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PRESERVATION OF SCALARIZATION OPTIMAL POINTS IN THE
EMBEDDING TECHNIQUE FOR CONTINUOUS TIME MEAN
VARIANCE OPTIMIZATION*

SHU TONG TSE', PETER A. FORSYTH', AND YUYING LIf

Abstract. A continuous time mean variance (MV) problem optimizes the biobjective criteria
(V, £), representing variance V and expected value &, respectively, of a random variable at the end
of a time horizon 7'. This problem is computationally challenging since the dynamic programming
principle cannot be directly applied to the variance criterion. An embedding technique has been
proposed in [D. Li and W. L. Ng, Math. Finance, 10 (2000), pp. 387-406; X. Y. Zhou and D. Li,
Appl. Math. Optim., 42 (2000), pp. 19-33] to generate the set of MV scalarization optimal points,
which is in general a subset of the MV Pareto optimal points. However, there are a number of
complications when we apply the embedding technique in the context of a numerical algorithm. In
particular, the frontier generated by the embedding technique may contain spurious points which
are not MV optimal. In this paper, we propose a method to eliminate such points, when they exist.
We show that the original MV scalarization optimal objective set is preserved if we consider the
scalarization optimal points (SOPs) with respect to the MV objective set derived from the embedding
technique. Specifically, we establish that these two SOP sets are identical. For illustration, we apply
the proposed method to an optimal trade execution problem, which is solved using a numerical
Hamilton—Jacobi-Bellman PDE approach.
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1. Introduction. This paper addresses the question of how to determine the
mean-variance (MV) Pareto optimal points when applying the embedding technique
[18, 27] to solve a continuous time MV optimization problem. For illustration and
motivation, we begin with the important optimal trade execution problem [4, 19,
14, 3], which is solved using a numerical Hamilton—Jacobi-Bellman (HJB) partial
differential equation (PDE) approach.

When liquidating a large share position, an investment bank is faced with the
following dilemma. If a large sell order is placed on the market, the average execution
price obtained per share will be significantly lower than the pretrade price, due to
liquidity or price impact effects. The obvious alternative is to break up the large sell
order into a number of small orders, and spread these orders over time. This will
minimize the price impact, but expose the bank to the risk that the average price per
share will also be less than the pretrade price, due to the stochastic motion of the
stock price.

The conflicting objectives of maximizing trading revenue (minimizing price im-
pacts) and minimizing risk can be naturally formulated as maximizing & = E[B(T)]
and minimizing V = Var[B(T)], where B(T) is the cash balance at the end of trading
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horizon T, where E[] is the expectation operator, and Var[-] is the variance. In line
with previous work, we assume that trading takes place continuously at a finite rate
[5, 20, 3]. In this approach, risk is measured in terms of variance [12, 11]. Alter-
natively, risk can be measured in terms of quadratic variation [4] and value-at-risk
[14].

Using a standard method for multicriteria optimization, a positive scalarization
combination of the multiple criteria is optimized to obtain Pareto optimal solu-
tions. Typically, dynamic programming is then applied to solve the resulting op-
timal stochastic control problem. Unfortunately, in the case of MV criteria, dynamic
programming cannot be readily applied due to the variance term. An embedding
technique, which uses @ = E[B(T)?] instead of the variance V = Var[B(T)], has
been proposed in [18, 27] to overcome this difficulty.

We note that the optimal strategy computed from the embedding technique [12]
is a precommitment strategy [7], which is not necessarily time consistent. However,
as pointed out in [3], the precommitment strategy corresponds to the situation where
a trading desk optimizes the measured sample mean and variance across a large col-
lection of similar trades. Consequently, the precommitment MV strategy optimizes
trading effectiveness as measured in practice [26]. In addition, optimal trading strate-
gies typically work on a time scale of one day or less, hence the strategies are essentially
precommitment in any case.

Using dynamic programming, a combination of the objectives (Q, &) from the
embedding technique is optimized. This optimization problem can be expressed in
the form of a nonlinear HJIB PDE. We refer to [12] for the details of the numerical
methods used to solve the HJB equation.

In [18, 27], it has been established that an MV scalarization optimal control
is also an optimal control for the embedded problem. Let Yp denote the set of
the original MV scalarization optimal (V,€) objectives. Assume that Yo denotes
the set of the (embedded) MV (V,€&) objective with a suitable combination equal
to an optimal value of the embedding problem for a parameter . The result in
[18, 27| effectively implies that the original MV scalarization optimal set Vp is a
subset of the (embedded) MV objective set Vg generated by an embedding tech-
nique. Points in Vg, which do not correspond to points in Vp, are termed spurious
points.

To the best of our knowledge, conditions under which the converse result holds
have not been established. Thus we are faced with the problem of determining whether
the optimal control computed from the embedding technique is necessarily an opti-
mal control for the original MV scalarization optimization problem. Unfortunately
there can be multiple objective points (V, &) (associated with admissible controls)
which yield the single optimal objective of the embedding technique for a specific
embedding parameter. For example, there can exist two solutions that optimize the
embedding objective function for a given embedding parameter, but achieve differ-
ent MV objectives. Consequently it is not immediately clear how to identify which
MYV points from the embedding technique belong to the original MV optimal set
Yp.

For the optimal trade execution, this problem is compounded since the optimal
control may not be unique. In addition, a numerical algorithm will, in general, com-
pute only a single optimal solution. To see the nonuniqueness of the optimal trade
execution strategy, we note that, due to price impact effects, rapid selling will lower
the average price obtained for the shares. As a trivial example, consider the case where
the desired outcome is a zero variance. This can be achieved by selling all shares at
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an infinite rate at the initial time ¢ = 07. This strategy will result in zero expected
gain (£ = 0) and zero variance (V = 0). Alternatively, the trader could wait until
T—, and then sell all shares at an infinite rate, and achieve the same result. There
are infinitely many such strategies which yield the same Pareto point (£,V) = (0,0).
For more discussion of this, we refer the reader to [12].

