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Abstract

It is widely acknowledged that the Black-Scholes constant volatility model is inad-
equate in modeling underlying asset prices evidenced by the observed volatility smile.
Based on the relative-entropy minimization method in Avellaneda, Friedman, Holemes
& Samperi (1997), we propose a method to calibrate, from market bids and asks, a pair
of volatility functions for an uncertain volatility model. The mid-prices are used to en-
sure separation of the lower and upper volatility functions. We show that the calibrated
uncertain volatility model produces more realistic bid and ask prices, when compared
with prices obtained from an uncertain volatility model with constant volatility bounds
set to extreme market implied volatilities.

1 Introduction

In the classical Black-Scholes framework, a contingent claim can be replicated by the con-
tinuously trading of the primitive underlying asset. The fair value of a derivative contract
is then uniquely determined based on no arbitrage pricing. This valuation methodology is
preference free. Unfortunately, in the real world, markets are typically incomplete, possi-
bly due to the existence of additional risks, e.g., volatility risk, which cannot be eliminated
through trading of the underlying asset. In addition, the market provides bid and ask price
pairs instead of a single price for an option.

Incomplete risk models such as stochastic volatility and jump models have been pro-
posed for option pricing, see, e.g., Andersen & Brotherton-Ratcliffe (1998), Bakshi, Cao &
Chen (1997), Duffie, Pan & Singleton (2000), Heston (1993), Hull & White (1987), Mer-

ton (1976). These models have emerged based on empirical evidence of price jumps and
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stochastic volatilities, in addition to the need to fit the volatility smile observed from option
markets. However, these pricing models typically assume a representative agent maximizing
a utility function and a single model price is produced for each option. Geman & Madan
(2004) argue that valid solutions to market incompleteness need to be based on the practice
of investment and risk management. In particular, valuation based on a representative agent
with a specific utility function is not the route traders in major houses adopt when quoting
prices for contingent claims which do not have a replicating portfolio. In addition, there is
a practical problem concerning calibration of such a model: market option prices are not
directly observable. The bid-ask midpoints are typically used as option prices. However,
empirical study suggests that there is an asymmetry in option price with respect to bid-ask
spreads; using bid-ask midpoints to determine a pricing model can result in a bias Nordén
(2003).

In this paper, we assume that the market is incomplete due to volatility uncertainty. An
uncertain volatility model (UVM) has been proposed by Avellaneda et al Avellaneda, Levy
& Paras (1995); it is an incomplete market pricing model yielding a pair of price bounds.
Specifically, an uncertain volatility model proposed in Avellaneda et al. (1995) assumes that,
the underlying process belongs to a set of stochastic processes,

d
45 =(r—q)dt+ odZ2,

t
where o <o, <0. (1)

where Q is a risk neutral probability measure, ZtQ is a standard Brownian motion under Q, r
and ¢ are interest rate and dividend yield respectively. In addition, o, is non-anticipative and
o,c > 0 are volatility bounds, which can be deterministic functions of the underlying price
S and time t. Under this model, the market is incomplete due to volatility uncertainty and
it is not possible to obtain a unique value for a derivative contract. Instead, an interval of
no arbitrage values can be determined for each option. Such price intervals are of immediate
practical use. For example, price bounds can be readily interpreted in practice as bid and
ask prices.

Under an uncertain volatility model (1), the Black-Scholes-Barenblatt (BSB) nonlinear
partial differential equation yields two bounds V and V for each option. The nonlinearity
arises from the volatility that is dynamically selected according to the convexity of the option
value function. For a standard European call or put, it can be shown that the upper value
V is the Black-Scholes option price computed with volatility @ while the lower value V is the
Black-Scholes option price computed with ¢. Values V and V can naturally be interpreted
as bid and ask prices of the option respectively.

The main focus of this paper is to address the problem of how to calibrate an uncertain
volatility model (1) for option pricing and risk management. A simple choice for an uncertain
volatility model (1) is a constant volatility interval Avellaneda et al., (1995, 1996). In
order for an uncertain volatility model (1) to be useful for pricing and hedging purposes,
it is typically required that the model be consistent with the current liquid options prices.
Unfortunately the choice of a constant volatility interval is unlikely to be consistent with all
liquid market bid and ask prices. Moreover, pricing under a seemingly reasonable constant
volatility interval model (1) usually leads to unreasonably large bid-ask spreads. Consider
the S&P500 index options for example. As a natural candidate, let ¢ and @ be the minimum



and maximum implied volatilities corresponding to market bid-ask mid-prices. Empirical
evidence suggests that the implied volatilities for options on the same underlying and with the
same maturity decrease as the strikes increase, generating volatility skew, see, e.g., Rubinstein
(1994). For each option, the upper value V and lower value V are Black-Scholes prices with
o and o respectively, since a European option value function has positive vega. Under
an uncertain volatility model (1) with constant volatility bounds set to extreme implied
volatilities, the difference between these two extreme option values is typically larger than
the spread observed from the market. Indeed, an uncertain volatility model with constant
volatility bounds implies that the implied volatilities corresponding to bids (asks) of standard
options are constant, which deviates the empirical evidence. This shows that it is typically
unlikely for an uncertain volatility model with constant volatility interval to be consistent
with market bid and ask prices.

Calibrating a model for the underlying price based on the traded market option prices has
been a standard approach for pricing and hedging options, see, e.g., Andersen & Brotherton-
Ratcliffe (1998), Avellaneda et al. (1997), Coleman, Li & Verma (1999), Derman, Kani &
Zou (1996), Dupire (1994), Jackson, Sili & Howison (1999), Rubinstein (1994). In the
current literature, these calibration methods are typically based on either a complete market
assumption or a representative agent equilibrium pricing. Under either case, there is a unique
price for any given option.

In the spirit of calibrating a model from market prices, it is reasonable to consider market
bid and ask prices containing information on an uncertain volatility model (1). In this
paper we consider the problem of inverting the volatility bounds for an uncertain volatility
model (1) from the market bid and ask prices. Availability of such a calibrated volatility
uncertainty model naturally yields model bid and ask prices of other complex options and
risk management methods.

