
fan and the heating coil, and the AC power control circuit
sets the speed of the fan with a maximum air velocity of
2.1ms−1.

4.1.2 Sensing Box
We use only two sensors in SPOT*: a temperature sensor
and a motion sensor. Data from these sensors is used to com-
pute the PPV value as discussed in Section 3.2. The temper-
ature and motion sensors are thermally separated and are
placed in the sensing box along with an analog-to-digital
converter (ADC) so that only digital values travel on the
sensing communication link, reducing the effect of noise.

Temperature Sensor. To obtain temperature readings,
we use the AD22100 surface-mount temperature sensor with
0.1 ◦C resolution [?]. The temperature sensor has an analog
output and is connected to the RPi through the ADC. This
sensor’s temperature values are later used in PPV calcula-
tions.



Occupancy Detection. The AMN22111 passive infrared
human detection sensor is more sensitive to slight motions,
and has a lower 2m detection range compared to other Pana-
sonic AMN series sensors (which have ranges up to 10m)
[?]. It outputs analog values that are converted to values
between 0 and 1000 on the RPi. When there is no move-
ment, the sensor output values are approximately 500. Each
movement causes the sensor to generate one value close to
1000 and another close to 0. The closer these values are to
1000 and 0, the greater the intensity of movement. There-
fore, over a 30-second window, a standard deviation near
0 means almost no movement while higher standard devia-
tions correspond to more movements (See Figure 3). Note
that unlike the Kinect system used in SPOT, which could
instantly detect occupancy, there is a 30s delay in detecting
occupancy with this approach.

Analog-to-Digital Converter. Both the temperature and
occupancy sensors generate analog outputs, and, since the
RPi does not have analog inputs, we connect a MAX11612
analog-to-digital converter [?] to the RPi through the I2C
serial pins. The ADC converts sensor outputs to 12bit digi-
tal signals and sends them to the RPi upon request.

4.1.3 Actuation Box
The actuation box physically controls the fan/heater using
relays, a custom made AC power control circuit, and an
RPi. It has two power outlets, one for the fan and one for
the heater (Figure 4).

Relays. Two RPi GPIO output pins are connected to two
electromechanical relays3 to close and open the AC circuit
of the fan and the heater independently. Upon receiving
a command from the control app (see Section 4.1.4), the
device app on the RPi sets the two GPIO outputs to 0V or
3V respectively to execute the command.

AC Power Control Circuit. We modified and built a
standard AC-control circuit [?] to control the fan speed.
It limits the current going through the fan using a TRIAC
that modulates the current based on a control signal from
a 12-bit MAX5805 digital-to-analog converter (DAC). The
DAC’s output voltage is controlled by the RPi using the I2C
serial protocol. Figure 4 contains the circuit as populated
on a manufactured PCB.

Raspberry Pi. The RPi runs Raspbian [?], and is con-
nected to and powered through our custom-built circuit with
a 40-pin ribbon cable. It executes commands and controls
status lights on the box by toggling output signals on GPIO
pins. In a networked setup, we use an Edimax EW-7811Un
USB dongle [?] to connect the RPi to the building’s wireless
network.

4.1.4 Device App
The device app has several tasks. It collects data from sen-
sors and transmits them to the control app locally or over
the network. It also executes commands received from the
control app. Using the I2C protocol, it reads sensor mea-
surements from the ADC connected to the RPi.

3We use electromechanical relays, rather than solid state
relays, to reduce cost.

Figure 4: Inside of SPOT*’s actuation box. The AC
control circuit on the left side communicates with
the RPi to turn the fan/heater on or off, and set the
fan’s speed. The RPi, can connect to the building’s
network using a WiFi USB dongle, and a 5V 3A
stable power supply keeps the box running.

The device app collects motion data twice every second,
computes the standard deviation over a 30-second period,
and sends it to the control app. Hailemariam et al, report
that occupancy can be reliably detected by finding the stan-
dard deviation of the AMN23111 motion sensor [?] data
every two minutes [?]. However, we found that the more
sensitive AMN22111 motion sensor [?] allows us to lower
the occupancy detection interval from 2 minutes to 30 sec-
onds. To reduce the amount of inter-process and network
communications, the device app collects motion data twice
a second, computes its standard deviation, and sends only
this value to the control app every 30 seconds. It also reads
and transmits temperature every 10 seconds. Upon receiv-
ing a command from the control app, the device app toggles
GPIO outputs connected to relays to execute the command.
In addition, it communicates with the DAC using I2C pro-
tocol to alter its output and set the speed of the fan. Due
to the design of our selected fan/heater, to guarantee safe
operation, we must make sure that the fan spins with its
maximum speed while the heating coil is powered.