In general the MV frontier generated by the embedding technique may contain
spurious points that are not MV Pareto optimal. This gives rise to a number of issues
when we use the embedding method to numerically compute the optimal solution
based on a nonlinear-HJB PDE. Furthermore, it is necessary to devise techniques to
identify when the solutions from the embedding formulation yield Pareto MV optimal
solutions.

In this paper, we provide a method to identify the MV scalarization optimal
points in Yp when using the embedding technique. Let ) denote the MV objective
set achievable by admissible strategies. Thus Vp is the set of MV points which are
scalarization optimal with respect to ). We address the identification problem by
considering the MV scalarization optimal points (SOPs) with respect to the embedded
MYV objective set Vg from the embedding technique. In the context of the numerical
computation, we assume that a numerical algorithm generates a single embedded MV
point (V, &) for each embedding parameter . We denote this computed embedded
objective set by yg. We similarly consider MV SOPs with respect to the computed
MYV objective set yg.

The main contributions of the paper can be summarized as follows.

e We establish that, if an embedded objective point (V, &) is MV scalarization
optimal with respect to the embedded MV objective set )y, it is scalarization
optimal with respect to the achievable MV objective set ) (thus MV Pareto
optimal).

e We prove that the set of the MV scalarization optimal points with respect
to the computed embedded objective set yg is identical to the scalarization

optimal set with respect to the achievable MV objective set ).

e The above two results allow us to develop a simple technique which can
be used to eliminate the potential spurious MV points from the computed
embedded objective set yg.

e We demonstrate the application of these results to the optimal trade execution
problem.

Note that these new mathematical results have a clear geometric interpretation:
a scalarization optimal point with respect to a set corresponds to a point at which a
supporting hyperplane with a positive slope for the set exists. Hence, for the computed
MV set y%, a point (V,€) € y}z is spurious if, at (V,&), there does not exist a
supporting hyperplane for y& with a positive slope. We also emphasize that the
results in this paper are not specific to the optimal trade execution problem. Indeed
they can be applied to any continuous time MV optimization problem. However, for
concreteness, we will first formulate the MV problem specifically for the optimal trade
execution problem. The reader should have no difficulty applying our main results to
other continuous time MV optimization problems.

2. Optimal trade execution model. Optimal trade execution is concerned
with balancing price impact (larger for faster execution) and timing risk (larger for
slower execution). In this section we briefly outline our optimal trade execution model.
We refer readers interested in optimal trade execution in general to [4, 21, 14, 3, 2,
15, 22] and to [12, 25] for more details about our formulation. Let
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S = price of the underlying risky asset,

B = balance of the risk free bank account,

A = number of shares of the underlying asset.
The optimal execution problem over ¢ € [0, 7] has the initial condition
(2-1) S(O) = Sinit, B(O) =0, A(O) = Qinit-
In this article, for concreteness, we consider the selling case where «;,;+ > 0. At
t="T,
(2.2) S=5(T), B=B(T), A= A(T) =0,
where B(T) is the cash generated by selling shares and investing in the risk free bank
account B, with a final liquidation at ¢ = T~ to ensure that A(T") = 0. The objective
of optimal execution is to maximize the expected value of B(T"), while at the same
time minimizing its variance.

In the following, we only consider feedback control trading strategies v(-) that
specify a buying rate v as a function of the current state, i.e., v(-) : (S(¢), B(¢), A(t),t) —
v = v(S(t), B(t), A(t),t) (i.e., Markovian w.r.t. (S,B,A)). Since v is the buying
rate, v < 0 will denote selling, which is the example we consider in this paper.
Note that in using the shorthand notation v(-) for the mapping, and v for the value
v = v(S(t), B(t), A(t), t), the dependence of v on the current state is implicitly as-
sumed.

By definition,

(2.3) dA(t) = v dt.
We assume that due to temporary price impact, selling shares at the rate —v at the
market price S(t) gives the execution price Segzec(v,t) < S(t). It follows that

(2.4) dB(t) = (rB(t) — vSeec(v,t))dt,
where 7 is the risk free rate.

We suppose that the market price of the risky asset S follows a geometric Brow-
nian motion (GBM), where the drift term is modified due to the permanent price
impact of trading [5]:

dS(t) = (n+ g(v))S(t) dt + oS(t) dW(t),
7 is the drift rate,
g(v) is the permanent price impact function,
o is the volatility,
(2.5) W(t) is a Wiener process under the real world measure.

2.1. Trading impact function. We assume that the temporary price impact
scales linearly with the asset price, i.e.,

(2.6) Sewec(v,t) = f(0)S(t),
where
f(v) = (1 + Ky sgn(v)) explre sgn(v) |v] ],
ks = the bid-ask spread parameter,
K¢ = the temporary price impact factor,
(2.7) B = the price impact exponent.
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Here we assume 0 < kg < 1, so that Segzec(v,t) > 0, regardless of the magnitude of v.
For various studies which suggest the form (2.7), see [5, 19, 23].
The permanent price impact function g(v) is assumed to be of the form

g(’U) = K’Pva

(2.8) kp = the permanent price impact factor.

As explained in [13], this form of permanent price impact function eliminates the
possibility of round-trip price manipulation [5, 17, 2, 15].

2.2. Liquidation value. Recall that we restrict attention to the selling case in
this paper. In this case, we assume that B(T') = B(T~). Effectively, this penalizes the
liquidation strategy if A(T~) # 0, since these remaining shares are simply discarded.
The optimal strategy should avoid any path where A(T~) # 0. This formulation
also allows for the (remote) possibility that it may be optimal to simply discard any
remaining unsold shares at the end of trading [16].

Remark 2.1 (discarding shares). Since B(T') = B(T ™), this allows for shares to
be discarded at the terminal instant (we do not gain any revenue from these shares).
Any strategy which instantaneously discards a finite number of shares at any point
in [0,T) cannot be superior to the same strategy which discards the same number of
shares at t = T'. Hence allowing instantaneous discarding of a finite number of shares
at the terminal time produces the same Pareto points as any strategy which allows for
discarding shares in [0,7"). Effectively this means that the Pareto points computed
allowing discarding shares at the terminal time are the same Pareto points as would
be computed using the admissible set allowing for discarding shares at any time in
[0,T).

