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Abstract

Tracking error minimization is commonly used by the traditional

passive fund managers as well as alternative portfolio (for example,

hedge fund) managers. We propose a graduated non-convexity method

to minimize portfolio tracking error with the total number of assets no

greater than a specified integer K. The solution of this tracking error

minimization problem is the global minimizer of the sum of the tracking

error function and the discontinuous counting function. We attempt to

track the globally minimal tracking error portfolio by approximating

the discontinuous counting function with a sequence of continuously

differentiable non-convex functions, a graduated non-convexity process.

We discuss the advantages of this approach, present numerical results,

and compare it with two methods from recent literature.



Index Tracking

Portfolio managers evaluate the performance of their portfolios by comparing

it to a benchmark, e.g., the index portfolio. Holding relatively few assets

prevents a portfolio from holding very small and illiquid positions and limits

administration and transaction costs. A practical problem for passive portfolio

management is the index tracking problem of finding a portfolio of a small

number of stocks which minimizes a chosen measure of index tracking error;

for example, consider minimizing the index tracking error with the portfolio

size no greater than a specified number of instruments K. Tracking error

minimization is also frequently used by hedge fund managers as part of a long-

short hedging strategy. In this case, the tracking error measures the difference

from a pre-selected benchmark long portfolio or short portfolio and tracking

error minimization yields the hedging positions. Although our discussion is

illustrated with the index tracking example, our proposed method is applicable

to any tracking error minimization problem subject to a constraint on the total

number of assets.

This tracking error minimization problem, with a restriction on the total

number of assets, is NP-hard and consequently heuristic methods have been

suggested. As described in Jansen and Dijk [2002], a simple heuristic algorithm

that is common for solving the cardinality-constrained index tracking problem

can be illustrated as follows. As an example consider the problem of choosing

a portfolio consisting of 25 stocks to track the S&P500 index. Suppose that
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the tracking error function is TEJD(x) = (x− w)T Q(x− w), which is used in

Jansen and Dijk [2002]. Here, xi is the percentage of the portfolio invested in

stock i,1 ≤ i ≤ n, w is the vector of percentage weights of the stocks in the

index, and Q is the (positive definite) covariance matrix of the stock returns.

This measure of tracking error, along with two others, are discussed further

in the next section. The simple heuristic algorithm consists of the following

steps. First, one solves the quadratic programming problem: choose the best

weights xi of the 500 stocks in the S&P500 to minimize the tracking error (so

x = w is optimal initially). Then, remove the 25 stocks that are weighted

smallest in this solution, and solve the problem of finding the best portfolio

of the remaining 475 stocks to minimize the tracking error. This is also a

quadratic programming problem. Continue in this way until only 25 stocks

remain. In general, this algorithm could proceed by removing any number of

stocks after each solution, say 10 stocks or 1 stock at a time. Besides being

ad hoc, a disadvantage of this heuristic method is that it may require solving

many index tracking sub-problems with hundreds of variables.

Another heuristic method for the index tracking problem is proposed by

Beasley, Meade and Chang [1999]. They use a population heuristic (genetic

algorithm) to search for a good tracking portfolio by imposing the cardinality

constraint explicitly. In this case, all members of the population of tracking

portfolios have the desired number of instruments. This heuristic approach

admits a very general problem formulation, allowing the imposition of a limit
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on transaction costs (assuming some initial tracking portfolio is held, and re-

balancing of the initial portfolio is needed) as well as limiting the maximum

or minimum holding of any stock in the portfolio and the use of virtually any

measure of tracking error.

Salkin and Meade [1989] investigate tracking an index by constructing a

portfolio that matches the sector-weightings of the index. They also consider

using the relative market capitalizations of the stocks in the index as the

relative holdings in the tracking portfolio. However, restriction on the total

number of stocks in the portfolio is not considered in their paper.

Mathematically, a tracking error minimization problem subject to a cardi-

nality constraint can be formulated as computing the global minimizer of an

objective function involving a measure of tracking error and a discontinuous

counting function
∑n

i=1 Λ(xi), where Λ(xi) equals 1 if xi 6= 0 and 0 otherwise.

In addition, simple constraints (typically linear) may exist. The tracking error

minimization problem is difficult to solve since there is an exponential num-

ber of local minimizers, with each one corresponding to an optimal tracking

portfolio from a fixed subset of stocks. Jansen and Dijk [2002] present the

idea of solving the index tracking problem by approximating the discontinu-

ous counting function Λ(z) by a sequence of continuous but not continuously

differentiable functions. To implement this idea they use a penalty function

approach and choose one approximation function from the sequence to ap-

proximate the counting function.
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In this case, however, the lack of differentiability of the selected approxi-

mation to the counting function causes some difficulty. In particular, the first

and second derivatives of the objective function are not well-behaved when one

or more of the holdings xi are close to zero. This is problematic because many

of the stock holdings are expected to approach zero when the desired total

number of stocks, K, is small. In particular, under reasonable assumptions

(see Appendix C for details) the reduced Hessian matrix can be arbitrarily

ill-conditioned at or near solutions to the cardinality-constrained index track-

ing problem. This method is described in detail in the Results section, where

computational results are presented.

