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Abstract

We propose an optimization formulation using the l1 norm to ensure accuracy and stability
in calibrating a local volatility function for option pricing. Using a regularization parameter, the
proposed objective function balances calibration accuracy with model complexity. Motivated
by the support vector machine learning, the unknown local volatility function is represented by
a spline kernel function and the model complexity is controlled by minimizing the 1-norm of
the kernel coefficient vector. In the context of support vector regression for function estimation
based on a finite set of observations, this corresponds to minimizing the number of support
vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the
local volatility function in a synthetic market. In addition, based on S&P 500 market index
option data, we demonstrate that the calibrated local volatility surface is simple and resembles
the observed implied volatility surface in shape. Stability is illustrated by calibrating local
volatility functions using market option data from different dates.

1 Introduction

One of the most important problems in finance is accurate and stable model calibration from
the market option data. Calibration accuracy refers to the agreement between the model option
values and the observed market option prices. Stability refers to the property that the calibrated
model should be similar from a slightly changed data. Stability is crucial in practical applicability
of the calibrated model and is in general a more elusive property to achieve. Calibration accuracy
requires a model to be sufficiently complex but stability demands a model to be sufficiently simple,
in accordance with the Ockham’s razor. Proper control of these conflicting objectives is the key
to ensure model calibration accuracy and stability. In this paper, we propose a new approach to
calibrate, stably and accurately, a local volatility function in a diffusion process from market option
prices.

The conflicting objectives in calibration of an option pricing model can be easily understood.
The well-known Black-Scholes model (Black and Scholes, 1973) is simple and its calibration is
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typically stable. Under the pricing measure, the Black-Scholes model can be described as

dSt

St
= (r − q)dt+ σdWt

where St is the stock price at time t, r > 0 is the risk free interest, q is a constant dividend yield
(0 < q < r) , and σ > 0 is a constant volatility. The process Wt is a standard Brownian motion. In
practice, the volatility σ cannot be directly observed from the market. The implied volatility value
which is inverted from a market option price is widely used; traders frequently quote the implied
volatility in place of the actual option price. Unfortunately the model lacks sufficient accuracy
in pricing options; the well documented implied volatility smile attests to this fact (Rubinstein,
1994; Shimko, 1993). Many more complex models such as jump diffusion models, see, e.g., Merton
(1976); Bates (1991); Naik and Lee (1990), stochastic volatility models (Hull and White, 1987;
Heston, 1993), as well as jump coupled with stochastic volatility models (Broadie et al., 2007) have
been proposed in mathematical finance literature. One potential problem with a complex model
is additional computational and implementation cost, loss of intuition, and potential decrease in
calibration stability. Practitioners may, and in fact often do, favor a simpler model.

The simplest extension to the Black-Scholes model is the local volatility function generalized
BS model proposed in (Dupire, 1994; Derman and Kani, 1994),

dSt

St
= (r − q)dt+ σ(St, t)dWt (1)

where the local volatility function σ(S, t) deterministically depends on the underlying price St

and time t. This model is attractive because there remains one single source of randomness and
pricing can be based entirely on complete risk elimination. Many computational methods have been
proposed to calibrate local volatility functions, see, e.g., (Dupire, 1994; Andersen and Brotherton-
Ratcliffe, 1997; Coleman et al., 1999; Orosi, 2010; Glover and Ali, 2011). In He et al. (2006), we
extend the calibration method in (Coleman et al., 1999) to a jump diffusion model coupled with a
local volatility function. The local volatility function diffusion model remains popular in practice
because of its simplicity.

The local volatility function plays an important role in option pricing. Local variance in a
diffusion model (1) is shown to be a conditional expectation of the instantaneous variance in a
stochastic volatility model, see, e.g., (Gatheral, 2006). Even in the simplest extension (1) to the
Black-Scholes model, it is difficult to balance the conflicting goals of calibration accuracy, which
requires a model to be sufficiently complex to match all given data, and stability, which demands
the model to be sufficiently simple so that a slight change of data does not cause a large change
in the calibrated model. In Coleman et al. (1999), the local volatility function is represented by a
cubic spline with a fixed number of spline knots and end conditions. The conflicting objectives of
sufficiently complex model to achieve calibration accuracy. Model simplicity for stability is balanced
by choosing a small number of spline knots (making a model simple) to match market option prices
sufficiently accurately. Unfortunately this process is difficult to automate and the calibrated local
volatility function from this ad hoc procedure may lack stability and have unrealistic oscillations.

In this paper, using spline kernels, we propose a regularized optimization formulation to ensure
both accuracy and stability in the local volatility function calibration for (1). The objective function
in the proposed formulation balances the calibration accuracy with the model complexity based on
a regularization parameter. The unknown local volatility function is represented by a kernel spline.
The complexity of the model is controlled by minimizing the 1-norm of the coefficient vector for
a kernel spline. In the context of the support vector regression for function estimation based on a
finite observations, this corresponds to minimizing the number of support vectors, which in general
leads to good generalization property.

The presentation of the paper is as follows. We motivate the proposed optimization formulation
in §2. The accuracy and stability of the calibrated local volatility surface is illustrated computa-
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tionally based on both synthetic data and market data in §4. Concluding remarks are given in
§5.