4.2 Control Application
The control app listens for RPC connections from the device
app. Each call from the device app updates either the tem-
perature or the standard deviation of motion values. The
control app passes these values to the DB app to be logged
on the storage. It also makes a control decision based on oc-
cupancy and PPV, and invokes the appropriate procedures
on the device app.

4.2.1 Occupancy Inference
As discussed in Section 4.1.4, the control app receives a stan-
dard deviation value O that represents movement intensity
in every 30-second period. We determine if the station is
occupied if this value exceeds a threshold To = 17.25 [?].
Note that in a shared office, background movements may
cause false positives. To avoid this situation, we employ a
low-pass filter in the form of a leaky bucket with water level
L and capacity C as follows:
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Figure 3: Occupancy inference, based on the standard deviation of motion values (i.e. motion intensity)
during 30-second time windows over a 10-hour period. A threshold of To = 17.25 determines occupancy in
each time interval. The results show 96% accuracy in detecting occupancy in our deployment.

• L is 0 when the application starts.
• On update, if O ≥ To : L = min(L + 1, C)
• On update, if O < To : L = max(L− 1, 0)

The control app infers that the station is occupied if L = C
and unoccupied if L = 0. Intermediate values for L imply
that the user has recently left, recently arrived, or there was
background movement close to the station. Therefore, it
makes decisions oblivious to user presence when 0 < L < C
(see Algorithm 1, described below).

4.2.2 Decision Making
The control app makes reactive control decisions using the
inferred occupancy and measured temperature data as shown
in Algorithm 1. On receiving a motion sensor update (i.e.
every 30 seconds), it updates the occupancy leaky bucket,
then calculates the PPV value assuming a fan speed of zero.
If the station is definitely occupied and the PPV value ex-
ceeds the comfort range Tc, the PPV is re-calculated for
each increment of 0.1 ms−1 in the fan speed, starting from
zero, until the PPV (at that air speed) is within the com-
fort range or we reach the maximum possible fan velocity
of 2.1m

s
. Thus, the decision uses the PPV equation to de-

rive the necessary fan speed to achieve a desired personal
comfort level.

4.3 Data Store and DB Application
We use MongoDB [?] to store the data, and implement a
DB app that restricts database access to limited functions
(e.g. inserting and querying occupancy and temperature,
querying users, and inserting device state) for better secu-
rity. The DB app communicates with the control app to log
events and updates, and to provide user preferences to it.
It also communicates with the web app to store user pref-
erences and provide data to the web app for visualization.
Because of SPOT*’s flexible architecture, we can run the
DB app and the MongoDB storage locally on the RPi, or in
the cloud.

4.4 Web Application
We design and implement the web application using the
Flask microframework [?] to:

Algorithm 1 Control app’s MakeDecision procedure

1: if L = 0 and Heat = true then
2: StopHeating()
3: else if L = 0 and Cool = true then
4: StopCooling()
5: else if L > 0 and Heat = true and PPV > 0 − Tc

then
6: StopHeating()
7: else if L > 0 and Cool = true and PPV < Tc then
8: StopCooling()
9: else if L = C and PPV > Tc then

10: S ← CalculateSpeed()
11: StartCooling(S)
12: else if L = C and Heat = false and PPV < 0 − Tc

then
13: StartHeating()

• Collect votes from the user during training periods.
• Provide a manual override to the user.
• Visualize temperature, occupancy, and comfort data

for users and administrators.
• Debug, monitor, and administer.

The web application runs on a WSGI Apache [?, ?] instance
which is proxied through a publicly available Apache web-
server4. To ensure privacy and security, we use HTTPS [?]
and require users to login with their credentials.

4.4.1 Training Period
Recall that SPOT* requires training to estimate the affine
translation between PMV and PPV values. Users can start
training periods at will. We collect votes from the users
based on the 7-point ASHRAE scale and match them with
the PMV value at the time of voting. Once the user ends
the training we run a least squares linear regression on the
collected points to determine fppv(pmv). After the training,
the new PPV equation is used to predict user comfort.

4http://blizzard.cs.uwaterloo.ca/spotstar/



Figure 5: The graphical user interface, viewable
with standard internet browsers. The top section
allows users to manually fine-tune the system for
temporary changes. The graphs in the middle visu-
alize comfort (PMV and PPV), occupancy, and tem-
perature over time. Users use the bottom section to
start training their devices. During the training,
users vote periodically on how they feel based on
the 7-point ASHRAE scale.

4.4.2 Comfort Offset
In addition to infrequent training, we provide a manual off-
set override to allow users to adjust their comfort level as
needed, such as when they are unwell, or when they are
wearing more or fewer clothes than usual. The offset Bo is
0 by default and adjusts the PPV equation in the following
way:

PPV = a ∗ PMV + b−Bo (3)

When Bo < 0, the user prefers cooler conditions, and when
Bo > 0 warmer conditions are preferred.