Unfortunately, calibrating a pricing model from the market option prices is a challenging
problem. Compared to calibration of a single volatility function in the traditional case, two
volatilities o and @, satisfying the constraint ¢ < &, need to be determined. Moreover, there
is in general information incompleteness when calibrating a model using only the current
traded option prices. Specifically, prices are only available for a small restricted set of strikes
and times to maturity. In other words, the market derivative prices provide incomplete
information on an uncertain volatility model for the underlying.

Information incompleteness challenges exist even when calibrating a single risk adjusted
measure, e.g., in a local deterministic volatility function model. The estimation problem
typically has multiple solutions and thus is ill-posed. Various regularization methods have
been considered to overcome option price incompleteness. Andersen & Brotherton-Ratcliffe
(1998), Derman & Kani (1994), and Rubinstein (1994) use interpolation and extrapolation
techniques to estimate missing option prices and then invert the volatility function under
a finite difference method. This method is potentially problematic because interpolation,
and particularly extrapolation, may introduce erroneous information. Dumas, Fleming &
Whaley (1998) assume a parametric volatility function, e.g., a polynomial local volatility
function. The resulting estimation problem can be well-posed but different parametric func-
tions lead to different option prices. Coleman, Kim, Li & Verma, (1999, 2001) incorporate a
smooth condition and calibrate a spline volatility function by solving a nonlinear optimiza-
tion problem . Although a spline with a minimum number of knots are recommended to



ensure parsimony, the selection on the number of spline knots and their placement remains
challenging. Avellaneda et al. (1997) calibrate the local volatility function by minimizing
relative entropy to a given prior probability measure; the prior probability can significantly
affects the estimation on the volatility. In Hamida & Cont (2005), a genetic algorithm is
considered to estimate different volatility functions which calibrates to market prices.

When calibrating an uncertain volatility model (1) from traded option bids and asks,
incompleteness of the price information is naturally a source of volatility uncertainty. Cali-
brating the lower and upper volatility by interpolating or extrapolating market information
seems to be inconsistent with the uncertain volatility modeling methodology. Instead, it
appears more reasonable to determine a volatility uncertainty model to ensure that it is min-
imally biased with respect to missing information but is consistent with the current traded
market bid and ask prices. Such a model naturally leads to price intervals consistent with
traders’ approach for quoting price intervals when the market is incomplete due to volatility
uncertainty.

To calibrate a minimally biased uncertain volatility model, we use the concept of entropy,
developed in information theory, as a measure of uncertainty. The maximum entropy prin-
ciple states that the uniform distribution is the most unbiased distribution to the unknowns
and maximizes uncertainty if no information is given. If only partial information is known,
the distribution with the maximum entropy has the least prejudice to the unknowns. The
relative entropy or Kullback Leibler distance is a measure of distance between two probability
measures, see, e.g., Buchen & Kelly (1996), Cover & Thomas (1991). Given a prior proba-
bility measure, the minimum relative entropy principle states that the posterior probability
measure, which is least biased to the unknowns, reaches the minimum relative entropy.

Each option price contains useful information in determining pricing measure on a prob-
ability space (Q,F). For example, if option prices across all strikes and maturities are
obtainable in a deterministic volatility function model, we have full information of the mar-
ket and can uniquely determine the probability measure. If only limited option prices are
available, the minimum relative entropy principle can be applied to estimate a probability
measure which is unbiased to missing information, see, e.g., Buchen & Kelly (1996), Feittelli
(2000), Rouge & Karoui (2000).

We apply the minimum relative entropy principle to calibrate the upper and lower volatil-
ity bounds for an UVM that are consistent with the market bid and ask prices. One of the
objectives is for the calibrated model to be unbiased towards missing information. The
volatility bounds in UVM are assumed to be deterministic functions of underlying prices and
time. Suppose that the priors for both the upper and lower volatility functions are given.
The extreme implied volatilities of historical ask and bid prices, for example, can be used
as the priors for the upper and the lower volatilities respectively. Alternatively, priors for
the upper and lower volatilities can simply be set to the extreme implied volatilities of the
current bid and ask prices of different strikes and maturities.

Using the assumed priors, similar to Avellaneda et al. (1997), the upper and lower volatil-
ity functions can be determined by solving equivalent constrained optimal control problems.
Unfortunately there is an additional challenge when calibrating a volatility uncertain model
from market bid and ask pairs. In particular, one needs to ensure that the calibrated upper
volatility @ is always no less than the calibrated lower volatility o. Note that implementa-
tion of entropy minimization also requires additional bounds on each volatility calibration



respectively, see, e.g., Avellaneda et al. (1997). We use this technical constraint to satisfy
the requirement that ¢ < 7. This technical constraint is implemented using a local volatility
function o,;q which calibrates the middle prices of bid-ask pairs.

Two computational approaches are investigated in this paper to solve the constrained
optimization problem arising from the entropy minimization for calibration. Omne is the
Lagrangian multiplier method and the other is the quadratic penalty function method. When
the bid-ask spreads are small, the Lagrangian multiplier method is likely to fail to provide a
solution since computational errors can lead to numerical infeasibility. The penalty function
formulation, on the other hand, always yields a solution.

After an uncertain volatility model is calibrated from given bid and ask prices, we can
apply it to compute bids and asks of vanilla options as well as exotic options.

The paper is organized as follows. In section 2, we first briefly review option pricing under
an uncertain volatility model. We then propose mathematical formulations for calibrating
volatility bounds in an uncertain volatility model based on the entropy method. In section 3
we discuss the Lagrangian formulation for the entropy optimization problem and its numerical
difficulties. To overcome this difficulty, a quadratic penalty function method is proposed in
section 4 to approximate a solution to the entropy optimization problem. In section 5,
we illustrate the uncertain volatility intervals calibrated from bid and ask prices. In one
example, bid and ask prices are generated from a constant elasticity of variance model. In
the second example, S&P 500 market bid and ask prices are used. Numerical investigation
shows that the calibrated uncertain volatility model yields smaller and more realistic price
spreads, compared with an uncertain volatility model with constant volatility bounds from
extreme implied volatilities.