In this paper, we propose to solve the tracking error minimization problem

subject to a cardinality constraint by approximating the discontinuous func-

tion Λ(xi) by a sequence of continuously differentiable non-convex piecewise

quadratic functions which approach Λ(xi) in the limit. To further describe

this approach, consider the convex tracking error function for example. The

proposed method begins by solving a convex programming problem without

the cardinality constraint and computes its global minimizer. Then, from

this minimizer, a sequence of local minima of approximations to the tracking

error minimization problem is tracked, using the minimizer of the previous

approximation problem as a starting point. In each successive approximation

to the tracking error minimization problem, additional negative curvature is

introduced to the objective function through the approximation to the count-
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ing function. Our proposed method is an adaptation of the known graduated

non-convexity method for tracking the global minimum for the image recon-

struction problem (see Blake and Zisserman [1987]).

Tracking Error Minimization

Let xi represent the percentage weight of asset i in the portfolio x. A tracking

error minimization problem subject to a constraint on the total number of

assets can be formulated as a constrained discontinuous optimization problem,

min
x∈<n

TE(x)

subject to
n∑

i=1

Λ(xi) ≤ K (1)

n∑

i=1

xi = 1

x ≥ 0

where Λ(xi) = 1 if xi 6= 0 and Λ(xi) = 0 otherwise. Here we discuss the

problem in terms of the percentage holding x, noting that the formulation

in terms of the actual units, y, is similar. The function TE(x) measures

the tracking error and the cardinality constraint,
∑n

i=1 Λ(xi) ≤ K, can be

interpreted as enforcing an upper bound on the administration costs (modeled

as a linear function of the total number of stocks). Solving this problem is

NP-hard and, not surprisingly, all of the existing methods for the tracking

error minimization problem subject to a cardinality constraint are heuristic in

nature.

5



To further develop the index tracking problem mathematically, let yi be

the number of units of asset i in the portfolio y. To simplify notation, we

will describe some measures of tracking error as functions of x and others as

functions of y. We note that the relationship between x and y at time t is

xi =
Sityi

ST
t y

(2)

where Sit is the price of stock i at time t and St is the vector of time t stock

prices.

There are a few different ways of measuring tracking error. Beasley, Meade

and Chang [1999] measure the tracking error based on historical stock and

index prices as follows:

TEBMC(x)
def
=

1

T

(
T∑

t=1

|rt(y)−Rt|p
) 1

p

(3)

where T is total number of periods, Rt = ln (It)
ln (It−1)

is the return of the index at

the period [t− 1, t],

rt(x)
def
=

ln(Sty)

ln(St−1y)

and St ∈ <n, It are the stock prices and index price at t respectively. Note that

the tracking error function TEBMC(y) is not convex. For our computational

results and for the results presented from Beasley et al [1999], p = 2 is used.

A similar measure of tracking error, denoted here by TESM(y), is used by

Salkin and Meade [1989]; it is obtained by setting Rt = It−It−1

It−1
as the return
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of the index during the period [t− 1, t] and

rt(x)
def
=

Sty − St−1y

St−1y

The tracking error functions used by Beasley et al [1999] and Salkin and

Meade [1989] explicitly penalize any deviation of each period return (daily,

weekly, etc) of a tracking portfolio from the return on the index. Furthermore,

deviations in each time period (each day or week) are counted equally towards

the total tracking error, and these measures are sensitive to the choice of

time period. For example, assume that there is a total of two weeks, the

tracking portfolio underperforms the index by 1% during the first week, and

it outperforms the index by 1% in the next week. Then the two-week return

on the tracking portfolio and the index are quite similar, but both TEBMC(y)

and TESM(y) (with one week per period) can be large. If the time period

were doubled, to two weeks, then the two errors would offset each other and

TEBMC(y) and TESM(y) would be smaller than that corresponding to one week

per period. In this respect, both TEBMC(y) and TESM(y) depend on the time

period selected for calculating returns.

Another frequently used definition of tracking error measures the active risk

of a portfolio based on the covariance matrix of the stock returns (see Beckers

[1998]); this definition is used in Jansen and Dijk [2002] and we denote it by

TEJD(x)
def
= (x− w)T Q(x− w) (4)

where w denotes the stock weights for the index and Q is the covariance matrix

of the stock returns. Here, as before, xi represents the percentage weight of
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asset i in the portfolio x and wi is similarly defined as the percentage weight

of asset i in the index portfolio. Note that the function TEJD(x) is convex and

is mathematically more appealing. This active risk is a direct function of the

extent to which stocks are weighted differently to their weights in the index.

This measure of tracking error has a convenient financial interpretation if the

historical covariance matrix Q is assumed to be accurate for that of future

returns. In this case, if the tracking error (TEJD(x))1/2 = 1%, then you can

expect the return on your tracking portfolio to be within ±1% of the return on

the index about 67% of the time in one observation period, and to be within

±2% about 95% of the time.

Tracking Error Minimization Via Graduated Non-

Convexity

Standard optimization software does not apply to the index tracking problem

(1) directly since the cardinality constraint function is discontinuous. One

possible way of overcoming this difficulty is to consider a sequence of approxi-

mations which approach the tracking error minimization problem in the limit.