2 An L1 Optimization Formulation for Stability

In a local volatility function model (1), σ(S, t) is assumed to be a deterministic function of the
asset price S and time t. Under a model (1), the option risk can be completely eliminated by
trading the underlying asset under some conditions including no arbitrage, continuous trading, and
no market friction. In addition, the option value function V (S, t) of time t and the underlying price
S satisfies the Black-Scholes partial differential equation (PDE),

∂V

∂t
+

1

2
σ2(S, t)

∂2V

∂2S
+ (r − q)S

∂V

∂S
− rV = 0. (2)

Initially the underlying price S0 at time t = 0 is given. Let V 0(K,T ) denote the initial European
option value for all strikes K and maturity T . It can be shown that, under (1), the initial value
function V 0(K,T ) satisfies the adjoint partial differential equation below,

∂V 0

∂T
− 1

2
σ(K,T )2K2∂

2V 0

∂K2
+ (r − q)K

∂V 0

∂K
+ qV 0 = 0, (3)

see, e.g., Dupire (1994) and Andersen and Brotherton-Ratcliffe (1997).
It can be readily seen from (3), that, under some assumptions, the local volatility function can

be determined if the initial option price V 0(K,T ) is known for any strikes K > 0 and maturity
T > 0, i.e.,

(σ(K,T ))
2
= 2

∂V 0

∂T + qV 0 +K(r − q)∂V
0

∂K

K2 ∂2V 0

∂K2

, (4)

see, e.g., Dupire (1994) and Andersen and Brotherton-Ratcliffe (1997) for more discussions. There-
fore, assuming the ratio on the right hand side of (4) is always nonnegative, the local volatility
function can be uniquely determined if the initial European option price V 0(K,T ) is known for all
K > 0 and T > 0.

Unfortunately market typically provides option prices only for a limited finite set of strikes
and maturities. Assume that m initial market option price {V̄ 0

j }mj=1, corresponding to strike and
maturity pairs (Kj , Tj), j = 1, · · · ,m, are provided. The objective of calibrating a local volatility
function becomes determining σ(S, t) such that the model option prices match given market data
and the calibration of the local volatility function is stable.

Accuracy and stability requirement clearly makes local volatility function estimation a chal-
lenging problem. We consider first the following simpler problem. Assume that the local volatility
function only depends on the underlying asset price S, i.e., σ(S, t) ≡ σ(S). In addition, we assume
for now that we actually have direct observations of the local volatility σ̄j = σ(Sj), j = 1, 2, · · · ,m.
The problem of determining a function σ(S) from the observations (Sj , σ̄j), j = 1, · · · ,m, is a
well known statistical learning problem. In particular, the support vector regression (SVR) offers
a potential solution approach, see, e.g., (Vapnik, 1998).

Support vector learning has a theory of uniform convergence in probability and has shown to
provide good generalization performance on a wide variety of learning problems. It generalizes a
number of well-known learning models such as neural networks and radial basis functions networks,
see, e.g., (Vapnik, 1998). For regression problems, Girosi (1998) has shown that SVR is equivalent,
under certain conditions, to some sparse approximation schemes.

We motivate our proposed formulation for the volatility function calibration by examining the
properties of the solution to the support vector regression. Here we follow a derivation of the
solution of SVR using the classical regularization theory described in (Girosi, 1998). Assume
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that the training data {(Si, σ̄i)}m1 is obtained from sampling some unknown underlining function
σ(S) ≡ σ(S;α):

σ(S;α) =

∞∑
n=1

αnφn(S) + α0

where {φn(S)}+∞
n=0 are specified basis functions. Determining the function σ(S) is equivalent to

specifying the coefficients {αj}. This problem is clearly underdetermined because the training
observation set {σ̄j}mj=1 is finite. Regularization by imposing an additional smoothness constraint
on the solution has been used to overcome this ill-posedness. For example, we can solve a variational
problem

min
α

C

m∑
i=1

E(σ̄i − σ(Si;α)) +

∞∑
n=1

α2
n

λn
(5)

where C ≥ 0 is a constant, E(·) is some error cost function and {λn}∞n=1 is a decreasing positive
sequence. A quadratic function, i.e., E(x) = x2, is an example of the error function. Vapnik (1998)
proposes to use an ε-insensitive cost function

E(z) = |z|ε def
=

{
0 if |z| ≤ ε
|z| − ε otherwise

It has been shown in Girosi (1998) that, with the assumed smoothness functional, independent of
the cost function E(·), the solution of (5) has the form

σ(S;β, β̄) =

m∑
i=1

(β̄i − βi)K(S, Si) + β0 (6)

where K(x, y) is a symmetric kernel function,

K(x, y) =

∞∑
n=1

λnφn(x)φn(y),

which is the inner product of the basis {φn(x)}+∞
n=0 and {φn(y)}+∞

n=0. In addition, β̄ and β solve the
convex quadratic programming problem below

min
β,β̄

ε

m∑
i=1

(β̄i + βi)−
m∑
i=1

σ̄i(β̄i − βi) +
1

2

m∑
i=1

m∑
j=1

(β̄i − βi)(β̄j − βj)K(Si, Sj)

s.t.

m∑
i=1

(β̄i − βi) = 0 (7)

0 ≤ β̄, β ≤ C.

Note that the solution σ(S) in (6) is computed from the kernel function K(x, y) rather than the
basis functions {φn(y)}+∞

n=0. This use of kernel functions has led to computational success of support
vector machining learning. In practice, one often specifies the kernel function directly.

Let β∗ and β̄∗ be the solution to (7). Let SV denote the set of support vectors identified as
follows:

SV
def
= {i : either β∗

i �= 0 or β̄∗
i �= 0}

= {i : β̄∗
i − β∗

i �= 0}

where the last equality is due to the fact that βi and β̄i cannot both be nonzero when ε > 0.
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The SVR solution (6) can now be expressed as

σ(S;β∗, β̄∗) =
∑
i∈SV

(β̄∗
i − β∗

i )K(S, Si) + β∗
0 (8)

The above expression implies that data points which are not support vectors have no influence in
the solution. In the non-degenerate cases, slight perturbations of such data points will not affect
the solution (8). Furthermore, theoretical analysis suggests that a small number of support vectors
leads to a small generalization error.

Unfortunately, the local volatility function calibration problem is much more complex than the
above function estimation problem based on direct function observations. Instead, only option
prices, which depend nonlinearly on the local volatility function, are provided. The LVF model
calibration is a function estimation problem based on indirect measurements, which are the given
market option prices.