We now introduce some additional notation for subsequent presentation. We use
X(t) = (S(t),B(t), A(t)) to denote the multidimensional process and = = (s,b, )
to denote a state. We will also use the notation X(t) = x as a shorthand for
(S(t),B(t), A(t)) = (s,b,«). Let Ej(t) [B(T)] be the expectation of B(T') conditional
on the initial state (z,t) and on the control v(:) : (z,t) — v = v(x,t). More specifi-
cally, we denote

E[ - ] = expectation operator,

v(_)[ - ]=E[ - |X(t) = z] when observed at time ¢ with v(-) being the strategy
and the stochastic process X (t) = (S(¢), B(t), A(t)) being given by

(2.9) (2.3-2.5).

Similarly we define Vari&’_f) [B(T)] as the variance of B(T') conditional on the initial
state (x,t) and the control v(-). In addition we introduce the following definitions.

DEFINITION 2.1. A strategy v(-) : (z,t) — v = v(x,t) is said to be admissible if
v(x,t) € [Umin, 0] and v(z,t) = 0 when A(t) = 0, where vy < 0. We also require
that

(2.10) - /O U X (0.8 di < an

Note that in view of Remark 2.1, since we also permit discarding shares at the
terminal time, the Pareto points computed will also be the same Pareto points which
allow for instantaneously discarding a finite number of shares at any time in [0, 7).

Remark 2.2 (admissible strategies). The lower bound constraint is not practically
restrictive since the continuous trading model is only a proxy for actual discrete trades
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in the real market practice; the continuous trading rate can be considered to be an
averaging of discrete trades over a finite interval. Indeed a continuous model breaks
down for extremely small time periods. Our numerical example sets vy, such that
one sixth of the average daily volume is liquidated in ~ 10~ sec. Trading rates this
large cannot be observed in practice using any reasonable averaging interval for a
continuous trading rate model.
Remark 2.3 (prohibition of price manipulation strategies). Note that we require

v < 0 to prohibit any strategies which involve buying during the course of completing
a sell order. Intermediate buying during a sell order is only optimal if the stochastic
model admits price manipulation strategies. For the time periods of interest (e.g.,
less than one day) the drift term 7 in (2.5) can be considered negligible. From a
mathematical point of view, price manipulation strategies are possible if a round-trip
trade results in positive expected revenues [2, 15] when the drift term n = 0. As
pointed out in [2, 15], this is dangerous and unstable in the world of high-frequency
trading, and quite possibly illegal. Our requirement that v < 0 for a sell order satisfies
one of the regularity conditions for an admissible strategy discussed in [15]. Trading
algorithms which violate this condition may result in the following observed unstable
market effects due to the interaction of trading algorithms amongst high-frequency
traders (HFTs) [10]:

“...HFTs began to quickly buy and then resell contracts to each

other generating a “hot-potato” volume effect as the same positions

were rapidly passed back and forth. Between 2:45:13 and 2:45:27,

HFTs traded over 27,000 contracts, which accounted for about 49

percent of the total trading volume, while buying only about 200

additional contracts net.”

3. Mean variance Pareto optimal set. In this paper, we characterize opti-
mality in terms of the mean and variance values achieved by admissible strategies.
We first characterize Pareto optimality and scalarization optimization based on the
MYV objective sets.

DEFINITION 3.1. Let (29,0) = (X (t =0),t = 0) denote the initial state. Let

(3.1) y= {(Varjg’)o[B(T)],Efé’_’)O[B(T)]) :v() admissible}
denote the achievable MV objective set and y @mote its closure.

DEFINITION 3.2. An MV point (V,Ex) € YV is a Pareto (optimal) point if there
exists no admissible strategy v(-) such that

EZB(T)] >

Ex
(3.2) Vari?h’)O[B(T)] <V,
and at least one of the inequalities in (3.2) is strict. We denote the set of Pareto
points by P C Y.

This definition essentially states that the MV tradeoff of a Pareto point cannot
be strictly dominated by that of any admissible strategy.

Although the above definition is economically intuitive, solving for P is a difficult
problem since it requires simultaneously optimizing two (conflicting) criteria. A stan-
dard scalarization method combines the two criteria into a single objective, using a
weighted sum of the two criteria. Specifically, we use a positive weighting parameter
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> 0, and solve the scalarization optimization problem

(33) Plati) = int {uvarst )] - £ B .
DEFINITION 3.3. For u > 0, let

3.4 =V, eYV: iV, —E = inf puV-£&; ,

(3.4) Vp(u) {( )RS A }

where Y denotes the closure of Y. We denote the MV scalarization optimal set as

(3.5) Ye=J Yru-

n>0

In the context of optimal trade execution, our objective is to determine the set of
points Vp.

Remark 3.1 (optimal strategies). In practical application, we are also interested
in the optimal strategies v(-) which generate Vp. However, for the purposes of ad-
dressing the issues which arise using the embedding technique [27, 18] as part of a
numerical algorithm, we define the optimal trade execution problem as determining
the set Vp.

The original scalarization optimal set )Vp is with respect to the achievable objec-
tive set ). Since the embedding method and its numerical implementation generate
a subset of the achievable MV objectives, we also consider scalarization optimality
with respect to a subset.

DEFINITION 3.4. Let X be a nonempty subset of Y. We define

(3.6) Su(X) = {(V*,g*) EX  pwV — & = (v,lg)fex wy — 5} ,
where X is the closure of X. We call a point in S,(X) an SOP w.r.t. (X, ).
We also define

(3.7) S(X) = {(Vs, &) : Vs, &) is an SOP w.r.t. (X, ) for some > 0}.

We refer to Vo, &) € S(X) as an SOP w.r.t. X.

Remark 3.2. Note that Definition 3.4 generalizes Definition 3.3 in the sense that
Su(Y) = Vp(uy and S(Y) = Vp.

Remark 3.3. A point (Vy, &) € S, (X) has the geometric interpretation that, at
(Vo, &o), there exists a supporting hyperplane [9] for X with positive slope p.