How well this type of method works depends on what the sequence of approx-

imations is and how the sequence of approximations approaches the original

tracking error minimization problem.

For simplicity, one may consider (see Jansen and Dijk [2002] for example)
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an equivalent form of the tracking error minimization problem for (1):

min
x∈<n

(
TE(x) + µ

n∑

i=1

Λ(xi)

)

subject to
n∑

i=1

xi = 1 (5)

x ≥ 0

where µ ≥ 0 is a penalty parameter. Here TE(x) is a smooth function which

measures the tracking error for a general portfolio benchmarking problem. By

varying µ > 0, solutions of (5) yield optimal tracking portfolios of different

number of assets.

To handle the discontinuity introduced by the counting function Λ(xi),

Jansen and Dijk [2002] approximate Λ(xi) by xp
i , where p ≥ 0 is small. Specif-

ically, p = 0.5 is used. Thus the following problem is solved

min
x∈<n

(
TEJD(x) + µ

n∑

i=1

xp
i

)

subject to
n∑

i=1

xi = 1 (6)

x ≥ 0

The motivation behind this method is that xp
i converges to Λ(xi) as p con-

verges to zero. As mentioned before, one of the difficulties of this approach is

that, when p < 1, the objective function is not everywhere differentiable and

standard optimization software is not guaranteed to yield a minimizer of the

problem (6); this is illustrated in the Results section.

We attempt to track the portfolio of the globally minimal tracking error

by first computing the minimizer of the tracking error function without the
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cardinality constraint, i.e., a solution to the continuous optimization problem

min
x∈<n

TE(x)

subject to
n∑

i=1

xi = 1

x ≥ 0

Note that if the tracking error function is continuously differentiable and con-

vex, e.g., TE(x) = TEJD(x), a global minimizer can be computed from stan-

dard optimization software. Starting from this minimizer, a sequence of ap-

proximations {Pk}k=1,2,... to the tracking error minimization problem (1) is

solved by approximating the counting function Λ(xi) with continuously dif-

ferentiable piecewise quadratic functions with graduated non-convexity; the

solution of the approximation problem Pk−1 is used as the staring point for

the approximation problem Pk.

Next, we motivate and describe our proposed method; we show the connec-

tion of the proposed method to the graduated non-convexity technique used

in image reconstruction (Blake and Zisserman [1987]) in appendix B.

To motivate our approximations {Pk}k=1,2,... to the tracking error problem

(1), let us first approximate the discontinuous counting function Λ(z) by the

following continuous function hλ(z)

hλ(z) =





λz2 if |z| ≤
√

1
λ

,

1 otherwise.

where λ > 0 is a large constant (which is set to 108 in our computations). The

function hλ(z) is illustrated in Exhibit 1; it is used in image segmentation to
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approximate counting the number of edges in an image.

Now problem (1) can be formulated as a continuous but non-differentiable

mathematical programming problem.

min
x∈<n

(
TE(x) + µ

n∑

i=1

hλ(xi)

)

subject to
n∑

i=1

xi = 1 (7)

x ≥ 0

In appendix A, we illustrate how this formulation can be derived from a penalty

function formulation and a line elimination technique similar to that used in

image reconstruction (Blake and Zisserman [1987]).

The above minimization problem (7) is not everywhere differentiable and it

has many local minimizers. We consider the following graduated non-convexity

method to attempt to track the global minimizier of (7), based on a similar

method used in Blake and Zisserman [1987].

We approximate the non-differentiable function hλ(z) by the continuously

differentiable function gλ(z; ρ) below:

gλ(z; ρ) =





λz2 if |z| ≤ q

1− ρ
2
(|z| − r)2 if q ≤ |z| < r

1 otherwise

r2 = (
2

ρ
+

1

λ
), q =

1

λr

Here ρ > 0 is a parameter. The function gλ(z; ρ) is a piecewise quadratic with

a concave quadratic piece for z ∈ (q, r). Let {ρk} be a given monotonically
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increasing sequence which converges to +∞. As ρk increases, the curvature of

the quadratic function defining gλ(z; ρ) for z ∈ [qk, rk] becomes more negative,

introducing a graduated nonconvexity. In addition, as ρk → +∞, rk, qk con-

verge to
√

1
λ

and the functions gλ(z, ρk) approach hλ(z). Exhibit 2 illustrates

how the sequence of approximations gλ(z; ρ) approaches the function hλ(z) as

ρ increases.

Substituting gλ(z; ρ) for hλ(z) in (7), the following sequence {Pk} of ap-

proximations to the tracking error minimization problem arises:

min
x∈<n

(
gnck(x) = TE(x) + µ

n∑

i=1

gλ(xi; ρk)

)

subject to
n∑

i=1

xi = 1 (8)

x ≥ 0

To appreciate why this is a reasonable process to track the global minimizer

of the tracking error minimization problem subject to a cardinality constraint,

consider a convex tracking error function and suppose that there are no other

constraints for simplicity. For a sufficiently small ρ > 0, the objective function

gnck(x) of (8) remains convex, where

gnck(x)
def
= TE(x) + µ

n∑

i=1

gλ(xi; ρk) (9)

Thus, for a small ρk, the solution to Pk (8) is the unique global minimizer.