Motivated by the fact that the predictability of the SVR solution is directly related to a small
number of nonzero coefficients (support vectors) in (8), we propose the following approach to
estimate the local volatility function from a finite set of option price (indirect) observations. We
use kernel splines to represent a local volatility function σ(K,T ). As direct observation on the
unknown local volatility is impossible, we choose a set of training points {(Ki, Ti), i = 1, · · · , l},
which may or may not coincide with strikes and maturities of observed option prices. We represent
a local variance function using a spline kernel as follows:

(σ((K,T );x))2 =

(
l∑

i=1

xiK ((K,T ), (Ki, Ti)) + x0

)2

, (9)

where K(·, ·) is the tensor product of the two 1-dimensional spline generating kernels with an
infinite number of knots in K and T respectively. We note that option values depend explicitly
on σ2((K,T );x) rather than σ((K,T );x). Following the standard optimization notation, here
we use x to denote the unknown coefficient vector β̄ − β for the spline kernel. A description
of the one dimensional symmetric kernels generating splines is provided in Appendix A. In our
implementation, we use the kernel generating spline with order 1, which is given below:

K ((K,T ), (Ki, Ti)) =

(
1 +KKi +

1

2
| K −Ki | (K ∧Ki +Kb)

2 +
(K ∧Ki +Kb)

3

3

)
×(

1 + TTi +
1

2
| T − Ti | (T ∧ Ti + Tb)

2 +
(T ∧ Ti + Tb)

3

3

)

where (K,T ) denotes a variable in the two-dimensional (strike, maturity) space. Here Kb and Tb
denote lower bounds for (K,T ), i.e., (K,T ) ∈ [−Kb,+∞) × [−Tb,+∞). In addition, T ∧ Ti =
min(T, Ti).

Given a set of option prices {V 0

j}lj=1 with V
0

j corresponding to the initial option price with

strike Kj and maturity T j , the goals of the option model calibration are twofold: accuracy and
stability. Accuracy ensures that, when the calibrated model is used in pricing, option pricing is
consistent with the current market information. Stability becomes especially important when the
calibrated model is used for hedging and other risk management purposes. Therefore we first want
to minimize the calibration error, which can be measured as

m∑
j=1

wj

(
V 0(K̄j , T̄j;x) − V̄ 0

j

)2
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where each model initial option value V 0(K̄j, T̄j ;x) is uniquely determined by the local volatility
function (9) specified by the unknown coefficient vector x. Weights {wj ≥ 0} are included here to
facilitate achieving desired accuracy when option values are of significantly different magnitudes.

To achieve stability, we keep the local volatility function simple to minimize the generalization
error of the local volatility function based on the given finite price observations. We attempt to
achieve this by explicitly pushing the coefficients in the kernel function representation (9) to zero as
much as possible but still ensuring calibration accuracy. This corresponds to forcing the cardinality
of the set SV of the support vector in (8) to be small. We attempt to achieve this by using ‖x‖1 as
a regularization function. To see why this should work, we can regard the term ρ‖x‖1, where ρ ≥ 0
is a constant, as the exact penalty function for the constraints xi = 0, i = 1, · · · , n. Indeed, with
a finite ρ > 0, typically some subset of the equality constraints will be satisfied. In addition, there
exists a finite lower bound for ρ such that when ρ is greater than this bound, all the constraints
xi = 0, i = 1, · · · , n, will be satisfied.

Combining these two objectives together, we propose to solve the following optimization prob-
lem:

min
x∈�l+1

1

2

m∑
j=1

wj

(
V 0(K̄j , T̄j;x)− V̄ 0

j

)2
+ ρ

l∑
i=0

|xi| (10)

where the constant ρ ≥ 0 is a regularization parameter balancing the tradeoff between the objectives
for accuracy and stability. For a larger parameter ρ, the calibration error is larger but the calibrated
local volatility function tends to be simpler. Note that, if we use the quadratic penalty function
‖x‖22 in the objective function, even though the objective function becomes smooth, the coefficients
{xi} are typically nonzero at the solution. For further discuss on the exact penalty function and
the quadratic penalty function, see, e.g., (Fletcher, 1980).

The optimization problem (10) has the following equivalent constrained optimization formula-
tion:

min
x∈�l+1,z∈�l+1

1

2

m∑
j=1

(
V 0(K̄j, T̄j ;x)− V̄ 0

j

)2
+ ρ

l∑
i=0

zi

subject to zi − xi ≥ 0, i = 0, · · · , l
zi + xi ≥ 0, i = 0, · · · , l
zi ≥ 0, i = 0, · · · , l

3 A Trust Region Method for the Proposed Calibration Prob-
lem

We propose to use an affine scaling trust region method to solve the piecewise smooth minimiza-
tion problem (10) directly. The proposed method is an extension of the affine scaling trust region
method for the bound constrained minimization proposed in (Coleman and Li, 1996a).

Without loss of generality, we describe the computational method for the problem below,

min
x∈�n

f(x) + ‖x‖1 (11)

where f : 
n → 
1 is a twice continuously differentiable function. The option calibration problem
(10) can clearly be written as (11) with n = l + 1. The objective function of (11) has a smooth
component f(x) and a piecewise linear component ‖x‖1.
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In (Coleman and Li, 1996a), an interior point trust region method is proposed to solve the
bound-constrained minimization problem,

min
x∈�n

f(x), subject to l ≤ x ≤ u (12)

where l, u ∈ 
n, l < u, and f : 
n → 
1 is a smooth function. At each iteration, the main
computation is approximately solving a trust region subproblem based on an appropriate scaling,
which depends on the first order Kuhn-Tucker optimality condition as well as the distance of
the current iterate to the constraints. In addition, a reflective technique is used to accelerate
convergence, see (Coleman and Li, 1994, 1996b) for more details.

Optimization problem (11) and the bound constrained minimization (12) share some important
properties; solving these problems is to identify which variables are active, i.e., at the bounds for
(12) or equal to zero for (11). Similar to the method in (Coleman and Li, 1994, 1996b) for the
bound constrained minimization, we now describe subsequently a trust region method for solving
(11). Analogous to the motivation in (Coleman and Li, 1994, 1996b), the trust region subproblem
is based on proper affine scaling, which depends on the first order Kuhn-Tucker condition for (11)
as well as the distance of the current iterate to x = 0.