In general, every point in Vp(,) is in the Pareto optimal set P but the converse
may not hold. If the achievable objective set ) is convex, however, then every point in
P is in Yp(, for some p > 0. This paper is concerned with determining Uu>0 VP(u)-
The more difficult problem of determining the entire set P, in the most general case,
is beyond the scope of this paper.

As pointed out in [18, 27], due to the variance term, the value function P(x,t; 1)
is not amenable to solution by means of dynamic programming. To overcome this
difficulty, a technique is proposed in [18, 27] to embed the objective in (3.3) in the
value function below (parameterized by ~)

(38) Qe.t0) = int { B 1B(T) 27271,
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which can be solved by dynamic programming. Note that the strategy v(-) may not
be time consistent since v = (¢, z) [8], i.e., v depends on the initial state.

n [27, 18], it has been shown that an optimal control for the value function
P(z,t;p) is an optimal solution for the value function Q(z,t;y). We note that an
optimal control may not be attained if ) is not a closed set. In this paper, we discuss
optimality with respect to the closed objective set. To be precise, we consider the set
of points Vp, which include the limit points of the Pareto optimal points of admissible
strategies.

In [1] an alternative to the embedding approach is suggested, which solves problem
(3.4) directly, for a fixed value of p. The approach in [1] reformulates the problem as
a nested minimization problem. The inner minimization requires solution of an HJB
equation, with v as the control. This HJB equation contains an additional control,
which is the variable for the outer minimization problem. This is perhaps more
efficient if it is desired to determine a single point Vp(,). However, the embedding
technique described here is undoubtedly more efficient if it is of interest to generate a
large number of points in Vp (i.e., draw the efficient frontier), which is the objective of
this article. This is simply due to the fact that, when using the embedding technique
in general, a single point on the frontier is generated with a single HJB equation solve.
In addition, if } is not convex, then Vp(,) may not be a singleton. In this case, the
method in [1] would (apparently) generate only a single point in Vp(,). As a result,
varying p and using the method in [1] may not generate all the points in Yp. The
method we suggest in this paper is theoretically capable of generating all the points
in Vp. In fact, in our particular optimal trade execution application, we can compute
the entire efficient frontier using a single HJB solve [12].

4. Preservation of SOPs using the embedded MV objective set. We
note that the embedding optimization problem (3.8) is equivalent to

ivr(l_f){Ej(’?) [(B(T)?)] - ij(’.t)[(B(T))]}-

Hence (3.8) is optimization using a scalar combination of the criteria (Q, ), i.e.,

(4.1) n(qf) {Q—*yg},
where Q = E;\[B(T)?] and € = E}[B(T)],

To see how the mean and variance are embedded in the scalarization optimization

problem (3.8), we note that, from V = Vari&’f) [B(T)],

(4.2) V4 E2—AE
= Var®| [B(T)] + (EZ [B(D)® — vEZ [B(D)
= BZ[B(T)) — (B BT + (B B — vE2 [B(T)]
- E“ [B(T)? — yB(T)]

(4.3) - E:(?)KB(T) — /2% /A,

Since adding a constant term —+2/4 does not change the solution of an optimiza-
tion problem, the objective in problem (3.8) can be regarded as Vari&’_f) [B(T)] +

(Eff(t) [B(T)])? VEU( )[ (T)]. In terms of the mean and variance (V, &) of B(T), the
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objective is simply V + £2 — v£. Thus we define the embedded MV objective set to
be the set of mean and variance which yields this optimal objective value.
DEFINITION 4.1. The embedded MV objective set from problem (3.8) is

(4.4) Yo= U Yow

—oo<y<+o0

where
4.5 = LENEY V. +EX—AE, = inf E2_~E Y.
(4.5) Yo {(V, )EY Vu+E — (V}g)eyV+ v }

For the subsequent analysis, we make the following technical assumption on the
achievable objective set ).

Assumption 4.1 (bounded properties of ). We assume that ) is a nonempty
subset of {(V,€) € R?:V > 0,€ < Cg} for some constant C.

Remark 4.1. In the context of our optimal execution problem it can be easily
proven that 0 < & < Cg [24], which is a natural result of forbidding a short position
(Definition 2.1) when selling. The assumption V > 0 always holds since the variance
is nonnegative. Although in our context 0 < & < Cg, we need only require that
&€ < Cg in the following.

Assumption 4.1 immediately leads to the following technical lemmas.

LEMMA 4.2. Suppose Assumption 4.1 holds. For any ju > 0, Vp(, is nonempty,
i.e., there exists (Vo, o) € Ypu)y €V such that

4.6 Vo— & = inf yV-£.
(4.6) o —& = nf p

Proof. Since p > 0,& < Cg, and V > 0 for any (V,€) € )V, the objective function
wY — &€ is bounded below. Hence the result immediately follows. d

Remark 4.2. If X is a nonempty subset of Y, then for any pu > 0, S,(X) is
nonempty by a trivial generalization of Lemma 4.2.

LEMMA 4.3. Suppose Assumption 4.1 holds. If (V',E') € Y, then

4.7 V&> inf uV-E&.
(4.7) 0 > infp

Similarly,

4.8 V4 E2 -7 > inf V+E?—AE.
(4.8) + 1€ > Jnf + y

Proof. From Lemma 4.2, inf(y gycy pV — & exists. Similarly, writing (4.8) as
V+(E—v/2)*—~?/4, and using Assumption 4.1 implies that inf () ¢)cy V+E2—~€ also
exists. The results immediately follow since the objective functions are continuous.
d

Next we present a characterization of the main property of the embedding tech-
nique given in [18, 27] in terms of the achievable objective set.

THEOREM 4.4. Suppose Assumption 4.1 holds. Let (Vo,E) € YV and p > 0 be
such that

4.9 Vo — & = inf V-£&, e, Vo,&)E€E .
(4.9) o= &= nf u i.e., (Vo,&0) € Yp(u

Then
(4.10) Vo+ &2 —~& = (V%)feyv +&82—1E, e, Vo0,&) € Vo,
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where

1

We include the proof of this result from [18, 27] below, since we will use some of
the similar steps to prove our new results.
Proof. Assume to the contrary that (4.10) does not hold. Then, by Lemma 4.3,

(4.12) (Vi?)fey V4 E2— 7€ < Vo + &3 —v&.