4.5 Graphical User Interface
Internet browser viewable content based on jQuery [?] and
Bootstrap [?] is generated by the web app. In a networked
setup, this GUI is accessible on users’ desktop computers
and smart phones.

In an isolated local SPOT* setup, we equip the actuation
box with a 7-inch resistive touch screen LCD. The LCD is
connected to the RPi using an HDMI cable through Adafruit’s
touch screen controller board [?]. In this setup, the data re-
mains physically on-site and the user can access the GUI
only on the box from a web browser user interface (see Fig-
ure 6).

Figure 6: For isolated installations of SPOT*, a 7-
inch touch screen LCD is mounted on the actuation
box. This LCD is connected to the RPi inside the
box and provides a local GUI to the user. In this
configuration, which has the best privacy protection,
occupancy data remains physically in the office.

5. EVALUATION
We built four SPOT* devices and deployed them in offices
at the University of Waterloo. At the time of writing this
paper, we have data from this deployment for about 25 days,
with about a 12-day break in the middle.

Here, we compare the cost of SPOT* with SPOT, measure
its accuracy in detecting occupancy, evaluate users’ com-
fort when using SPOT* with both subjective and objective
measures, and explore its energy consumption.

5.1 Cost
Table 1 shows the hardware components used in SPOT*
with approximate prices we paid, and estimated cost with
mass production. Note that the per-user cost of software
and cloud servers is negligible for large deployments. There-
fore, we do not include it in Table 1. Even for a single
prototype, the overall system cost is about 82% lower than
SPOT, which costs approximately $1000 per user. In addi-
tion, if mass-produced, we estimate that it would about one
order of magnitude cheaper than SPOT.

5.2 Occupancy Detection
To achieve goals D1 and D4, we replaced the Kinect with a
motion sensor and modified the approach proposed in [?] to
detect occupancy. Assuming perfect placement, the Kinect
was 100% accurate in detecting occupancy. By eliminating
the Kinect, we reduce the cost, but the accuracy also de-
clines. To estimate the accuracy of occupancy detection, we
measured occupancy using both a video camera (with hu-
man tagging of occupied periods) and the passive infrared
sensor used in SPOT*. Over a 3-day period, SPOT* had a
96% accuracy, which is excellent. We note that, in addition,
our occupancy detection approach causes a 30s delay in de-
tecting occupancy. Figure 3 shows how standard deviations
of motion data translate into occupancy during a 10-hour
period.



Item Prototype
Price

Est. Volume
Price

Raspberry Pi $40 $15
WiFi dongle $10 $5
sensors $20 $10
AC circuit components $50 $20
fan/heater $25 $20
PCB manufacturing $20 $10
enclosures $10 $5
wires, connectors, etc $10 $5
Total $185 $80

Table 1: Cost breakdown of hardware elements used
in SPOT*. The table shows our approximate proto-
type cost, and the estimated mass-production price
for each element.

5.3 Comfort
We measured the effectiveness of SPOT* in maintaining
user comfort in two ways. First, we compute the average
absolute discomfort[?] in the presence and absence of the
SPOT* during the 25-day period. Second, we measure how
frequently users needed to manually override the system, as
an indicator of how many times the users felt uncomfortable.

5.3.1 Average Absolute Discomfort
The average absolute discomfort objectively measures
how uncomfortable a user feels. Let d(t) be the absolute
discomfort at time t defined as

d(t) = max(|ppv(t)| − Tc, 0) (4)

where threshold Tc determines a PPV range in which the
user is comfortable. A Tc of 0.5 means the user is comfort-
able at time t if −0.5 < ppv(t) < 0.5. To be consistent

with SPOT+, we set Tc to 0.5 in our evaluations. Then, d̂
or average absolute discomfort, is defined to be the average
of d(t) only at times when the user is present. Specifically,
let m(t) = 0 when the workspace is not occupied and be
equal to 1 when occupancy is detected (L = C in the leaky
bucket). Then,

d̂ =
ΣT

t=0d(t)m(t)

ΣT
t=0m(t)

(5)

To measure the performance of SPOT*, we calculate the av-
erage absolute discomfort of users with and without SPOT*.
Instead of measuring this value after turning off control ac-
tions, we observe that SPOT* performs no control actions
when the workspace is unoccupied. So, the average absolute
discomfort when the workspace is unoccupied is identical to
its expected value in the absence of SPOT*. Thus, to mea-
sure average discomfort in absence of SPOT*, we simply
define:

ḋ =
ΣT

t=0d(t)m′(t)

ΣT
t=0m

′(t)
(6)

where m′(t) is 0 when the user is present and 1 when the
the workspace is not occupied (i.e., m′ = 1−m).