2 Mathematical Formulations

Consider a set of probability spaces {(2,F,Q), Q € O}. Assume that the set of pricing
measure O is specified by an uncertain volatility model (1),

dS
o=~ a)dt + oz, 2)

where oc<o0,<7T

where r is the risk-free interest rate, ¢ is the dividend rate, ZtQ is a standard Brownian motion
under probability measure QQ, oy is a progressively measurable stochastic process bounded
by the interval [o, g]. In general, the bounds ¢ and & can depend on the underlying price S
and time t.

Consider a European option with the payoff function G(5) at the expiry T. Under an
assumed uncertain volatility model (1) with fixed bounds ¢ and &, there are a pair of option
values V1T and V—, V= < VT, associated with this option. Specifically, the pair of option
values are respectively,

VE(Si,t) = sup B[ TIG(Sy)] (3)
Qe

and



VZ(Si,t) = inf E[e7 " 0G(Sr)] (4)

Based on stochastic control theory, see, e.g..Fleming & Soner (1993), these extreme values
can be computed by solving Hamilton-Jacobi-Bellman (HJB) equations. For example V'~
satisfies the HJB equation below

v V1,0V
_ﬁ+rv+£‘120__ <—(r—q)5%— 57 S 652> =0.

These HJB equations lead to the Black-Scholes-Barenblatt (BSB) equation (5) below

v v 1 [0*Vy\? 0%V
W““q)Sﬁﬁ(“[asz]) S g V=0 (5)
with the final condition
V(S,T) = G(5)
where VT is obtained with o [ ] =ot [ ] below
OPV9ar [ 6 fZY >0
+ lef 952 =
U[am] {g;ﬁ%g<o ©)
and V'~ is obtained with o [ ] =0~ [ ] below
_ 62‘/’ def o if % S 07
U[%J_{gi%%>0 (7)

For more details, we refer the reader to Avellaneda et al. (1995).

Note that, for an uncertain volatility model (1) with constant bounds ¢ and &, the
corresponding value bounds V'~ and V¥ for standard European options are simply the values
computed from the Black-Scholes formula with constant volatility ¢ and o respectively. This
is due to the fact that the value function from the Black-Scholes formula is convex and
satisfies the BSB equation (5) with (7) for the lower bound V'~ ( and equation (5) with (6)
for the upper bound V). Thus the BSB equation is reduced to the standard Black-Scholes
equation when we price the extreme values for standard calls and puts.

Assume that the current cross sectional bid prices V and ask prices V are given for all
strikes and maturities. We can assume that the market are excluding bid prices less than V.
and ask prices greater than V. Thus one might imagine determining ¢ from V prices and
& from V prices for a UVM (1). Unfortunately, in practice bid and ask prices are available
only for a limited number of strikes and maturities. It is reasonable to wonder how much
information about volatility can be inferred, with minimal bias, from a set of the market bid
and ask prices. In addition, what is the appropriate mathematical formulation for calibrating
an uncertainty volatility model (1) from market option bids and asks?

Omne might also consider, for simplicity, using an uncertain volatility model with constant
volatility bounds corresponding to the current extreme implied volatilities. However, this



may lead to unreasonably large price intervals for liquid options and unrealistically small
price intervals for highly illiquid options. In addition, determining a lower bound ¢ by
calibrating to interpolated bid prices is not consistent with an uncertain volatility model.
To calibrate an uncertain volatility model using the current market price information, it
is more reasonable to seek a model that is least biased with respect to the missing informa-
tion. To achieve this, the relative entropy, or Kullback Leibler distance, can be used. The
Kullback Leibler distance measures the difference between two probability measures, Given
two probability measures (Q; and Qq, the relative entropy between Q; and Qg is defined as

Q@) = [ () e ®)

where dQ /dQy is the Radon-Nikondym derivative. In addition, the probability measure Qy,
which minimizes the relative entropy, is the least biased towards the missing information,
see, e.g., Cover & Thomas (1991).

Avellaneda et al. (1997) proposed an entropy method for choosing a single volatility
function in a local deterministic volatility function model from a set of option prices. Suppose
that current prices of M European options, {C;},, are given; these prices correspond to
the payoff functions {G;(S)}¥, respectively. Given a prior probability measure Qp, the
probability measure which is closest to the prior, consistent with the given prices, and which
is unbiased to un-traded option prices can be determined by solving the optimization problem:

inf <(Q, Qo) )
subject to E© (e_TTiGi(ST,»)) =C;,1=1,2,..., M.

In order to connect to volatility, the relative entropy can be approximated by a pseudo-
entropy function. Avellaneda et al. (1997) propose to approximate the entropy minimization
problem (9) by a pseudo-entropy optimal control problem

T
7 0
subject to E© (e_’"T"Gi(ST,»)) =Ci,1=12,....M (10)

o < o < o

where oy, > 0, the pseudo-entropy function €(o,0p) is an approximation to the entropy
e(Q,Qo), Q is the measure defined by (2) with o, satisfying o, < 0y < oyp. The bound
constraint oy, < oy < oy 1s necessary to guarantee that the class of diffusions is closed with
respect to the topology of weak convergence of measures on continuous paths. See Avellaneda
et al. (1997) for a more detailed discussion.

The choice of a PE function is not unique and its selection does not qualitatively affect
calibration of a volatility function. Avellaneda et al. (1997) suggest a simple PE function
below,

oot 2 S (%~ ), (1)



where og 1s the prior volatility.

We propose to calibrate an uncertain volatility model (1) that it is consistent with given
market bids and asks and is least committal to the missing information. Assume that there
are two bounds o, and o, on volatility. For example, o, and 0.y can respectively be
the historical lowest and highest volatilities or current lowest and highest implied volatilities.
Since market makers would like to bid as low as possible, we determine the lower volatility
bound ¢ in a volatility uncertainty model (1) as the minimum relative entropy distribution
with the historical lowest volatility o, as a prior. In addition, to determine the lower
volatility o in an uncertain volatility model (1), it seems natural that the lower bound for
the lower volatility o is set to the historical low, 1.e., o), = Omin. Unfortunately, it is less
clear how to set the upper bound o, for the lower volatility . We propose to set g, to
Omid, Where o4 corresponds to a pricing measure which yields the bid and ask mid-prices.
Subsequently we refer to oyiq as the separating volatility.