Then there exists (V, &) € Y such that
Ve +E2—4€, < V0+5§ —7&o.

Rearranging and multiplying by p > 0 gives

(4.13) p(Vi + €2 — Vo + &) — yl(& — &) < 0.
Define the function
(4.14) (v, e) = pv — pe? — e.
Note that
(4.15) (v +e?e) = pv + pe? — pe? —e = —e
and let
i i
(4.16) mh = 88%, T = 86% .

Since (v, e) is a concave quadratic in (v, e), we have,

(v 4+ Av, e+ Ae) < (v, e) + 7k (v, e) Av + 7wt (v, e) Ae
(4.17) =7"(v,e) + plv — (1 4 2pe)Ae.

A direct application of (4.17) gives
T (Ve + E2,E) <t (Vo + €5, €0) + (Ve + E2 = Vo + &) — (1 + 2u&0) (Ex — o)
=7 Vo+&5,80) + p(Ve +E2 = Vo + &) — vl — &)
(4.18) <7 Vo + &2, &),

where we have used (4.11) in the equality and (4.13) in the last inequality.
By (4.15), the strict inequality (4.18) means that

Wi — Ex < Vo — &,

which contradicts (4.9). Hence (4.10) holds. o

It is immediate that the following holds.

COROLLARY 4.5. Suppose Assumption 4.1 holds. Then Yp C YVg.

Now we are ready to establish that the embedding technique preserves the SOP
set Vp.

LEMMA 4.6. Assume Assumption 4.1 holds. For any pu > 0,

4.19 inf pV—-E&= inf V=&
(4.19) (v,s)ey” (V',£)€Vq :
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Proof. Let (Vy, &) be an SOP w.r.t. (Y, ). By Corollary 4.5, Yp C Vg, hence
(Vo,&0) € Yg. Consequently,

4.20 Vo—E = inf puy-—-£&> inf V' —£.
( ) #vo 0 (V,I?)eyu o (V/,gfl)eyqﬂ

Equality follows since the reverse inequality

4.21 inf V-£< inf V&
( ) (Vf)e)/u T (VL,E)EYg .

holds by Vg C V. O
THEOREM 4.7. Suppose Assumption 4.1 holds. The SOPs w.r.t. Yg are the same
as the SOPs w.r.t. Y, i.e.,

(4.22) S(Vq) =Ypr=8().

Proof. From Corollary 4.5, we have that Yp C YVg. By definition, Yo C ).
Suppose (Vy, &) € S(Vg). Hence there exists 1 > 0 such that

4.23 Vo— &= inf yV-E£.
(4.23) Wo—E = f u

Since (Vy, &) € Y, then from Lemma 4.6,

4.24 Vo— &)= inf yV-E£.
(4.24) Wo—& = inf u

Thus Vo, &) € S(V). On the other hand, suppose (Vo, &) € S(V). Then
4.25 Vo—& = inf pv—-=¢&.
(4.25) Wo—& = inf u

Since S(Y) = Vp C Vg, we have (Vy, &) € V. From Lemma 4.6,

4.2 —& = inf —
(4.26) o — & (V,g)leyQuV £,

hence Vo, &) € S(Vg). o
Before concluding this section, we establish a uniqueness property: if (V,€) is an
SOP with respect to Vg for some embedding parameter v, then (V, &) is the unique

point in YVg()-

THEOREM 4.8. Suppose Assumption 4.1 holds. If (V,€) € S(Vq), then there
exists v such that (V,€) € Vo(y) and Vg is a singleton.

Proof. Let (Vi, &) be an SOP w.r.t. Vg for some p*. By Lemma 4.6, (V,,&,) €
Yp(u+y- Hence, following Theorem 4.4, there exists v* such that

1
(4.27) (Vs, &) € Vg(y+), Where " = o + 2&..

Suppose there is another (Vo,&) € Yg(4+). Since both points are in YVg(4-) we have
that

4.28 Vit & =7 E=Vo+ & -7 & = inf V4+E 7€,
0
v,£)ey

Hence

(4.29) Vo+E2— (Vu+E2) =" (€ —E) =0.
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Consider the function 7 (v, e) = p*v — p*e? — e as in Theorem 4.4. Following similar
steps as in the proof of Theorem 4.4, we obtain (using (4.27) and (4.29))
™ (Vo + &2, &)
ST Ve + E2E)+ W Vo +E2— (Ve +E2)) — (1+2u%E) (Eo — &)
=T W+ E2E) + Vo + E2 — (Vu + E2) — 7 (&0 — &.))
(4.30) =" (V. +E2,E,) .

Recalling that 7# (v + €2, ¢) = p*v — e, then (4.30) yields

(4.31) Vo — o < Ve — &,

Since (V, &) € Vp(u+) and Vo, &) € Y,

(4.32) WV — & = (v,i?)feyu*v — & < Vo — &.
Hence

(4.33) WV —E = 1wV —Es .

Rewrite (4.29) and (4.33) as

(4.34) 1w Ve = Vo) — (Ex — &) =0,
(4.35) Vi = Vo) + (& = E0)(Ex +E —7") =0,
Using (4.27), (4.35) becomes

(4.36) Ve = Vo) + (Ec—&0)(Eo—E—1/u")=0.

Solving (4.34) and (4.36) for (£, — &) gives the unique solution & = & and
V* - VO. |
Remark 4.3 (properties of V(). For a fixed v, Vg, is either
e a singleton containing an SOP w.r.t. Vg, or
e a set which may contain any number of elements. If any of these elements are
SOP w.r.t. Yo, then these elements are singleton members of Vg (v'), 7' # 7.
Moreover, for (Vi, &) € S(Vg), given the optimal objective value (V. + &2 —~E.),
Theorem 4.8 allows us to uniquely reconstruct V, given £.. Note that &, can be
easily determined from the optimal control of problem (4.1). We further note that
the optimal control v(-) which generates a given point in S(Yg) may not be unique.