It can be easily shown that the first-order Kuhn-Tucker conditions for (11) can be stated as
follows: if x is a local minimizer, then, for 1 ≤ i ≤ n,

xi ((∇f(x))i + sign(xi)) = 0
|(∇f(x))i| ≤ 1

(13)

where

sign(xi)
def
=

{
1 if xi ≥ 0
−1 otherwise.

and (∇f)i denotes the ith component of the gradient of f(x).
Let the vector v(x) ∈ 
n be defined below,

vi(x)
def
=

{
| xi | if |(∇f(x))i| ≤ 1,

1 otherwise .
(14)

and
D(x)

def
= diag (v(x)) ,

Thus the Kuhn-Tucker condition (13) can be stated as

D(x)(∇f(x) + sign(x)) = 0 (15)

In other words, a vector x satisfies equations (15) if and only if the first-order Kuhn-Tucker condi-
tions of (11) hold at x.

Assume that the current iterate xk ∈ 
n satisfies the condition (xk)i �= 0 for 1 ≤ i ≤ n. Let
gk = ∇f(xk) + sign(xk). A Newton step for (15) at the kth iteration satisfies

(Jv
k · diag(gk) + diag(vk) · ∇2f(xk))dk = −diag(vk)gk (16)

where Jv(x) ∈ 
n×n is a diagonal matrix which corresponds to the Jacobian of |v(x)|. Each
diagonal element equals either zero or ±1.

We can write equation (16) in an equivalent form with a symmetric coefficient matrix corre-

sponding to a Hessian matrix of a quadratic function. Let Dk = diag(|vk| 12 ) and

sk = D
− 1

2

k dk

ĝk = D
1
2

k gk

M̂k = D
1
2

k · ∇2f(xk) ·D
1
2

k + diag(gk) · Jv
k .
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Then the Newton equation (16) is equivalently expressed as

M̂ksk = −ĝk. (17)

The above equation (17) suggests an affine scaling transformation: sk = D
− 1

2

k dk and consideration
of the following trust region subproblem,

min
s∈�n

{ψ̂k(s) : ‖s‖2 ≤ Δk}, (18)

where

ψ̂k(s) = ĝTk s+
1

2
sT M̂ks.

The subproblem (18) has its counterpart in the original variable space:

min
d∈�n

{ψk(d) : ‖D− 1
2

k d‖2 ≤ Δk} (19)

where

ψk(d) = gTk d+
1

2
dTMkd

Ck = D
− 1

2

k · diag(gk) · Jv
k ·D− 1

2

k

Mk = ∇2fk + Ck

dk = D
1
2

k sk

The affine scaling matrix Dk controls the shape of the ellipsoid created by ‖D− 1
2

k d‖ ≤ Δk. With
the choice of D(x) = diag(|v(x)|), the ellipsoid is short in directions corresponding to components
of (xk)i close to zero and |(∇f(xk))i| ≤ 1, and long in other directions. In this way the solution to
the quadratic model (19) leads to small steps along the direction with components of (xk)i close to
zero and |(∇f(xk))i| ≤ 1.

For any given direction d, we consider the following piecewise quadratic approximation of the
objective function (11):

φk(d) = ∇fT
k d+

1

2
dT∇2fkd+ ‖xk + d‖1 − ‖xk‖1 + 1

2
dTCkd (20)

It can be easily verified that φk(d) approximates the change of the objective function with at least
an accuracy of a linear order O(‖d‖).

The nonlinear system (15), derived from the KKT condition, is not differentiable when xi = 0.

We define the differentiable region F def
= {x : x ∈ 
n, (x)i �= 0, 1 ≤ i ≤ n}. If the line segment

from xk to xk +d is a subset of F , the quadratic approximation φk(d) equals the objective function
ψk(d) of the trust region subproblem.

Thus, in the proposed algorithm, we maintain differentiability for all iterates {xk}. A sim-
ple backtracking technique used in interior point methods in (Coleman and Li, 1994, 1996b) can
similarly be used to avoid landing exactly on the points of non-differentiability.

Assume that dk is the solution to the trust region subproblem (19). It is possible that non-
differentiability occurs from xk to xk + dk, i.e., some variables may become zero during the step.
For any descent direction d, let φ∗k[d] denote the minimum value of φk(d) within the trust region,
i.e.,

φ∗k[d]
def
= min

‖αD− 1
2

k d‖2≤Δk

φk(αd)
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Similar to the algorithm in (Coleman and Li, 1996a) for bound constrained minimization, to
ensure global convergence, at each iteration, a sufficient decrease condition needs to be satisfied. In
our implementation, we use the condition below

φk(dk) ≤ βgφ
∗
k[−D−2

k gk]

where 0 < βg < 1 is a given constant. Let pk be the solution to the trust region subproblem (19), to
ensure local quadratic convergence, the asymptotic sufficient decrease condition for local quadratic
convergence is

φk(dk) ≤ βpφ
∗
k[pk]

where 0 < βp < 1 is a given constant.
The proposed trust region algorithm is summarized in Figure 1; this algorithm is an extension

of the algorithm proposed in (Coleman and Li, 1996a) for bound constrained minimization. As in
any typical trust region algorithm, the trust region size needs to be adjusted in each iteration to
ensure a sufficient agreement between the approximating function φk(d) and the original objective
function in (11). Convergence analysis for the proposed algorithm can be established similar to the
analysis in (Coleman and Li, 1996a).

4 Computational Examples for Calibrating Local Volatility

Functions

To illustrate the accuracy and stability of our proposed approach for the local volatility function
calibration, we now consider a few examples, including both synthetic market and real market LVF
calibration examples. In addition, we discuss various computational implementation issues such as
data scaling for the kernel function, initial guess of the local volatility function, and influence of
the regularization parameter ρ.