For sufficiently small ρ, Approximations gnck(x), can be regarded as multi-

dimensional convex envelopes of the objective function of (5) with respect

to all asset subsets, see Exhibit 3. We start with minimizing the tracking
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error function; each subsequent approximation introduces increasingly more

negative curvature to the objective function gnck(z) through gλ(x; ρk). The

negative curvature interacts with the positive curvature of the tracking error

function to ensure that optimal tracking portfolios of subsets of stocks are

reachable via minimizing gnck(x). The minimizer of gnck−1(x) is then used

as a starting point to compute a minimizer for the subsequent approximation

gnck(x). As ρk converges to +∞, the approximate problems approach the

tracking error minimization problem (7).

Exhibit 3 illustrates this process for a one-dimensional function TE(x) =

1
2
(x + 2)2. Without loss of generality, this process is depicted without con-

straints. In the top-left subplot of Exhibit 3 we see the original non-convex

function TE(x) + µhλ(x), a convex approximation (corresponding to ρk =

0.001), and its minimizer. Increasing ρ to 1 we see the next approximation

(in this example, still convex) to the original function in the top-right sub-

plot. With the minimizer of the first approximation function as a starting

point, the minimizer of the new approximation, which is very close to the

global minimizer, is computed. In the bottom two subplots (ρk = 10 and 1000

respectively ) we see how the approximating functions gnck(x) approach the

original function as ρk increases. From this illustration we see that the pro-

posed process first considers large-scale features of the original function and

gradually focuses in on features of a smaller scale.

The proposed graduated non-convexity process starts with minimizing the
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tracking error without any limit on the total number of instruments, i.e.,

min
x∈<n

TE(x)

subject to
n∑

i=1

xi = 1 (10)

x ≥ 0

When the tracking error function is convex, e.g., TEJD, problem (10) is a

convex programming problem and a global minimizer can be computed. Under

the assumption of convexity, if the minimizer x∗ of (10) satisfies the condition

∑
Λ(x∗i ) ≤ K, then our proposed method is guaranteed to yield x∗ as the

solution.

We have so far described the proposed graduated non-convexity method

with respect to the tracking error minimization formulation (5), in which the

size of the optimal tracking portfolio is chosen by varying the parameter µ.

Typically a portfolio manager explicitly wants to obtain a tracking portfolio

with an upper bound K on the number of stocks. Using the formulation (5),

it is necessary to experiment with different values of µ in order to generate

a tracking portfolio of the desired number of stocks. To compute a tracking

portfolio of the desired size directly, we consider the following exact penalty

formulation of the tracking problem (1) with
∑n

i=1 hλ(xi) replacing
∑n

i=1 Λi(xi),

min
x∈<n

(
TE(x) + µ max(

n∑

i=1

hλ(xi)−K, 0)

)

subject to
n∑

i=1

xi = 1 (11)

x ≥ 0
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where µ is an exact penalty parameter corresponding to the cardinality con-

straint. For a sufficiently large µ, e.g., µ = 100 in all our subsequent compu-

tations, the minimizer of Tracking error minimization formulation (11) yields

a tracking portfolio of no more than K stocks.

The graduated non-convexity approximation problem Pk can similarly be

generated:

min
x∈<n

(
TE(x) + µ max(

n∑

i=1

gλ(xi; ρk)−K, 0)

)

subject to
n∑

i=1

xi = 1 (12)

x ≥ 0

Intuitively, when
∑n

i=1 gλ(xi; ρk) > K, decreasing the objective function of

(12) leads to the decrease of the objective function gnck(x) of (8). Moreover,

for initial approximate problems Pk with small ρk,
∑n

i=1 gλ(xi; ρk) < K. As

more negative curvature is gradually introduced into the objective function

by gλ(x; ρk), the function TE(x) +
∑n

i=1 gλ(xi; ρk) is gradually decreased as

described above to track the global minimizer. The graduated non-convexity

process is terminated when, for all i, either (xk)i < q (the ith stock is not in

the tracking portfolio) or (xk)i > r (the ith stock is in the tracking portfolio).

This computational procedure is described in Exhibit 4.

It may seem, from the description in Exhibit 4, the proposed graduated

non-convexity method requires solving an excessive number of approximation

problems Pk. This is, in fact, not the case. Firstly, we note that, for many

updates of parameter ρk, the minimizer of the problem Pk−1 remains the min-
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imizer of Pk. Secondly, the minimizer of Pk−1 is a good starting point of Pk

even when it is not a minimizer for Pk; thus a small number of iterations are

typically required to reach the minimizer of Pk.

Computational Results

To illustrate, we present numerical results using several publicly available his-

torical data sets for equity index tracking. We compare the quality of the

solutions produced by the proposed graduated non-convexity method to those

of the exact optimal solutions (computed via brute force) when K is very

small. We also compare the graduated non-convexity method to the popula-

tion heuristic method from Beasley et. al [1999] and the method from Jansen

and Dijk [2002], which uses a continuous but not differentiable function to

approximate the counting function
∑n

i=1 Λ(xi).