5. Preservation of SOPs using the computed embedded MYV set. In
section 4, we have established that the set VYp of MV SOPs is preserved using the
embedding method in the sense that the set of embedded MV points, which yield
scalarization optimal values for the embedded optimization problems, is identical to
Yp. This is an interesting theoretical property illustrating the ability of the embedding
method to generate the original MV SOP set Vp. A spurious point corresponds to
a point in Vg at which there does not exist a supporting hyperplane with positive
slope supporting Vg. However, this property does not have immediate practical use
in computation since the achievable objective set ) is not available in the context
of computation.

Furthermore, for each embedding parameter —oco < v < +00, we can only expect
a numerical algorithm to generate a single embedded MV point (V, &) € Vqg. Specif-
ically, a possible computational technique to determine the embedded MV set is as
follows:
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(a) for each embedding parameter —oo < v < +o00, solve the embedding opti-
mization problem (3.8) to determine a single optimal control v (-);
(b) compute the corresponding MV point (V7, £7);
(¢) determine the computed MV set
(5.1) o= U vy,
—oco<y<+0oo
In general only one out of possibly many optimal controls (which all minimize V +
&% — ~€) is selected by the above algorithm. We denote the subset of Vg generated
by this algorithm as yg. In view of Remark 4.3 we define yg as follows.
DEFINITION 5.1 (numerical Vg). Let ygm be a singleton subset of Vg (~). Specif-
ically ygm contains either
e the unique single point which is an SOP w.r.t. Yq if Vq(~) is the singleton
set containing an SOP w.r.t. Vg, or

e an arbitrarily selected single point of Vg otherwise.
The computed MV objective set is then defined as

t t _ * Oox

—oco<y<+0oo —oco<y<+0oo
Following Definition 5.1, we immediately have the following properties for y&;.
LEMMA 5.2. Suppose Assumption 4.1 holds. Then ygm has the following prop-

erties:

(a) Y € Vo:
(b) S(Vg) € Vs
(c) Yp C V).
Proof. From Definition 5.1, y(g C Vg clearly holds.
Assume that (V*,£%) € S(Vo); applying Theorem 4.8, then

vy such that (V*, &%) € Vo)

which contains a single point. Using Definition 5.1, (V*,£*) € yg. Thus S(Vg) C yg.

In addition, Theorem 4.7 implies that Yp = S()g). Using (b), we conclude (c)
holds. O

We now show that it is possible to identify and remove spurious points from only
the computed MV points yg,. Similarly to the approach with respect to Vg, the
main idea is to consider an SOP with respect to the computed MV set yg. We first
establish an auxiliary lemma.

LEMMA 5.3. Suppose Assumption 4.1 holds. For any p > 0,

3 * !/ !/

(5.2) (V)él)lqu nwy —& (v',clsr/l)feyj? uwy' = £

Proof. Let Vo, &) € Vg be an SOP w.r.t. (Yo, p). By Theorem 4.8, there exists
7, such that (Vo,&) € Vo) and Vg, is a singleton. Hence (Vo,&) € y(g by
Lemma 5.2.

This implies that

Vo—E& = inf puV-—-E> inf pV-£&.
pro 0 (V,S)Gyceu (V,£9ev)

The reverse inequality holds since y(g C Vo a
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Next we establish that SOP with respect to yZ? preserves SOP with respect to ).
THEOREM 5.4. Suppose Assumption 4.1 holds. Then

(5.3) SVL) =Yr=38().

Proof. By Theorem 4.7, we know that S(Jg) = Yp. Hence we need only show
that S(V)) = S(Vg)-
Suppose Vo, &) € S(Vg). Hence there exists p1 > 0 such that

4 —& = inf -£.
(5.4) o — & (v,g)leyQMV &

From Lemma 5.2, S(Vg) C y&, hence (Vy, &) € y(g. From Lemma 5.3,

(5.5) Wo—E = inf pV-¢,
v.&)ev),

and (Vo, &) € S(V)).
On the other hand, suppose Vo, &) € S(yg). Then

(5.6) MVO - 50 = inf /J,V -£.
v.&)ev],

From Lemma 5.2, (Vy, &) € Vg. Following Lemma 5.3,

(5.7) wo — &o (Vér)lng wy =&,
hence Vo, &) € S(Vg). O

Theorem 5.4 implies that the set S (y(g) is identical to Yp which contains all the
MV Pareto points that can be obtained by scalarization of the original MV Pareto
problem. This is, of course, the best that can be done, given that the embedded
technique is designed to solve the scalarization optimization problem for the MV
Pareto problem. Following Theorem 5.4, an MV point (V, &) € yg is spurious if there
exists no supporting hyperplane at (V, £) with a positive slope for y(g.

Remark 5.1 (significance of Theorem 5.4). A numerical algorithm can be used to
generate yg. The set of points S (yg) is thus identical to the the set of Pareto points
Yp that is obtained by scalarization of the original MV Pareto problem.

6. SOP for a finite set. Finally we establish a property for SOPs for a set
containing a finite number of points. This result will be used in the postprocessing
technique described in section 7.2 to identify SOPs w.r.t. ) based on an approximate
MV set, which has only a finite number of points.

Assume that A = {(V;,&;) :i=1,...,N} is a finite set and conv A denotes the
convex hull of A. Define C*(A) as the upper-left boundary of conv A, i.e.,

(6.1)
C*(A) = {(V*,&*) : (V*,—&*) is a minimal element of conv{(V,-&): (V,€) € A}}.

Here a minimal element is with respect to the componentwise inequality; see, e.g.,
[9]. We show next that S(A) can be obtained from the upper-left boundary C*(A) of
conv A.