4.1 Computing Initial Option Values

In order to obtain a solution to the proposed optimization problem (10), we need to calculate
function value and the gradient of the smooth part f(x) of the objective function in (10), which is
given below

f(x)
def
=

1

2

m∑
j=1

(
V 0(K̄j , T̄j;x)− V

0

j

)2
. (21)

Thus an optimization algorithm for solving (10) requires computation of the initial option values
V 0(K̄j , T̄j;x), j = 1, · · · ,m, for any given kernel coefficient vector x.

Initial European option values can be computed from either the Black-Scholes PDE (2) or its
dual PDE (3). Since each evaluation of f(x) requires all initial values V 0((K̄j , T̄j);x), j = 1, · · · ,m,
solving the dual PDE yields all m option values by one PDE solve and thus leads to more efficient
computation, compared to solving the Black-Scholes PDE (2). Therefore we solve the following
dual equation (3) to compute initial option values {V 0

j }mj=1:

∂V 0(K,T )

∂T
− 1

2
σ2(K,T )K2∂

2V 0(K,T )

∂K2
+(r− q)K∂V 0(K,T )

∂K
+ qV 0(K,T ) = 0, ∀K > 0, ∀T > 0.

We use the Crank-Nicolson finite difference method in a finite domain D = [0,Kmax]× [0, Tmax],
where Kmax > 0 is a large value, e.g., three times the initial underlying price, and Tmax =
max({T̄j}). The computation also requires specification of appropriate initial and boundary condi-
tions. For European calls, we have the initial condition V 0(K, 0) = max(S0 −K, 0). We implement

9



Proposed Trust Region Algorithm. Let 0 < μ < 1.

For k = 0, 1, ...

Step 1. Compute fk, gk, Dk, Mk and Ck; define the quadratic model

ψk(d) = gTk d+
1

2
dTMkd.

Step 2. Compute a step dk ∈ F , based on the subproblem:

min
d

{ψk(d) : ‖D− 1
2

k d‖2 ≤ Δk}.

Step 3. Compute

ρfk =
f(xk + dk)− f(xk) + ‖xk + dk‖1 − ‖xk‖1 + 1

2d
T
kCkdk

φk(dk)

Step 4. If ρfk > μ, then set xk+1 = xk + sk. Otherwise set xk+1 = xk.

Step 5. Update Δk as specified below.

Updating Trust Region Size Δk

0 < μ < η < 1, ΛU > ΛL > 0, 0 < γ3 < 1 and 0 < γ0 < γ1 < 1 < γ2

1. If ρfk < 0 then set Δk+1 = min(Δkγ0,ΛU ).

2. If 0 < ρfk < μ then set Δk+1 = min(Δkγk,ΛU ) where γk =

max(γ0, γ1‖D− 1
2

k dk‖2/Δk).

3. Assume ρfk ≥ μ. Set Δk+1 = min(Δkγk,ΛU ) where γk = γ0, if

‖D− 1
2

k dk‖2/‖pk‖2 < γ3 and Δk > ΛL, and γk = max(1, γ2‖D− 1
2

k dk‖2/Δk).

Otherwise γk = 1 if ρfk ≥ η.

Figure 1: A trust region algorithm for minimizing a nonlinear function plus a 1-norm
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the following boundary conditions,

lim
K→+∞

V 0(K,T ) = 0

∂V 0(K,T )

∂T
+ qV 0(K,T ) = 0, at K = 0.

In addition to the function value f(x), a typical optimization algorithm requires the gradient
and even Hessian matrix of f(x).

Let F : 
n → 
m denote the vector of the weighted calibration error below:

Fj(x) =
√
2wj

(
V 0(K̄j , T̄j;x)− V̄ 0

j

)
, j = 1, · · · ,m.

Then

f(x) =
1

2
F (x)TF (x)

Let J(x) be the Jacobian matrix of the first order derivatives of F with respect to x, i.e., J(x) =
∇F (x). In our implementation, we use automatic differentiation, see, e.g., (Coleman and Verma,
1996), to compute the m× n Jacobian matrix J(x). Furthermore the Hessian matrix of f(x) is

∇2f(x) = J(x)T J(x) +

m∑
j=1

Fj(x) · ∇2Fj(x)

Since it is expected that F (x) ≈ 0 when x approaches a solution x∗, we approximate Hessian matrix
of f(x) simply as below:

∇2f(x) ≈ J(x)T J(x) (22)

In the spline kernel representation (9) for the local volatility function, l training vectors {Ki, Ti}li=1

need to be specified in the region D. These training vectors do not necessarily correspond to the
strikes and maturities of the option price observations. In addition, the total number of training
vectors does not have to correspond to the total number of observations. In the proposed optimiza-
tion, we can in fact choose the number of training vectors to be larger than the total number of
observations. The training points that actually play a role in the spline representation in the cali-
brated volatility will be selected through the l1 regularization. However a large number of training
vectors l increase computational cost of the optimization. In our computation, we often choose the
number of training vectors l to be approximately the number of market option price observations
m. In addition, since the value of the local volatility far from the strike prices of the given options
does not affect the initial model option values significantly, we typically place the training points
uniformly in the region [0.7S0, 1.3S0]× [0, Tmax].

4.2 Computing a good starting point

The calibration problem (10) is nonconvex. A judicial choice of the starting point x0 can
increase the probability of finding the global minimizer. In addition, the computational cost of
the optimization algorithm can be greatly reduced with a good starting point. In the context of
local volatility calibration, it is reasonable to choose the initial x0 such that the corresponding
volatility surface given by x0 is as close to the initial implied volatility surface as much as possible.
Suppose that m implied volatilities {σ̄j}mj=1 are given for options with strike and maturity pairs

{(K̄j, T̄j)}mj=1. We choose the initial point x0 such that the following linear systems are satisfied in
the least squares sense:

σ((K̄j , T̄j);x
0) = σ̄j , 1 ≤ j ≤ m (23)
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Since we also want to bound the magnitudes of the coefficients, we determine the starting point by
solving

min
x0∈�l+1

m∑
j=1

((
l∑

i=1

x0iK((K̄j , T̄j), (Ki, Ti)) + x00

)
− σ̄j

)2

(24)

lb ≤ x0 ≤ ub

where lb and ub are lower and upper bounds respectively and {(Ki, Ti)}li=1 are specified training
vectors.