To test the proposed graduated non-convexity (GNC) algorithm described

in Exhibit 4, we use the data sets made publicly available by Beasley, Meade

and Chang [1999]. These data sets consist of weekly price observations on

stocks in five indices from different world markets during the period of March

1992 to September 1997. Both stock price data and index price data are

included in the data sets for the market indices Hang Seng, DAX 100, FTSE

100, S&P 100, and Nikkei 225. In each case, stocks were dropped from the data

set if they were not present during the entire period of observation. Exhibit

6 describes the data sets where the number of stocks, n, and the number of
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weeks of data, m, are given for each set of historical price data.

First, we present computational results using the quadratic tracking error

function TEJD(x). Since index weights are not given in the data sets, we

artificially generate the index from equally weighting the stocks, i.e., wi =

1/n, 1 ≤ i ≤ n.

Exhibit 7 presents (annualized) optimal quadratic tracking errors (TEJD(x))
1
2

obtained using the graduated non-convexity method (GNC) with K = 25.

The annualized tracking errors are given for two different GNC solutions cor-

responding to two different sequences {ρk} that define the optimization sub-

problems. In particular the ρ update rules ρk+1 = 1.2ρk and ρk+1 = 2ρk are

compared. Because the GNC method solves a different sequence of subprob-

lems in each case, the solutions achieved from these two rules are different.

In Exhibit 7 we also give the number N of optimization subproblems which

are solved for each data set and each update rule. In most cases, we observe

that the ρk+1 = 1.2ρk update rule (which imposes the cardinality considera-

tion ”more gradually”) typically yields a solution with slightly smaller track-

ing error. However, in two cases we see that the ”less gradual” update rule

ρk+1 = 2ρk gives a slightly better tracking portfolio. This illustrates a sensi-

tivity of the quality of the solution on the updating rule for the parameter ρ.

This is not surprising since there are many local minimizers corresponding to

tracking portfolios with different stocks, and they can achieve similar tracking

errors. Theoretically one would like to update ρk as gradually as possible; but
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this needs to be balanced with the computational time that can be afforded.

The update rule ρk+1 = 1.2ρk seems to work best for a range of K and different

measures of tracking error and the GNC results in this paper, except for the

results in Exhibit 7, all use this rule.

For both rules in Exhibit 7 we see that, using no more than 25 stocks, a

annualized tracking error of approximately 2% is obtained for all the data sets

except Hang Seng (for which a smaller tracking error of 1.27% is achieved).

As mentioned before, we can interpret the results as the standard deviation of

the difference between the return on the tracking portfolio and the return on

the index. For example, consider the computed 25 stock tracking portfolio on

the 225 stock Nikkei index and let RI denote the annual percent return of the

index. Then we expect the tracking portfolio to have annual return RI ± 2%

about 67 percent of the time.

Although the graduated non-convexity method gives solution portfolios

with reasonably small tracking errors, we would like to assess how close the

tracking error of the portfolio computed by GNC is to the global minimum of

the cardinality constrained tracking error minimization problem. However, a

brute-force computation of the optimal solution for K = 25 using the S&P 100

data set, for example, would require solving over 1.3×1023 (small) optimization

sub-problems. While this is impractical, we can compare the results of our

GNC algorithm to the optimal solution for very small K. Exhibit 8 compares,

for K = 3, the tracking error achieved by GNC with the global minimum
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tracking error computed by a brute-force method. It can be observed that the

GNC method produces nearly optimal tracking portfolio for these tests: the

accuracy of the tracking error achieved by the GNC method, compared with

the global minimum tracking error, ranges from 86% to 95%.

In the rest of this section, we compare the graduated non-convexity method

with the method used by Jansen and Dijk [2002] and the method used by

Beasley, Meade and Chang [1999].

The method proposed by Jansen and Dijk [2002] is similar to our proposed

GNC algorithm in that both methods attempt to solve the index tracking

problem by approximating the discontinuous counting function by continuous

functions. However, the two methods are fundamentally different. Jansen

and Dijk [2002] approximate the discontinuous counting function using a non-

differentiable function while we approximate the counting function by a con-

tinuously differentiable function. In addition, the proposed GNC method in-

cludes a graduated non-convexity process of solving a sequence of continuously

differentiable optimization problems (which can be solved using a constrained

minimization approach or a penalty function approach) to track the global

minimizer.

In Jansen and Dijk [2002] the following minimization problem is first solved

for a fixed small p (p = 0.5),

min
x∈<n

(
TEJD(x) + µ

n∑

i=1

xp
i

)

subject to
n∑

i=1

xi = 1 (13)
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x ≥ 0

From a computed solution to (13), a set I = {i : xi > ε} is identified for some

small threshold value ε and a smaller quadratic tracking portfolio programming

problem is solved with the xi fixed at zero for i /∈ I, i.e.,

min
x∈<n

TEJD(x)

subject to
n∑

i=1

xi = 1

∀i /∈ I, xi = 0 (14)

x ≥ 0

One of the difficulties due to the use of the function zp to approximate the

counting function Λ(z) is that zp is not differentiable when z = 0 and p < 1. If

a standard optimization method for a continuously differentiable optimization

problem is used to solve (13), convergence is not guaranteed. In addition, solv-

ing (13) presents numerical difficulties, especially for larger values of µ which

typically are required for tracking portfolios with small number of assets. In

particular, the reduced Hessian matrix can be arbitrarily ill-conditioned near

a solution to (13). Larger values of µ exacerbate this problem by magnifying

the ill conditioning from the function xp
i . A more detailed discussion of this

ill-conditioning is given in the appendix. The lack of a theoretical convergence

property and ill-conditioning issues means that the computational software

may yield non-minimizers and, depending on the starting point, optimiza-

tion software can terminate at different approximations. For example, with
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µ = 0.005, the annualized tracking error
(
TEJD(x)