Specifically, we propose to determine the lower volatility ¢ in an uncertain volatility
model (1) by solving the optimization problem below,

mink [ ie2)ie

subject to  EY e Gy(ST)) =V, (12)

T <0y S Ty,
where 7 is the pseudo entropy function below,

Q(Uz) déf %(02 - Uiin)zv Omin d:ef Iy Tub déf Omid (13)
Note that the minimum relative entropy distribution being least committal to the missing
information makes this estimation consistent with the idea behind an uncertain volatility
model. In addition, the minimum volatility ¢ corresponds to a pricing measure which is
consistent with today’s market bid prices and is closest to the lowest volatility opin.
An uncertain volatility model also requires that ¢ < . We achieve this by using the
separating volatility oyiq as the lower bound &y, for the upper volatility & calibration: the
upper volatility & in an uncertain volatility model is determined from

T
ain B9 [ (%))
7 0
subject to EQ(e_TTiG,'(STi)) =V, (14)
Omid S Et S Omax

where 77 is the pseudo entropy function:

of 1
M(0?) E 507 — o)’ (15)
The maximum volatility & then corresponds to a pricing measure which is consistent with
today’s market ask prices and is closest to the prior maximum volatility op,ax.
In the entropy minimization problem (12), the prior volatility omi plays an important
role in determining the lower volatility ¢ in an uncertain volatility model. Minimization of



the specified pseudo-entropy function implies that the lower volatility o deviates as little as
possible from the volatility prior o, while ensuring consistency with the market bid price
information. Similar remarks can be made about o, With respect to the upper volatility

g.

3 A Lagrangian Approach

The pseudo-entropy minimization problems (10), (12), and (14) differ only in the specification
of o9, o, and oy,. They are all optimal control problems with equality constraints which
can be solved, as in Avellaneda et al. (1997), by maximizing the corresponding Lagragian
functions.

To illustrate, we describe here the Lagrangian approach with respect to the pseudo-
entropy minimization problem (10) for the lower volatility. Let © denote the set of all
probability measures Q corresponding to the processes below

ds,
?t = (r—q)dt + 0:dZ°,  where 0 < o1, < 0p < oup
t
and €(o,00) denotes the pseudo entropy approximation to £(Q, Q). The lower volatility
bound ¢ is then determined by solving (10):

T
mén (o, 00) el o (/ n(az(s))ds>
0
subject to EC (e_TTiG,'(STi)) =V,

29

i=1,2,..., M

o < o < oup

Applying a Lagrangian approach for the equality constrained minimization problem, one
considers
M
inf sup (—e(a, o0) + Z by (E@ (e—rTiGi(STi)> - K@)) (16)
A Qeo P
If the Lagrangian problem (16) has a solution, it is the optimal solution of (10). Following
the stochastic control theory, Avellaneda et al. (1997) computes the optimum of the inner
maximization problem by solving a nonlinear Hamilton-Jacobi-Bellman (HJB) equation.

The objective function of the Langrangian problem (16) can be unbounded from below
if there is no feasible probability measure satisfying the equality constraints in (10). One
computational difficulty with the Lagrangian approach (16) is that the Lagrangian function
can be unbounded below due to infeasibility, possibility introduced by numerical error (or
model error) in satisfaction of the equality constraints. Specification of oy, and oy, can affect
this feasibility.

We illustrate this difficulty computationally with respect to the volatility calibration
problem (10). Assume that the initial underlying price Sy = 100, the risk free interest
r = 0.05, and the dividend rate ¢ = 0.01. We assume that the underlying price, under
the risk neutral measure Q, is governed by a constant elasticity of variance (CEV) model

described in Cox & Ross (1976):



d;;t (r —q)dt + EdZQ (17)
where o« = 15, and ZtQ is a standard Brownian motion. Since the market is complete under a
CEV model (17), option prices are uniquely determined. We assume that prices of 35 near-
the-money options are computed from the assumed model and are available for calibration.
See Table 2 in Appendix A for the strike price and option price description. The prior gq is
set to half of the minimum of the implied volatilities of selected options. The lower volatility
bound oy, is set to the constant og and the upper volatility bound is the maximum of the
exact local volatility function /S and the constant oy, i.e.,

oup = max(a/S, og). (18)

Here the upper bound oy, is floored by the constant oq since the exact local volatility function
goes to 0 as S approaches +o0o. However, all market prices correspond to near-the-money
options and volatilities in the region far from Sy are insignificant in pricing these options(
see, e.g., Andersen & Brotherton-Ratcliffe (1998). This modification has little effect in
pricing liquid options. Note that optimization problem (12) is mathematically feasible if the
upper bound oy, equals the local volatility function g and the solution under the Lagrangian
approach (16) exists. Computationally, on the other hand, the negligibly small numerical
error destroyed the feasibility and led to the unboundedness of the Larangian problem. Our
computational experience suggests that numerical error, which is responsible for infeasibility
here, mainly arise from solving the nonlinear HJB PDE. The modification of the exact
volatility function in (18) does not introduce significant numerical errors. Indeed we have
also implemented the case when the exact local volatility is a constant and no modification
of local volatility function is introduced in this case. The Lagrangian method also failed
computationally to find the optimal solution to (10) in this case due to infeasibility caused
by numerical error.

4 A Penalty Function Approach

To overcome numerical infeasibility in the Lagrangian (16) formulation, we consider instead a
quadratic penalty function approach for the equality constraint in (10). This approach always
yields a solution with the constraint approximately satisfied. Avellaneda, Buff, Friedman,
Grandchamp, Kruk & Newman (2001) consider the quadratic penalty method for the entropy
minimization problem when the state space () of underlying paths is discrete. We describe
here the quadratic penalty approach in a continuous state space; the derivation and notations
are similar to Avellaneda et al. (2001).