4.3 Reconstructing the Local Volatility Surface from a Synthetic Market

We first illustrate the accuracy and stability of the proposed local volatility function calibration
method using a synthetic example described in (Coleman et al., 1999). We consider a synthetic
market in which the underlying price follows an absolute diffusion process where the local volatility
function σ∗ is given below:

σ∗(S, t) =
σc
S

(25)

with σc = 15. Thus the local volatility function depends only on S. Assume that the initial asset
price S0 = 100, the risk free interest rate r = 0.05, and the dividend rate q = 0.02.

Assume that 22 European call prices from this synthetic market are given; these prices are
computed by the assumed local volatility function diffusion model (25). Eleven of these options
have 0.5 year maturity with strikes [90 : 2 : 110]. The other half of options have 1 year maturity
with the same set of strikes.

We determine the initial guess x0 from the implied volatilities by solving (24) with the lower
bound lb = −1 and the upper bound ub = 1. We set the number of training vectors l = 18 and
place these training points evenly in the significant region; specifically the training vectors are given
by [80 : 5 : 120]× [0.25, 0.75].

Figure 2 compares the calibrated local volatility function with the true synthetic market local
volatility function σ∗(S, t) = σc

S at time t = 0, t = 0.5, and t = 1. The left plots correspond to
the calibration with the regularization parameter ρ = 1. For the right plots, the regularization
parameter ρ = 10−2. These plots demonstrate that the calibrated local volatility function is very
close to the true (synthetic) market local volatility in the depicted region of [70, 130]× [0, 1]. In
addition, the calibrated local volatility is more accurate when t is close to 1. For regularization
parameter ρ = 1, the calibration error

∑m
j=1(Vj − V̄j)

2 equals 7 × 10−4. When the regularization

parameter ρ = 10−2, a smaller calibration error of 1.2× 10−5 is achieved.
As discussed before, for a support vector machine, a smaller number of nonzero coefficients

(support vectors) in the kernel solution representation typically leads to a more stable prediction.
Here we regard SV = {i : |x∗i | ≥ 10−6} as the “ support vectors”. For the calibration example with
ρ = 1, the number of support vector is 8. For ρ = 10−2, the number of support vector is 9. Note
that here the dimension of the coefficient vector x is 19.

To investigate stability of calibration, we add noise in the available market option prices. Specif-
ically we add 1% of random price errors. We let the training points be [80 : 5 : 120]× [0.25, 0.75].
Other parameters setting is the same as the noise-free setting. The optimization algorithm takes
similar number of iterations as before. The calibration error is, not surprisingly, larger. Figure
3 demonstrates the calibrated local volatility function for ρ = 1 and ρ = 0.01 respectively. We
observe that a larger ρ leads to a slightly more stable model calibration, i.e. the local volatility
function seems to experience less change.

To further illustrate the stability of the proposed calibration approach, we increase the number
of training points from 18 to 52; these training points are [70 : 5 : 130]× [0.2 : 0.2 : 0.8]. We choose
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Figure 2: Two-dimensional local volatility function calibration from 22 option prices. Training
points are [80 : 5 : 120] × [0.25, 0.75]. The calibrated local volatility function is graphed at t =
0, 0.5, 1. For left plots, the regularization parameter ρ = 1. For right plots, the regularization
parameter ρ = 0.01
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Figure 3: Local volatility calibrated from 22 noisy option prices. Training vectors: [80 : 5 :
120]× [0.25, 0.75]. For the plots on the left, the regularization parameter ρ = 1. For plots on the
right, the regularization parameter ρ = 0.01
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Figure 4: Calibrated local volatility function with 52 training points [70 : 5 : 130]× [0.2 : 0.2 : 0.8].
The regularization parameter ρ = 1. Left plots are calibrated from prices with no noise. Right
plots are calibrated from noisy prices.

the parameter ρ = 1 and calibrate the local volatility function from both error-free prices and noisy
prices as before. The optimization takes a similar number of iterations and calibration errors are
similar to previous examples. Figure 4 demonstrates the accuracy and stability of local volatility
function calibration. We note that the local volatility surface appears to be fairly close to Figure
3 for the calibration with 18 training points. This example shows that the proposed calibration
approach is relatively insensitive to the number and placement of the training points.

4.4 Calibration from S&P 500 Index Option Data

In spite of its attractive properties (such as market completeness), the calibrated local volatility
function diffusion model often encounters criticisms in practical applications. One criticism is that
the calibrated local volatility function from the market data often have unreasonable oscillations.
In addition, the local volatility functions calibrated within a small time window seem to have
unreasonably large changes.
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Maturity\Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 .172 .157 .144 .133 .118 .104 .100 .101
1 .171 .159 .150 .138 .128 .115 .107 .103
1.5 .169 .160 .151 .142 .133 .124 .119 .113

Table 1: Implied volatilities for Oct 95 S&P 500 index options with strikes in % of the spot price.

Maturity\Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 101.9 76.26 52.76 32.75 16.47 6.02 1.93 .62
1 108 83.6 61.55 41.57 25.41 12.75 5.5 2.13
1.5 117.2 94.37 73.14 53.97 37.33 23.68 14.3 7.65

Table 2: European call prices on October 95 S&P 500 index options with strikes in % of the spot
price.

To investigate how our proposed calibration approach responds to these criticisms, we now con-
sider the local volatility functions calibrated from our proposed method using the S&P 500 market
option data. Specifically, we are interested in the characteristics and stability of the calibrated local
volatility surface. Table 1 presents implied volatilities for S&P 500 index options on October 1995;
this data is also used in (Andersen and Brotherton-Ratcliffe, 1997) and (Coleman et al., 1999). On
this day, the S&P 500 index value S0 = $590, interest rate r = 6%, and dividend rate q = 2.62%.
The corresponding European call prices are listed in Table 2.