THEOREM 6.1. Assume that the set A = {(V;,&) : i =1,...,N} has a finite
number of points. Let C*(A) be the upper-left boundary of conv A defined in (6.1).
Then

(6.2) S(A) = C*(A) N A.
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Proof. Assume (V*,&*) € C*(A) N A. Since the set conv{(V,-&): (V,€) e A}
is convex, and A has a finite number of points, following a dual characterization of
minimal elements (see, e.g., [9]), there exists u > 0, such that (V*,£*) solves

(6.3) inf wy— €
(V,—€)econv{(V,-&): (V,£)e A}

Since (V*,£*) € A, this implies that (V*, ) solves

inf v - €.
weea”

Consequently (V*,£*) € S(A).
Conversely, let (V*,£*) € S(A). This implies that (V*,£*) € A and (V*,E*)
solves

inf V- &
wHea”

for some p > 0. Since A has a finite number of points, it can be easily shown (by
contradiction) that (V*,£*) solves

inf W
(V,—&)econv{(V,—E): (V,£)€ A}

Following the sufficient condition for a minimal element of a set, as given in
9], (V*,&*) € C*(A). Consequently (V*,&*) € C*(A) N A. This completes the
proof. |

7. Optimal trade execution: A computational example. In this section
we use the optimal trade execution problem, with the objective of determining Vp,
to illustrate how to use the mathematical properties established in sections 4 and 5
to postprocess an efficient frontier computed using the embedding technique. This
problem is introduced in section 2.

7.1. Computing y(gh). The computed MV set yé(,y) can be determined by
solving an HJB PDE and then running Monte Carlo simulations as follows. We refer
readers to [25] for more detail. Let 7 =T — ¢ and

(7.1) V(s,b,a,;7) = ir(;f){Ej(vF) [(B(T) - g)g] }

Using standard dynamic programming, V (s, b, a, 7;7y) is the viscosity solution to
the HJB PDE:

2.2
(7.2) V. = %VSS +nsVs +rbVy + [inf . { —vsf(v)Vy + vVy + g(v)Vs} ,
VE|VUmin,
with the initial condition
2
(7.3) V(s,b,a,0;7) = <b - %) .

We solve (7.2) using a finite difference method as described in [12].



1542 SHU TONG TSE, PETER A. FORSYTH, AND YUYING LI

Let the optimal control of problem (7.2) be denoted by vj(:). Once we have
determined v3(-), we can use Monte Carlo simulations to compute the embedded MV
points:

0 ,0
(7.4) (V2,E5) = (varjg(,) (B(D)], B2, [B(T)D .

Remark 7.1 (nonunique controls in optimal trade execution). We can see imme-
diately from (7.2) that if Vi, = V, =V, = 0 at (s, b, a, 7), then the optimal control can
be arbitrary at this point. In fact, the numerical results in [12] demonstrate the exis-
tence of large regions where the value function is flat, suggesting nonunique optimal
strategies which give essentially the same value of the objective function.

7.2. Numerical estimates of )722. Our theoretical result in Theorem 5.4 es-
tablishes that S (y(g) = S§()). This implies that we can determine whether an MV
point (V,€) is in Yp by checking whether it is an SOP with respect to yg. This
requires that the entire set y& is available. In practice, however, we can compute
(V3,&3) only for a finite number of v € (—o0, 00) values.

More precisely, y& needs to be approximated in two aspects:

a) VI | can be computed for only a finite number of + values, giving rise to a
Q(Y)
finite set error. In other words, we compute only a (finite) subset of y&;
b) for a fixed 7, VI needs to be approximated by a sequence converging to
QM)
ygm, due to PDE discretization errors, Monte Carlo sampling error, and
time-stepping errors.
We denote by (yé)k an approximation computed with a fixed grid size for v, a fixed
mesh size (for the numerical PDE solve), and a fixed number of Monte Carlo simu-
lations (using a fixed time step to solve the SDEs). The solution for (yg)k“ uses a

finer grid for =y, a finer mesh for the PDE, increased Monte Carlo simulations, and
time steps.

In practice, we can compute a sequence of approximations (yg)k and generate
S ((yg)k) We expect convergence to occur, in the sense that the difference between
S( (yg)kﬂ) and S ((yg)k) is sufficiently small for sufficiently large k. We also assume
that for k sufficiently large, S (y(g) can be arbitrarily well approximated by S( (yj;,)k)
Provided we use a convergent method to solve the HJB PDE, and an increasing
number of Monte Carlo simulations on each refinement level k, we do not expect
that the PDE discretization and the Monte Carlo errors are of much concern. More
importantly, it is not obvious what properties are required to ensure that the finite
sampling of the ~ values (the finite set error) will produce a good approximation to
S (y(g) as k becomes large. This will require a precise definition of convergence in
terms of sets, and a precise requirement on the sampling method for the set of ~
values. We conjecture that any reasonable sampling method (i.e., a systematically
refined uniform grid) for v will produce a good approximation as k becomes large,
but we have no proof of this. We leave these important questions to future work.

7.3. Relevant range for «. For the case of optimal trade execution with buying
rate v < 0, we have 0 < £ < Cg, with Cg a positive constant and v € (0,00). In
practice we are only interested in a subrange of 7. Recall that for MV SOPs with
respect to ),

1

(7.5) Y= ; + 2Ev*(-) [B(T)] )
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—— upper left boundary of convex hull
e S(A)
A\ S(A)

Fia. 1. Gwen a finite set of points A, the solid line shows the upper left boundary of the convex
hull of A. The solid dots are the SOPs S(A).

TABLE 1
Parameter values for the optimal trade execution example.

o n T Kp Kt Ks Sinit Ainit B T Umin
02100 | 00|00 ]|3x107°% | 0.0 100 1.0 0.5 | 1/250 —106/T

where 1/p can be regarded as a risk aversion coefficient. If p is large, then v ~
2B,y [B(T)]. Large p would correspond to the lower end of the MV frontier. In
practice, we are only interested in strategies which do not have too large a price
impact. This roughly corresponds to strategies with the expected cash flow per share
at least 99% of the arrival price. If Sy is the arrival price, then the smallest value
of v of interest would thus typically be v ~ 2 x (.995p). The upper end of the
MYV frontier corresponds to trading at a constant rate which completes the trade.
This constant trading strategy is known to maximize the expected cash flow under
typical assumptions. Since we are only interested in practically relevant strategies,
we consider v < 4 x Sp. Hence a range of v € [2 % (.995)),4 * Sp] is a good estimate
for the useful section of the efficient frontier.