Instead of the Lagrangian formulation (16), we consider the following quadratic penalty
formulation for (9):

Qe

M
op (~e@@) =YL s - v 19
=1 !

Here the dynamics of S; is described by (2) and {w;}M, is a given vector of weights.
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Problem (19) is a stochastic control problem. Unfortunately the stochastic control theory
cannot be directly applied here since the second term in the objective function is not linear.

However, an equivalent problem, to which the stochastic control theory can be applied,
can be derived. Denote

aer 1 L1 T,
WE 2y, (B (GS) RO (20)

From the Cauchy inequality, we have

1
“ 2\ 2,
SR

(B (7 Gi(Sr)) = V)

M M
—%ZL(E@(e—TTiG,»(STi)) Vv, SZ (E9 (e Gy) Z)\w, Vi (22)

Using the above inequality, the objective function below is an upper bound for the ob-
jective function in (19),

mf sup (—5(@, Qo) + Z M(ED (e71G;) Z M, ) ‘ (23)

A Qeo

It can be shown that, under some reasonable assumptions, the above problem (23) is equiv-
alent to problem (19), see Coleman, He & Li (2006) for more details.

Notice that the terms associated with the expectation EY(-) in problem (23) are now
linear. Thus the stochastic control theory can be applied to derive a Hamilton-Jacobi-
Bellman (HJB) equation. In contrast to the Lagrangian formulation (10), the objective
function of (19) is convex and bounded from below. Thus the potential unboundedness
problem in the Lagrangian formulation is avoided.

To solve the pseudo-entropy optimization problem corresponding to (23), an appropriate
HJB equation can be applied based on stochastic control theory, similar to Proposition 2 in

Avellaneda et al. (1997). Let

O(X)= sup (o?X —n(c?)). (24)

2 2 2
THSTIST

Given a vector of real numbers A = (A1, Az, ..., Ay), let W(S,¢,A) be the solution to

—rt
W, + e”(I><€2 Wss) + (r = q)SWs — 1 = (25)

— Z )\,(S(t — T,) (G,(S) — erTiKi + %erTi)\,'w,'> , S > 0, t<T

t<T;<T

11



with the final condition W(S,T 4 0,A) = 0 where 6(-) is a Dirac function. Then it can be
shown that

W(S,t,)) (26)
T
= sup E(t@ [—e”/ n(af)ds} + Z E(t@ {)\i (e_T(T"_t)G,' — "V, + le’°t)\,'w,'>] )
Qeo t t<T;<T 2

Moreover, the supremum in (26) is realized by the diffusion process
dS *
f = (r —q)dt + o*(5,t)dz} (27)

t

where 0*(5,1) is the following function of S and ¢:
—rt

2

(U*(Svt))z = (I)/(e S$*Wss). (28)

This analysis shows that the optimal control problem (23) can be solved via

inf W(5,0,A). 29
AIGI;QM ( 05 Yy ) ( )
where W(Sp,0,) is computed by solving the HJB nonlinear partial differential equation
(25).

Since the objective function in the optimization problem (26) is a convex function of A, the
optimization problem (29) is convex. We apply a BFGS method for minimization problem
(29), see, e.g., Fletcher (1987) for detailed discussion on BFGS. Note that the BFGS method
requires computation of function as well as the first order derivatives; however computation

of a Hessian matrix is not required.
Let W;(5,t,A) denote the derivative of W with respect to A;, i.e.,

ow
aN;

Wi(S,t, ) =

Then W;(S,t,\) can be determined by taking derivative with respect to A; in equation (25),
le.,

1 —rt
(1) + 50 (587, ) 8 0V, + (= S (W), = 17V =
—(S(t — T,) (G,(S) — erTiKi + e’"T")\,'w,') . (30)
According to the definition (11) of n(-), ®(-) and ®'(-) are given below,

1X? 4+ 0lX, if o —o2 <X <a? —of,
(X) =1 opX —3lof, —05)? i X <off, — oy, (31)
o X — (o0, —0d)% H X > 08, —of,

and
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X +o3, ifof —02 <X <02 —o0d,
, .
P'(X)=1< o, if X <of —ad, (32)
o2, if X > o2 — ol

Assume now that W (5,0, )) obtains a minimum at A\* = {\7}*,. From equation (28),
(30), and the first order optimality condition,

EY (e TGi(Sr) — V) = =i (33)

Here {w;}} is the given weight vector and the expectation EY” is with respect to S; which
solves the stochastic differential equation (27). Equation (33) relates each calibration error
in the option V; to the corresponding weight w; and multiplier A*.

Next we discuss how to solve the nonlinear HJB partial differential equation (25) compu-
tationally. Once a solution W (S, ¢, A) to (25) is computed, ®(-)" can be determined and the
derivatives W; can be computed from the linear PDE (30). Avellanedaet al., (1997, 1995), use
a trinomial method, which is an explicit scheme for solving a HJB partial differential equa-
tion. Unfortunately, a trinomial method may not converge to the correct solution of equation
(25) in practice. Moreover, the solution from a trinomial method does not naturally provide
information for the volatility function outside a triangular region of discretization grid points
in (S,1).

Pooley, Forsyth & Vetzal (2003) propose a monotone method for solving the Black-
Scholes-Barenblatt (BSB) nonlinear PDE. Unfortunately their convergence analysis does not
directly apply to the more complex HIJB equation (25). Comparing HJB equation (25) to
a BSB equation, we see that the coefficient of Wggs becomes more complicated. In our im-
plementation, we use the Newton method directly for the finite difference equation for (25).
The Newton method is locally quadratically convergent in solving the algebraic equation at
each time step. Since a HJB equation (25) is nonlinear, one needs to investigate whether the
numerical solution converges to the correct solution of the nonlinear PDE. It can be shown
that, using the fully implicit method, the exact solutions to the finite difference equations
converge to the viscosity solution of equation (25). We refer an interested reader to the
analysis in Coleman et al. (2006).