) 1
2 ranges from 0.0228 with

28 stocks to 0.0274 with 23 stocks when 10 different starting points, randomly

perturbed from the index portfolio, are used to solve for 10 solutions (8 were

distinct). Perturbations of about 20 percent were randomly chosen to generate

the 10 starting portfolios.

In spite of the numerical difficulties in the method of Jansen and Dijk

[2002], Exhibit 9 compares the average tracking errors from the method of

Jansen and Dijk [2002] (using different starting points) for several different

choices of µ and the proposed GNC method on the S&P 100 data set. For each

µ, the reported tracking error and the number of stocks for Jansen and Dijk’s

method are the averages of 15 solutions of (14) using 15 different randomly

generated initial portfolios and p = 0.5. For comparison, for each µ, the

result from a single invocation of the GNC method with K closest to the

corresponding average portfolio size is reported in the right columns.

From Exhibit 9 we see that the results from the GNC method are 8 to

15 percent better than the average results from the solutions of the method

described by Jansen and Dijk [2002]. In our investigation we were unable to

reliably use the Jansen and Dijk method to solve the index tracking problem

for a portfolio smaller than about 10 stocks (using the S&P data set). The

GNC method, on the other hand, handles small portfolio selection well (as in

Exhibit 8 where we use K = 3.)

Finally, we compare the proposed GNC algorithm to the population heuris-
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tic algorithm by Beasley, Meade and Chang [1999]. To do this, we use K = 10

and we choose the tracking error measure TESM(x) for the GNC computa-

tions. This is slightly different from the tracking error TEBMC(x∗) but we

report the tracking error measure TEBMC(x∗) corresponding to our computed

solution for comparison with the results in Beasley et. al. [1999]. In Exhibit

10 we compare the GNC results described above with the results from Beasley,

Meade, and Chang with transaction cost limit γ = 0.01. In contrast to re-

sults using quadratic tracking error, here actual index price data, instead of

the index weights, is used for these calculations. Because of changes in the

composition of the index over the period of observation and stocks which were

dropped from the data sets due to missing observations, there is no portfolio

with a tracking error of zero as measured by TEBMC. To give some idea of

the smallest possible tracking error, we include in Exhibit 10 the approximate

solution to the tracking error problem with no cardinality constraint, which

is computed in Step 0 of the algorithm in Exhibit 4. Note that all solutions

from Beasley et. al. [1999] are 10-stock portfolios.

From the results in Exhibit 10 we see that the GNC tracking error results

are 11% to 44% smaller than the BMC results. Of note, however, is that the

BMC results satisfy an additional constraint. Specifically, the BMC results

satisfy a transaction cost limit constraint which effectively permits turnover of

only half of the value of the initial position in 10 stocks. We did not impose this

constraint on our method, which lends our method an advantage in the results

22



in Exhibit 10; nonetheless comparison to the optimal unconstrained tracking

error (no cardinality constraint) suggests that the GNC method produced

reasonably good tracking portfolios. We also note that TEBMC(x) is a non-

convex function, so the GNC method we describe no longer starts with a

convex approximation (the tracking error is non-convex in this case). Instead,

we start with the non-convex function TEBMC(x) and move towards the (also

non-convex) function TEBMC(x) + µ
∑n

i=1 hλ(xi). It is interesting to see that

the GNC method is successful in sequentially approximating the cardinality

constraint even when the tracking error function is not convex.

Concluding Remarks

The problem of tracking error minimization with a constraint on the total

number of assets in the tracking portfolio is an important problem for both

passive as well as dynamic fund managers. Finding the optimal tracking port-

folio with a fixed number of stocks K is an NP-hard problem and heuristic

approaches are common (Beasley et. all [1999], Jansen and Dijk [2002]). We

propose a graduated non-convexity method by approximating the discontin-

uous counting functions using a sequence of continuously differentiable piece-

wise quadratic functions with increasingly more negative curvature. When

the tracking error is measured with a convex function, this graduated non-

convexity (GNC) method starts with the optimal tracking portfolio without

considering the cardinality constraint and gradually moves towards a solution
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satisfying the constraint on the total number of assets. This is more appealing

from a theoretical perspective than a purely heuristic approach (as in Beasley

et. al. [1999]) or solving a single approximation to the cardinality-constrained

problem (as in Jansen and Dijk [2002]).