7.4. Computing 8((3;5)’“) . As discussed in section 7.2, we assume that S(y;)
can be identified by S((y;)k) as k — oo. Note however that (yg)k is a discrete
set. We now describe an approach for determining S ((yg)k), based on the result in
Theorem 6.1.

Standard algorithms exist for generating the (vertices of the) convex hull of a
finite set of points; see, e.g., [6]. Consequently the upper-left boundary C*(A) of
the convex hull conv.A can be determined by starting from the leftmost vertex of
conv.A and ending at the topmost vertex of conv.A by going clockwise. This process
is illustrated in Figure 1. (If there are multiple leftmost/topmost vertices, the upper-
left convex hull starts with the topmost leftmost vertex and ends with the rightmost
topmost vertex.)

7.5. Numerical results. Recall that (yg)k denotes an approximation to y(g,
computed using a finite number of values of v and a finite mesh size, where k is the
refinement index. We then apply the postprocessing step (described in section 7.4) to
(yg)k. This leads to determination of S ((yg)k ), using Theorem 6.1. If convergence
occurs, this will provide an increasingly accurate estimate of S()) as k increases. We
illustrate this by a numerical example.

Table 1 summarizes the parameter values in our example. The price impact factor
k¢ corresponds roughly to liquidating one-sixth of the daily trading volume of a large-
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tion.

Fic. 2. Plot of (JJé)’IC for parameters in Table 1. Expected value refers to the average execution
price per share. The initial share price is 100. Subplot (a) shows S((yé)k) for two different re-
finement levels. Subplot (b) shows the same Pareto points plotted as expected value versus standard
deviation. Note that the efficient frontier for refinement level zero visually coincides with that for
refinement level one. Further refinement steps show a negligible change. This suggests convergence
of the numerical solution and the frontier.

TABLE 2
Computational grid for both solving HIB PDE equation (7.1) and running Monte Carlo simu-
lations. There is only one node in the b direction since we use a similarity reduction to eliminate a
variable. We refer an interested reader to [25] for more details.

Refine | Time steps | s nodes | b nodes | a nodes | v nodes | MC sample | ~ nodes
level size
0 2000 369 1 11 8 10,000 65
1 4000 737 1 21 15 40,000 129

cap stock; see [25] for how this estimation is done. The estimate in [25] uses 8 = 1.
For our value of 3 = 0.5, the calculation needs to be modified slightly.

Subplot (a) in Figure 2 graphs (y(g)k for two grid refinement levels (corresponding
to parameters in Table 2). We note that the efficient frontier for refinement level zero
visually coincides with that for refinement level one; this suggests convergence of the
numerical solution and the frontier. Subplot (b) shows a curve of expected cash flow
versus standard deviation, which is a more practical meaningful display of the results
because standard deviation and expected value have the same units. Since the number
of v values is quite large, the computed efficient frontiers appear smooth. Note that
the method used in [12] generates an arbitrary number of points along the efficient
frontier (i.e., many different values of ) from a single solution of the HJB PDE.

From Figure 2, we see that for this example every point of (y(g)k lies on the
upper-left boundary of the convex hull of (yé)k Therefore, every point in (y(g)k is
in its MV scalarization optimal set, following Theorem 5.4. This suggests that, in
this case, the scalarization formulation generates all the Pareto points. Of course this
will not be true in general due to the fact that the achievable objective set )} can be
nonconvex, since B(T') is a nonlinear function of the control v in (2.7). We expect
that, in some cases, the postprocessing algorithm will generate gaps in the efficient
frontier, corresponding to cases where the scalarization formulation does not generate
all the Pareto points.
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In this particular example, Figure 2 shows that S( (yj;,)k) = ()}g)k, which provides
strong evidence that S (y%) = yé. In addition, (y&r))k also suggests that y}z is a
continuous monotone increasing curve. This indicates that a simple uniform sampling
of v will produce a convergent method (see the discussion in section 7.2) for this
particular example.

8. Conclusion. Many problems in finance can be reduced to a multiperiod MV
optimization. The standard scalarization optimal method for the multiobjective opti-
mization yields a subset of MV Pareto optimal points. Using the embedding technique
of [18, 27], an embedded MV set is determined. This embedded problem can be solved
using dynamic programming. In the context of the optimal trade execution, the op-
timal strategy is determined by solving an HJB equation.

However, when using a numerical method to solve the HJB equation, several issues
arise. This technique generates embedded MV points (V, £) indirectly and these can
be a superset of the MV Pareto points. In addition, there may be more than one
optimal strategy, given by the solution of the HJB equation, which generates the same
value of the objective function. In practice, any numerical algorithm used to solve
the embedded problem will generate only one such strategy. This raises the question
of whether this strategy corresponds to an MV Pareto optimal point. In addition, it
is important to determine which embedded MV points are MV scalarization optimal
for the achievable MV objective value set ).

In this paper, we establish that, if an embedded objective point (V,€) is MV
scalarization optimal with respect to the embedded MV objective set, it is scalar-
ization optimal with respect to the achievable MV objective set (thus MV Pareto
optimal). In addition, we prove that the set of the MV SOPs with respect to the
computed embedded objective set y& is identical to the scalarization optimal set with
respect to the achievable MV objective set. These two results allow us to develop a
simple postprocessing technique which can be used to eliminate spurious points in the
(computed) embedded objective set.

In practical application, we can only obtain an approximation to the solution of
the embedded problem. In particular, we can only compute a finite set of optimal
points for the embedded problem. Assuming that this finite set approximates the
complete solution set sufficiently well, we can apply our postprocessing algorithm to
obtain the Pareto points of the original MV problem.

It remains to determine the characteristics of the MV problem which ensure that
finite sampling of the solution of the embedded problem can be shown to approximate
(arbitrarily well) the complete solution of the embedded problem. We leave this to
future work.
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