To illustrate the main advantage of using the penalty function approach for the entropy
minimization problem (9), we now consider the same calibration example discussed in §3. In
contrast to the Lagrangian method, which fails to provide a solution for this example, the
quadratic penalty function approach is able to produce an approximation which satisfies the
equality constraint approximately. Figure 1 displays the volatility function calibrated from
option prices described in Table 2 in Appendix B, using the quadratic penalty method with a
weight vector of all ones. The largest calibration error is 0.0119 and the mean of the error is
0.0018. The calibrated volatility function and the exact volatility function across underlying
prices at different times are graphed in Figure 2. These graphs suggest that the calibrated
volatility function accurately approximate the true volatility when S is close to Sy except for
several troughs when ¢ is near some maturity time 7;.

Similar to Avellaneda et al. (1997), the appearance of troughs in Figure 1 & 2, when
t is near a maturity of a given option, can be explained based on the following interesting
observations on the solution to optimality in problem (29) and PDE(25).
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Figure 1: A local volatility function calibrated by the penalty method

Denote

W=e "W and S = (9g,
The PDE (25) becomes

~ 1.y~ ~ 1
Wt + P <§SZW§§> = — Z )\,(S(t — T,) <€_TTiG,'(€(T_q)TiS) — Kz + 5)\,71),) (34)

t<T;<T

Consider the standard option payoff function G;(S). Differentiating equation (34) with
respect to S twice,

ot 00800 = 3 M- T (S - 0y (35)

SS t<T;<T

where [' = ng = r207) ¢ From (28), we have

(07(S,1))* = @ (%S%) : (36)

Let A* be the minimizer of the optimization problem (29), let W*(S5,¢) = W(S,t, \*) be
the optimal objective function in the space (5,t), and let 0*(S, ) be the associated volatility
function. From (36), 0*(5,1) is determined by I'*. As discussed in Avellaneda et al. (1997),
I'* is singular at point (S,t) = (9,,T;) and quickly diffuses into a smooth function away from
(Si, T7).

If ¥ =0 for all 4, the right hand of the equation (35) is zero. From the final condition
['(S,T+) =0, " =0 is a solution to (35). In fact, it can be shown that I'* = 0 is the unique
solution to (36); see Coleman et al. (2006). By definition (31) of ®(-), we have 0*(S,t) = oy
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Figure 2: The calibrated volatility function and the exact volatility function at different
times based on the entropy minimization (16) with w, =1, o9 = o, = 0.5 min({Cimpy}) and
ouwp = max(a/S, 0.5 min({impy})) where oim,y are implied volatilities. Pictures on the right
are volatility curves at maturity times 7;. Pictures on the left are volatility curves when time
t is between maturity times.
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and the pseudo-entropy €(c*, 0¢) = 0. From (33), we conclude that the calibration error of
each option is identically zero. This means that the prior volatility o¢ can perfectly price
all given options. However, a constant prior oy in practice cannot be expected to price all
given options exactly. Therefore let us consider now the case when {AF} are not identically
zero. Each nonzero A is associated with a Dirac source in (35). Assume that each payoff
function G,;(S) is convex, e.g., a standard European option. If A¥ > 0, a positive Dirac
source on [ is expected at (S,t) = (K;,T;). From the definition (32) of ®'(-), o*(K;, T;) =
ouw (K, T;). Similarly, if A7 < 0, I has a negative Dirac source at (S,t) = (K;,T;) and
o*(K;,T;) = ow(K;,T;). The troughs observed in Figure 2 correspond to negative A and
thus over-pricing of the ith option from (33). Similarly ridges correspond to positive A and
thus under-pricing of the ith option.

5 Calibrating and Pricing Under an UVM

We now illustrate characteristics of the minimum and maximum volatility functions ¢ and
@ for an uncertain volatility model (1), calibrated from bid and ask pairs. In addition, using
the calibrated uncertain volatility model, we price bid-ask spreads of standard options with
different strikes and maturities as well as some exotic options. We compare the bid and ask
spreads generated by the calibrated uncertain volatility model with the spreads produced by
an uncertain volatility model with a constant volatility interval, specified using the minimum
and maximum implied volatilities. We observe that the calibrated uncertain volatility model,
which is consistent with the market, generates more reasonable price intervals. In §5.1 we
first consider a synthetic market where the bid and ask prices are generated based on a
constant elasticity of variance (CEV) model as in §3. The calibrated uncertain volatility
model from S&P 500 market prices is illustrated in §5.2.

5.1 Calibration from Prices of a CEV Model

To illustrate, we first assume that bid and ask prices for European options are generated
according to the CEV model (17) considered in §3. We assume here that the spread level is
a monotone function of maturity as listed in Table 1 and bid and ask prices are specified as
follows,

V=V- %spread, and V=V+ %spread (37)

where the mid-price V' are computed according to the assumed CEV model (17). Let opiq
and o, denote the implied volatilities corresponding to the bid and ask prices respectively.

To calibrate an uncertain volatility model, the priors oy, and oy,.x are chosen to represent
the lowest and highest volatilities. To illustrate, here we simply set priors as percentages of
the implied volatilities: the prior o, = 0.2min({ona}) and the prior opmay = 2 max({oask}).
In practice perhaps a more reasonable choice is historic extreme volatilities. The separating
volatility oiq 1s calibrated from the mid-prices using a spline representation as in Coleman
et al. (1999). From the penalty function formulation (19), the calibration errors are expected
to decrease as weights decrease. For computational examples in this paper, the calibration
error is relatively small when weights are all ones, with the maximum calibration error equal
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Table 1: Bid and Ask Spreads

Maturity(T) | Spread($)
0.1 0.10
0.25 0.12
0.5 0.14
0.75 0.18

1 0.20

to 0.005. We refer an interested reader to Coleman et al. (2006) for more discussion on
sensitivity of calibration errors to weights.