We first calibrate the option prices by setting the weights uniformly, i.e., w = [1, 1, · · · , 1]. We
choose 18 training points given by [0.8S0 : 0.05S0 : 1.2S0]× [0.5, 1]. Note that the calibration error
is expected to be much larger than in the previous synthetic market example because the option
prices are almost 6 time larger. Therefore we choose a larger regularization ρ = 10 to balance the
calibration error and model complexity consideration.

The left plot in Figure 6 graphs the calibrated local volatility surface with uniform weights. It
can be observed that the local volatility surface is quite smooth in the graphed region [.7S0, 1.3S0]×
[0, 1.5]. We also note that the calibrated local volatility bears similar shape to that of the implied
volatility.

The relative price errors V̄ (K̄i,T̄i)−V (K̄i,T̄i)
V̄ (K̄i,T̄i)

(in %) is presented in Table 3. From Table 3, the

calibration error is within ±1% for most options. However, for out-of-the money options with
short maturities, the relative errors are larger because these prices are relatively smaller; thus the
contribution of the corresponding squared errors to the objective function f(x) become relatively
negligible. The calibration errors for out-of-the-money call options with short maturities can be
decreased if we allocate a larger weight wj for these terms. For example, we increase the weights
for the four out-of-money options on the top right corner in Table 1 by setting individual weights
as below,

wj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

45 j = 8

4 j = 7, 16

2 j = 15

1 otherwise.

(26)

Table 4 presents the relative calibration errors with individual weights in (26). It can be observed
that errors for out-of-the money call options are now smaller than the errors when the weights are
set uniformly.

Next, we investigate stability of the local volatility calibration for the proposed method by
considering multiple calibrations from market option data within a short time period. We consider
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Figure 5: Implied volatility for S&P 500 index option market data on Oct 1995.
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Figure 6: Calibrated local volatility surface from S&P 500 index option market data on Oct 1995.
Left plot: uniform weights. Right plot: individual weights (26)

Maturity\Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 -.10 0.19 .66 .06 3.55 11.4 -2.37 -51.79
1 -.10 -.06 -.72 -1.08 -2.53 -.76 -2.35 -19.37
1.5 .17 .11 .07 -.10 .19 1.37 -.26 .12

Table 3: Relative calibration error in % for S&P 500 index options on Oct 95; strikes are in % of
the spot and uniform weights are used.

Maturity\Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 -.09 0.20 .61 -.23 2.78 11.95 11.11 -13.39
1 -.11 -.02 -.64 -1.07 -2.79 -.71 2.94 2.74
1.5 .09 .15 .25 .1 .04 .45 -1.29 1.5

Table 4: Relative calibration errors in % for the S&P 500 index options data on October 95 with
individual weights (26)
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02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 .197 .1872 .1645 .1588 .1538 .1398 .1323 .1257

.84 .194 .1801 .1709 .1595 .1576 .1448 .1344 .1324
1.34 .1976 .1908 .1782 .1725 .1649 .1577 .1503 .1402

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 .1952 .1852 .1597 .1582 .1471 .1305 .1228 .1164
1 .201 .1936 .1797 .1689 .1628 .152 .1473 .1394

1.25 .2097 .196 .1894 .1785 .1776 .1673 .1584 .1511

Table 5: Implied volatilities for S&P 500 index options on 02 Mar 2004 and 05 April 2004

02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 141 120.4 81 65 50.9 26.9 12.7 5

.84 148.7 127.1 93 75 62.2 37.4 20 10.9
1.34 164.2 145.8 111.8 96.4 81 57.6 38.6 23

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 138.9 117.9 77.2 62.2 46 21.7 8.8 2.8
1 157.1 138.1 103 85.2 70.6 45.9 29.2 16.3

1.25 167.7 146.4 115.2 97.3 85.3 60.2 40.3 25.6

Table 6: European call prices on S&P 500 Index. On March 2, 2004, the index value S0 = $1149.1.
The index value is S0 = $1150.57 on April 5, 2004
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02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 -.9 -.88 .92 .12 -1.34 .48 -2.35 -5.51

.84 -.16 1.41 -.38 1.86 -.86 .57 3.7 -6.59
1.34 .02 .0 -2.45 -.46 .76 -.92 -1.68 3.57

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 -.42 -.48 1.66 -1.57 -.29 2.92 -3.55 -16.19
1 .09 -.06 -.68 1.13 1.13 1.7 -2.79 -2.09

1.25 -.54 1.29 -1.11 1.07 -1.52 -1.16 .37 3.06

Table 7: Relative calibration error in % for S&P 500 index options on March 2, 2004 and April 5,
2004

02 March 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 -.92 -.93 .78 -.05 -1.51 .63 -.87 -.66

.84 -.14 1.42 -.38 1.86 -.82 .84 4.64 -4.45
1.34 .02 .02 -.19 -.38 .83 -.99 -2.2 1.88

05 April 2004

Maturity\Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 -.45 -.54 1.5 -1.76 -.44 3.72 .95 -3.56
1 .12 -.02 -.62 1.21 1.27 2.13 -1.92 -.84

1.25 -.54 1.29 -1.11 1.06 -1.56 -1.31 -.2 1.24

Table 8: Relative calibration error in % for S&P 500 Index Options on March 2, 2004 and April
5, 2004 calibrated with individual weights

here two sets of S&P 500 options data, chosen from two close by dates, March 2, 2004 and April 5,
2004. On March 2, 2004, the index value S0 = $1149.1. The index value is S0 = $1150.57 on April
5, 2004. The other pricing parameters for the two examples are the same: interest rate r = 1%
and dividend yield q = 1.6%. Table 5 and 6 present the implied volatilities and the corresponding
European call prices. Similarly 18 training points [0.8S0 : 0.05S0 : 1.2S0] × [0.5, 1] are chosen.
Considering the magnitudes of the option prices, we set the regularization parameter ρ = 10.