In our experiments, The average d̂ for all four users is 0.16
compared to 0.73 for ḋ. Therefore, SPOT* improves user
comfort by 78% in this admittedly limited trial. Figure 7
shows a comparison between average discomfort when SPOT*
is in use, and when it is not in use, for each individual user.
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Figure 7: Average discomfort of users when SPOT*
is being used, and when it is not being used. For
each user, the average discomfort decreases signifi-
cantly when SPOT* is maintaining comfort.

5.3.2 Manual overrides
The offset slider in our GUI is an indicator of how many
times the users felt uncomfortable during the course of our
deployment. Therefore we define Es as the measure of user
discomfort as:

Es =
number of slider events

total occupied hours
(7)

The experiments show that the average Es for all users is
0.38, about two events per day. We expect this value to
decrease over time as users get used to the system. Figure
8 shows Es for the four deployed SPOT* systems.
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Figure 8: The number of offset slider events per
occupied hour for each station. We use this indicator
(Es) as the subjective measure for user discomfort.
The average of 0.38 for Es indicates approximately
two events per day.



5.4 Energy Consumption
SPOT* has three sources of energy consumption:

• The actuation box, including the RPi and the AC con-
trol circuit (constant 3.5 watts),
• The fan, consuming linearly between 8 and 15 watts

depending on speed,
• The heater coil, consuming 1300 watts when turned

on.

We estimate the total energy consumption of each deployed
SPOT* instance by summing up the energy consumption of
the three sources above. We find that the average energy
consumption of SPOT* during the 25-day period is approx-
imately 8 kWh. Figure 9 shows total energy consumptions
for each deployed SPOT* device. Unfortunately, we are un-
able to compare this usage with that of a central HVAC
system, but suspect that it is at least an order of magnitude
lower.
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Figure 9: Total estimated energy consumption for
each SPOT* device during 25 days in kWh. All de-
vices, consume the same amount of energy to keep
running. A significant portion of consumption be-
longs to the heating coil, and a small amount is con-
sumed to power the fan.

6. DISCUSSION AND CONCLUSION
Motivated by the shortcomings of the SPOT and SPOT+
systems, we have presented the design and evaluation of the
SPOT* system. SPOT* meets all of its design goals and,
because of its much lower cost, will soon be widely deployed:
we are currently preparing 70 systems for deployment in an
entire wing of a campus building.

We gained several insights from our work. First, the pri-
mary determinant of user comfort is workspace temperature.
With SPOT, we were extreme in sensing every component of
the PMV equation. In SPOT*, we achieved nearly the same
level of comfort as SPOT, but with only temperature mea-
surements and judicious choice of parameters for the PMV
equation, using manual overrides to deal with errors in this
choice. This has turned out to be a good design choice.
Our test users were especially happy with the fact that, un-
like SPOT, SPOT* responds nearly immediately to manual
control.

The design choice of using flexible, re-locatable software
components has also proven to be a good one. With nearly
no effort, we can configure a system to be standalone, which
makes privacy-sensitive users happy, or be networked, which
opens up the possibility of coordinating SPOT* actions with
that of a central HVAC, something we would like to pursue
in future work. We also hope that heater/fan manufactur-
ers will, some day, build in a mote-like embedded compute
platform into their devices, allowing us to deploy SPOT* on
them, by moving the control logic, storage, and web app to
the Internet cloud. This would be a fascinating use case for
the Internet of Things.

Our choice of using a Raspberry Pi as the compute platform
was not a straightforward one. We initially considered the
Arduino, a smartphone running Android, and a Zolertia Z1
mote. Indeed, our first deployment was using the Z1, which
has a MSP430 controller, no operating system, and a few
10s of KB of RAM. After struggling for some months with
this platform, we were pleasantly surprised to find that the
Raspberry Pi was not only much more powerful than the
Z1, but was two-and-a-half times cheaper. We did not re-
ally need the smartphone screen, and the Arduino has no
operating system and is not much cheaper than the RPi,
hence our final choice.

Finally, we would be remiss if we were not to mention a ma-
jor limitation of our work. Although we were motivated
by the need to reduce building energy use, we were un-
able to persuade our building managers to actually let us
turn the heating setpoint to a lower level, since we did not
have enough SPOT* devices to manage an entire building
zone. Thus, we are unable to conclude that SPOT* will,
indeed, reduce building energy consumption. However, as
mentioned above, we are in the process of putting together
a deployment, and hope to report on the results from this
work in the future.
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