The volatility surfaces o and 7, for an uncertain volatility model calibrated from bid-ask
prices described (with uniformly weights of ones), are graphed in Figure 3. The calibrated
volatility functions are close to the assumed local volatility function in the CEV model in
a significant region centered on the hyperplane S = S;. As S moves sufficiently away from
S = Sp, the volatility surfaces gradually approach the corresponding priors and eventually
become flat and equal to the priors. This is reasonable since near the money options contain
little information on volatility as .5 moves away from 5.

Figure 4 plots volatility intervals across underlying prices at different times. We observe
more separation between volatility function bounds ¢ and & near ¢ = 0. This is partly
because fewer liquid option prices with shorter maturities are assumed to be given, as is
typically the case of available market data. In addition, bid and ask prices contain little
information on volatility far away from the initial underlying prices. Similar to the example
in §4, we observe troughs in the minimum volatility function . We also observe ridges in
the maximum volatility function @. As in §4, troughs in the minimum volatility function
correspond to model prices slightly higher than the bid prices. Ridges in the maximum
volatility function, on the other hand, correspond to model prices slightly lower than the ask
prices.

While mid-prices are used to calibrate a single volatility surface in a local volatility func-
tion model, bid and ask pairs are used directly here for uncertain volatility model calibration.
In addition, two model calibration problems differ in the specification of priors. In the local
volatility function calibration problem, the prior represents the most likely value for volatil-
ity. In the proposed calibration of an uncertain volatility model here, the prior for the lower
volatility correspond to the lowest volatility value; thus this prior can be set, e.g., to the
lowest historic volatility. The minimum volatility function ¢ in Figure 4 deviates further
from the given CEV volatility function in a relatively large region when time is close to 0.
The local volatility function calibrated from the middle price, on the other hand, fits the
given volatility function in larger regions, see Figure 2.

Next we compare the price intervals from an uncertain volatility model, calibrated from
bid and ask pairs, with price intervals from an uncertain volatility model for which the
constant volatility bounds are specified by the minimum and maximum implied volatilities
of the given mid-prices, respectively. We first compare spreads of European call options for
different strikes and maturities.
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Figure 3: Minimum and maximum local volatilities calibrated from the CEV example. The

separating volatility oyiq is determined using a spline with knots at [80,90,100,110,120] x

[0.25,0.75].
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Figure 5 graphs the implied volatilities, corresponding to bid and ask prices, respectively,
generated from the calibrated uncertain volatility model for which the volatility bounds are
graphed in Figure 3. For comparison, we also graphed the implied volatilities corresponding
to the bid and ask prices from an uncertain volatility model with constant volatility bounds.
Specifically, the circle-curve and the asterisk-curve represent implied volatilities of bid and
ask prices computed under the calibrated uncertain volatility model. The solid and the dash
lines represent the implied volatilities of bid and ask prices, which correspond to the UVM
model with a constant volatility interval from the extreme implied volatilities. Specifically
the benchmark uncertain volatility model with a constant bounds has ¢ = min{(cimpy)bid}
and 7 = max{(Timpy )ask } -

From Figure 5, we observe that the spreads computed under the calibrated uncertain
volatility model are much smaller than those priced under the uncertain volatility model
with the constant volatility bounds, especially in the near-the-money region, For deeply
out-the-money options and deeply in-the-money options, the spreads computed under the
calibrated uncertain volatility model become larger because o and & approach to two priors,
which form a larger volatility interval than the price pairs from the simple UVM using two
extreme implied volatilities. This is intuitively reasonable, since the volatility gradually
becomes more uncertain as the underlying price moves further away from the current price.

In addition to pricing illiquid standard options, a calibrated uncertain volatility model
can be used to price and hedge exotic options. Next we compare, the price spreads of barrier
options from the calibrated uncertain volatility model with those produced by an uncer-
tain volatility model with the constant volatility bounds from extreme implied volatilities.
Specifically we use the calibrated uncertain volatility model to produce the price spreads of
an up-and-out barrier call option with the strike K = 100 and the barrier H = 120. (Inter-
est rate and dividend rate are assumed to be the same as before.) Figure 6 compares the
spreads generated from the calibrated uncertain volatility model, as a function of the under-
lying value, with the spreads from the uncertain volatility model with a constant volatility
interval from extreme implied volatilities. Under the calibrated uncertain volatility model,
the maximum spread is about 0.385. For the uncertain volatility model with a constant
volatility interval, where o = min{(impy)bid} and & = max{(Gimpy)ask }, the spread can be
larger than $3.5. This example illustrates that the calibrated uncertain volatility model
yields more realistic price spreads for illiquid standard options as well as exotic options.

5.2 Calibration from S&P500 Index Option Bid and Ask Prices

In this section we illustrate calibration of an uncertain volatility model from S&P500 index
option market bid and ask prices on April 20, 1999. We use the same price data described in
Andersen & Andreasen (2000); implied volatilities corresponding to bid and ask prices are
given in Table 3 in Appendix A. The initial index is Sy = 1306.17, the risk free interest rate
1s 0.0559, and the dividend rate is 0.0114.

When calibrating an uncertain volatility model from the given data, we set the priors
for the minimum local volatility ¢ and the maximum local volatility @ to percentages of the
minimum and maximum implied volatilities of bid and ask prices respectively. Specifically,
Omin = 0.5 min{ona} in the entropy minimization problem (12) for the minimum local volatil-
ity o. Similarly, the prior oy = 1.5 max{o,g} in the entropy minimization problem for the
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Figure 5: Comparing spreads of standard European options from the calibrated uncertain
volatility model with the uncertain volatility model with simple constant volatility bounds.
The curves “ask voll” and “bid voll” are implied volatilities from the extreme prices com-
puted with the uncertain volatility model calibrated to the given bid and ask prices. The
curve “ask vol2” corresponds to the maximum of implied volatilities of ask prices and “bid
vol2” corresponds to the minimum of the implied volatilities of bid prices.
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Figure 6: Price spreads of an up-and-out barrier option with A = 100 and H = 110 for

the UVM with [o,7] = [min{opiq}, max{ca}] and the uncertain volatility model with the
calibrated volatility functions shown in Figure 4.
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upper bound local volatility @. The separating volatility oy,iq, which is used to ensure ¢ < 7,
is estimated from the implied volatilities of option mid-prices as before. We implement this
estimation using a spline representation for o,;q with the knots placed on a rectangular mesh
[0:0.25: 1] x [0.85y : 0.065; : 1.45p]. The maximum calibration error to the mid-prices is
0.014.