Table 7 reports the relative calibration error in % with uniform weights. Figure 7 and Figure 8
graph the (1D) local volatilities at the specified time and the (2D) local volatility surface respec-
tively. Comparing the left plots with the right plots, it can be observed that the calibrated local
volatility on March 2, 2004 closely resembles the calibrated local volatility on April 5, 2004. Indeed,
the shape of the calibrated local volatility also resembles closely to that of the observed implied
volatility. The local volatility is higher for the out-of-the- money option.

To improve the calibration accuracy for out-of-the money options, we assign larger weights for
the out-of-the money options on the top right corner as below,
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Figure 7: Calibrated local volatility for the S&P 500 index. Left plots are for the market option
data on March 2, 2004. Right plots are for the option market data on April 5, 2004. Uniform
weights are used.
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Figure 8: Calibrated local volatility surface for the S& P 500 index. Left plot is for market option
data on March 2, 2004. Right plot is from market option data on April 5, 2004. Uniform weights
are used

wj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9 j = 8

4 j = 16, 24

2 j = 7, 15, 23

1 otherwise.

(27)

Table 8 presents the relative calibration error when the weights w are set as in (27). Figures
9 and 10 graph the corresponding calibrated local volatility at the specified time and the 2D local
volatility surface respectively. From Table 8, it can be observed that the calibration error for out-
of-the-money options are significantly improved. In addition, the calibrated local volatility surfaces
remain simple and smooth, closely resemble in shape the calibrated local volatility with uniform
weights. The difference is that now the local volatility around the strikes of the out-of-the-money
options becomes slightly higher.

5 Concluding Remarks

The local volatility function diffusion model for option pricing extends the classical Black-Scholes
constant volatility model. This extension is attractive in practice because it allows for the possibility
of calibrating the observed implied volatility smile and maintains market completeness at the same
time. The ability to calibrate the volatility smile and volatility term structure comes from the
increase in model complexity, i.e., volatility is changed from a constant to a deterministic function
of the asset price and time. Unfortunately, when calibrating a local volatility function in practice,
one often encounters a challenge: the market offers only a limited set of implied volatilities (thus
option prices) which are insufficient in determining an unique local volatility function. In addition,
instead of direct observations of local volatility values, the market offers only option prices which
depend nonlinearly on the local volatility function.

These calibration challenges have hampered practical application of the local volatility function
diffusion model for option pricing and risk management. The calibrated local volatility function
based solely on minimizing calibration errors often lacks credibility because it typically contains
unnatural oscillations. In addition, the calibrated local volatility functions from the market data
can change greatly on different days.
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Figure 9: 2-D calibrated local volatility of S&P 500 index option with individual weights. Left plots
are from option data on March 2, 2004. Right plots are from option data on April 5, 2004
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Figure 10: Calibrated local volatility surface for the S& P 500 index. Left plot is for market option
data on March 2, 2004. Right plot is from market option data on April 5, 2004. Individual weights
are used.

From statistical learning theory, it is well known that a successful function estimation method
based on a finite set of observations requires the balancing act of ensuring accuracy of estimation on
the observed data as well as maintaining simplicity of the model. Unfortunately, the local volatility
calibration problem departs from the classical function estimation problem in that only the option
price observations, rather than local volatility function observations, are provided by the market.

We propose an optimization formulation to calibrate the local volatility function accurately and
stably. We represent a local volatility function based on kernel functions generating splines. Using
a regularization parameter, the proposed objective function balances the calibration accuracy with
the model simplicity. The complexity of the model is controlled by minimizing the 1-norm of the
kernel coefficient vector. In the context of the support vector regression for function estimation
based on a finite observations, this corresponds to minimizing the number of support vectors.

In this paper, we first illustrate the ability of the proposed approach to reconstruct the local
volatility accurately and stably in a synthetic local volatility market. In addition, based on market
S&P 500 option data, we further demonstrate that the calibrated local volatility surface is simple
and resembles in shape the observed implied volatility surface. The stability of the calibration is
illustrated by the fact that the calibrated local volatility functions from option data on closeby
dates show no significant change.

In this paper, we have examined the performance of the proposed method for the liquid S&P 500
standard index options which have relatively short term maturities. Although the proposed method
can definitely be applied to other option markets, including options with long term maturities, it
may be interest to empirically investigate accuracy and stability of the method in those markets.
Moreover, it will be interesting to further investigate and improve computational efficiency of the
proposed optimization method to make it applicable in real time applications.
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A Kernels Generating Splines with an Infinite Number of
Knots

Here we briefly describe kernels generating splines with an infinite number of knots. The presen-
tation follows from discussion in §11.6.2 in Vapnik (1998). Suppose that we want to approximate a
one-dimensional function of one variable s defined on the interval [−b,+∞), 0 < b <∞, by splines
of order d ≥ 0 with infinite number of knots: {ti}, 1 ≤ i <∞. First the one-dimensional variable s
is mapped into a vector u in the feature space of an infinite-dimension:

s→ u = (1, s, · · · , sd, (s− t1)
d
+, · · · , (s− ti)

d
+, · · · )

where

(s− tk)
d
+ =

{
0 if s ≤ tk,

(s− tk)
d if s > tk.

Then the spline has the form:

g(s) =

d∑
i=0

ais
i +

∫ +∞

−b

a(t)(s− t)d+dt,

where ai, i = 0, ..., d and a(t) are coefficients of expansion. The kernel generating the spline can be
obtained by determining the inner product as follows

K(sj , si) =

∫ +∞

−b

(sj − t)d+(si − t)d+dt+

d∑
k=0

skj s
k
i

For the linear spline with d = 1 in particular, we have the following function representation for the
kernel generating spline:

K(sj , si) = 1 + sjsi +
1

2
| sj − si | (sj ∧ si + b)2 +

(sj ∧ si + b)3

3

where sj, si are training data points in the interval [−b,+∞), and sj ∧ si denotes min(sj , si). It
can shown that the above kernel function is twice differentiable.
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