In addition to being mathematically more appealing, we have illustrated

that the GNC method gives good computational results for the index tracking

problem. When compared with results from Jansen and Dijk [2002] the GNC

method gives results that are 8% to 15% better on average. For small K where

an optimal solution can be found by exhaustion (Exhibit 8), the GNC method

solution is within 4 to 16 percent of the optimal solution. In the case where the

tracking error is a non-convex function, we have seen that the GNC method is

able to gradually impose the cardinality constraint to arrive at a solution that

is an improvement over that obtained by a heuristic approach (Beasley et. al.

[1999]).
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A Line Elimination

We now show that the approximation problem (7) to the original tracking error

minimization problem (5) can be derived using a penalty function technique

for the constraint and an integer variable elimination technique (similar to the

line elimination used for image segmentation in Blake and Zisserman [1987]).

From the index tracking problem (5), we first introduce the equality con-

straint xi(1− li) = 0 to handle the discontinuous function Λ(xi) and formulate

the problem (5) equivalently as a mixed integer programming problem

min
x∈<n,li∈{0,1}

(
TE(x) + µ

n∑

i=1

li

)

subject to xi(1− li) = 0, i = 1, · · · , n (15)

n∑

i=1

xi = 1

x ≥ 0.

To handle the nonlinear constraint xi(1− li) = 0, we consider a quadratic

penalty function formulation of (15):

min
x∈<n

(
TE(x) + µ min

li∈{0,1}

(
n∑

i=1

li + λ
n∑

i=1

x2
i (1− li)

))

subject to
n∑

i=1

xi = 1 (16)

x ≥ 0

where λ > 0 is a large penalty parameter associated with the quadratic penalty

function for xi(1− li) = 0. Note that 1− li ≥ 0.
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Similar to the line elimination technique in Blake and Zisserman [1987], we

explicitly solve

min
li∈{0,1}

(
n∑

i=1

li + λ
n∑

i=1

x2
i (1− li)

)

to eliminate the (line) integer variable li and obtain

hλ(xi) = min
li∈{0,1}

(
li + λx2

i (1− li)
)

where

hλ(z) =





λz2 if |z| ≤
√

1
λ

,

1 otherwise.

The line elimination idea and the function hλ(z) are illustrated in Exhibit

5.

Thus the problem (16) is now formulated as a continuous but nondifferen-

tiable programming problem.

min
x∈<n

(
TE(x) + µ

n∑

i=1

hλ(xi)

)

subject to
n∑

i=1

xi = 1 (17)

x ≥ 0

Note that we can regard hλ(x) as an approximation to Λ(x) for a large

λ > 0.

B Connections to Image Analysis

The proposed GNC method for tracking error minimization subject to a con-

straint on the total number of assets is similar to the GNC method for image
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reconstruction (see Blake and Zisserman [1987]) to generate an image which

is faithful to the original noisy image and has invariance properties such as

optical blurring and noise. We show here how the tracking error minimiza-

tion problem is related to the image reconstruction problem. To illustrate, we

consider the quadratic tracking error and assume that one can hold both long

positions and short positions.

In Appendix A, we have shown that the tracking error minimization prob-

lem (15), using a penalty approach, can be approximated by

min
x∈<n

(
(x− w)T Q(x− w) + µ min

li∈{0,1}

(
n∑

i=1

li + λ
n∑

i=1

x2
i (1− li)

))

subject to
n∑

i=1

xi = 1 (18)

for a positive definite matrix Q (so the problem is convex if the cardinality

constraint is removed), a vector of data w, and a subset I ⊆ {1, 2, . . . , n}.

For our tracking error minimization problem, Q is the covariance matrix, w

represents the percent composition of the index, K is the upper bound on

the number of stocks in our tracking portfolio, and I = {1, 2, ..., n}. We will

show that this optimization problem is a generalization of a problem arising

naturally in the study of image analysis. Particularly, this problem generalizes

the problem of solving for the state of a weak elastic string (as in Blake and

Zisserman [1987]) which is related to the problem of detecting edges in images.

Rename the two penalty parameters µ and µλ to α and λ in (18) to get

min
x∈<n

(
(x− w)T Q(x− w) + min

li∈{0,1}

(
α

n∑

i=1

li + λ
n∑

i=1

x2
i (1− li)

))
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subject to
∑

x∈<n

xi = 1 (19)

The weak elastic string problem can be formulated as follows. Consider

the problem of finding a piecewise smooth function u(x) that best fits some

data d(x). One approach is to look for a solution u(x) that represents a weak

elastic string. That is, an elastic string (so there is a resistance to too much

”bending”) that may have a number of breaks (step discontinuities) in it.