Figure 7 illustrates the minimum volatility ¢ and the maximum volatility & for the un-
certain volatility model calibrated from the given market bid and ask prices on April 20,
1999. As in §5.1, we use the weight vector of all ones. The maximum calibration errors to
the bid prices and ask prices are 0.0624 and 0.0244 respectively. The volatility intervals are
plotted in Figure 8. Similar to the CEV model example, troughs and ridges can be observed
for o and @ respectively. In addition, the lower volatility ¢ and @ become more and more
separated as time approaches zero.

Figure 9 compares bid-ask prices for an up-and-out barrier option with strike ' = 1306.17
and barrier H = 1.1K from the uncertain volatility model calibrated from bid-ask prices
with those from the uncertain volatility model with a constant volatility interval [o,7] =
[min{opiq}, max{oa}]. In contrast to the prices from the calibrated uncertain volatility
model from the bid-ask prices, the price pairs for the uncertain volatility model with the
constant interval [g, 7] = [min{opiq}, max{c.g}]| seem to be unrealistically large. In addition,
the uncertain volatility model calibrated from bid and ask prices is obtained to be consistent
with the market bid and ask prices of liquid options whereas an uncertain volatility model
with a constant volatility interval ensures no consistency with the market bid and ask price
information.

6 Conclusion

The volatility smile has been well documented; this suggests that the classical Black-Scholes
is inadequate in option modeling. In addition, difficulty in volatility estimation and empirical
evidence suggests the presence of volatility risk. An uncertain volatility model proposed by
Avellaneda et al. (1995) is an alternative option pricing model, yielding a pair of extreme
prices for a derivative contract which naturally correspond to bid and ask prices.

To successfully price and manage option risk under an uncertain volatility model, it
is important that the model is consistent with liquid bid and ask prices available in the
market. An uncertain volatility model with a simple constant volatility bounds from extreme
volatilities tends to yield price pairs inconsistent with market observations and can generate
unrealistically large price intervals.

Calibrating an uncertain volatility model from the liquid market bid and ask prices is a
challenging problem both mathematically and computationally. The market option informa-
tion is generally insufficient to determine a sufficiently complex uncertain volatility model
which is consistent with market information.

Consistent with volatility uncertainty, which is the principal idea behind an uncertain
volatility model, we propose an entropy minimization approach. This approach allows esti-
mation of an uncertain volatility model with volatility bounds least biased with respect to
missing information. We discuss mathematical and computational challenges in calibrating
the volatility bounds in an uncertain volatility model from bid and ask prices. In particular,
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Figure 9: Price spreads of an up-and-out barrier option with Sy = 1306.7, K = 1306.17 and
H = 1.1K from the uncertain volatility model with [0, 7] = [min{opia}, max{o..}] and price
spreads from the calibrated uncertain volatility model with ¢ and & shown in Figure 7.

a quadratic penalty approach is considered in this paper to avoid potential unboundedness
(due to computational infeasibility) in entropy minimization problems.

We illustrate the calibrated uncertain volatility model from the proposed method using
both a set of synthetic bid and ask prices generated from a CEV model as well as a set of the
S&P 500 index option data on April 20, 1999. In both cases, we observe that the difference
between the calibrated volatility bounds increases as the underlying price deviates from the
current price. This seems to be naturally consistent with the fact that only near-the-money
option price information is available. In addition, for a given underlying price, the difference
between volatility bounds tend to increase as time decreases. This is also reasonable since
initially the underlying price S is unlikely to deviate far from the current value Sy; thus
option values contain less information on volatility initially when underlying value is far
from 5.

In addition, we compare the bid and ask price pairs, yielded from the calibrated uncertain
volatility model with bid and ask prices from an uncertain volatility model with constant
volatility bounds, e.g., from extreme implied volatilities. We illustrate that, while the latter
often yields unrealistic price pairs, the price pairs from the calibrated model are more realistic
and are consistent with given market information.
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A Tables

Two tables are presented in this appendix. Table 2 provides the assumed option prices under
a CEV model. Table 3 described the S&P 500 market bid and ask prices on April 20, 1999
Andersen & Andreasen (2000).

Table 2: European option middle prices and associated implied volatilities of the CEV model
example. The underlying price is assume to follow process (17). Sy = 100, » = 0.05, ¢ = 0.01.
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Maturity (7;) | Type | Strike (K;) | Middle Price | Implied Vol
Call 105 0.4198 0.1464
0.1 Call 100 2.0928 0.1500
Put 95 0.3019 0.1539
Call 110 0.4234 0.1430
Call 105 1.4047 0.1464
0.25 Call 100 3.4924 0.1500
Put 95 0.9001 0.1539
Put 90 0.2388 0.1581
Call 115 0.5725 0.1399
Call 110 1.3828 0.1431
Call 105 2.8756 0.1465
0.5 Call 100 5.2276 0.1501
Put 95 1.6094 0.1539
Put 90 0.6864 0.1581
Put 85 0.2494 0.1626
Call 120 0.5962 0.1369
Call 115 1.2606 0.1399
Call 110 2.4069 0.1431
Call 105 4.1817 0.1465
0.75 Call 100 6.6687 0.1501
Put 95 2.1077 0.1540
Put 90 1.0802 0.1581
Put 85 0.4992 0.1626
Put 80 0.2067 0.1674
Call 125 0.5741 0.1341
Call 120 1.1231 0.1369
Call 115 2.0333 0.1400
Call 110 3.4219 0.1431
Call 105 5.3815 0.1465
1.0 Call 100 7.9543 0.1502
Put 95 2.4823 0.1540
Put 90 1.4092 0.1582
Put 85 0.7415 0.1626
Put 80 0.3602 0.1674
Put 75 0.1609 0.1727
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