In computing a solution, breaks in the string are penalized (otherwise, after

discretizing the problem, you could simply take u(xi) = d(xi), with a break

at each node). The total energy of the weak elastic string is modeled as the

sum of three energy components, one component measuring the faithfulness

of u(x) to the data d(x), one component measuring the elastic energy of the

string (this component prohibits excessive bending), and a final component

penalizing breaks in the string,. If the problem is discretized over a grid

{ui : i = 1, 2, ..., n} then the energy function is

n∑

i=1

(ui − di)
2 + λ

n−1∑

i=1

(ui+1 − ui)
2(1− li) + α

n−1∑

i=1

li (20)

with line variables li ∈ {0, 1} such that there is a break in the string in the in-

terval [xi−1, xi] if li = 1 and no break if li = 0. Minimizing the energy function

(20) yields a solution to the edge detection problem in one-dimensional image

analysis where discontinuities in the solution u correspond to edges in an im-

age. We wish to show that this problem fits into the more general framework

of tracking error minimization problem (18).
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Consider the tracking error minimization problem (19): introduce change

of variables xi = ui+1 − ui for i = 1, 2, . . . , n− 1 and xn = −un. The equality

∑n
i=1 xi = 1 becomes u1 = −1. Hence the tracking error minimization problem

(19) becomes the unconstrained minimization problem

min
u∈<n

(
(x− w)T Q(x− w) + min

li∈{0,1}

(
α

n∑

i=1

li + λ
n−1∑

i=1

(ui+1 − ui)
2(1− li)

)
+ λu2

n(1− ln)

)

(21)

Now consider the n× n upper triangular matrix V with every element on

or above the diagonal equal to −1. That is,

V = −




1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

...
...

...
. . .

...

0 0 0 0 1




(22)

V is clearly nonsingular, so let w solve V w = d where d is the data vector in

the weak elastic string problem. Now, notice that V x = u. That is,

−




1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

...
...

...
. . .

...

0 0 0 0 1




×




u2 − u1

u3 − u2

...

un − un−1

−un




=




u1

u2

...

un−1

un




(23)

30



So with Q = V T V and w satisfying V w = d, (21) becomes

min
u∈<n

(
(u− d)T (u− d) + min

li∈{0,1}

(
α

n∑

i=1

li + λ
n−1∑

i=1

(ui+1 − ui)
2(1− li) + λu2

n(1− ln))

))
(24)

which differs from (20) only by the addition of the term λu2
n(1−ln) and u1 = 1.

In Blake and Zisserman [1987], it has been shown that, for the isolated

discontinuity image analysis problem, GNC solves the global minimization

problem (20) correctly. It would be interesting to investigate whether (24) can

be solved correctly by GNC under similar conditions; an affirmative answer

would show that, there exists some tracking error minimization problem (18)

for which the GNC algorithm yields a global minimizer.

C Ill-conditioning in problem (13)

The method proposed in Jansen and Dijk [2002] is to solve the constrained

optimization problem

min
x∈<n

(
f(x)

def
= (x− w)T Q(x− w) + µ

N∑

i=1

xp
i

)
(25)

subject to
N∑

i=1

xi = 1 (26)

x ≥ 0 (27)

for a small value of p and a positive penalty parameter µ (p = 0.5 is used in

Jansen and Dijk [2002]) and in our implementation of their method, described
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above.) The method is designed to give a solution where many of the variables

xi are close to zero, thus selecting a small tracking portfolio. When any xi is

close to zero, however, the gradient and Hessian of the objective function f(x)

in (25) have elements of very large magnitude. In particular

∂f

∂xi

= 2QT
i (x− w) + µpxp−1

i (28)

where Qi is column i of the covariance matrix. So for p < 1, ∂f
∂xi

→ ∞ as

xi → 0. Further,

∂2f

∂x2
i

= 2Qii + µp(p− 1)xp−2
i (29)

so for p < 1, ∂2f
∂x2

i
→ −∞ as xi → 0. We now examine the condition number of

the reduced Hessian as elements of x approach to zero.

Let H be the Hessian of the objective function f(x) in (25) at some x ≥ 0.

Let the set Ω be the set of all i such that xi = 0, i.e., Ω is the set of all

variables at which the constraint x ≥ 0 (27) is active. Write H̄ for the matrix

H with row and column i removed for all i ∈ Ω. Let Hr = ZT H̄Z where

Z is a matrix whose columns form a basis for the null space of the linear

constraint matrix (26) for the non-active variables. Then Hr is the reduced

Hessian with respect to the constraints (26) and (27). To simplify notation,

set x = x̄, and re-number as 1, ..., n the remaining variables in x (and the

remaining rows and columns in H̄). Denote the condition number of a matrix

A as κ(A) = ‖A‖‖A−1‖ where ‖A‖ is the 1-norm of A.
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With these definitions, if 0 < p < 1 and there exist integers j and k and

real ε > 0 such that xj ≥ ε and xk ≥ ε as some xi → 0 then κ(Hr) → ∞. In

other words, as any solution is approached where one stock holding is becoming

nearly zero and at least two stock holdings are bounded away from zero the

reduced Hessian becomes increasingly ill-conditioned. Note that this is the

situation that we expect to encounter in a financially interesting solution to

the tracking error minimization problem.

To see that κ(Hr) → ∞ under these conditions, suppose that we have

xj ≥ ε and xk ≥ ε as xq → 0. First note the equivalent definitions of the

matrix 1-norm:

‖H‖ = max
1≤j≤n

n∑

i=1

|Hij| = max
‖x‖1=1

‖Hx‖1 (30)

Note also that the Hessian matrix H can be written as H = Q + D (and

H̄ = Q̄ + D̄) where Q is the covariance matrix and D is the diagonal matrix

D = −µp(1− p)




xp−2
1 0 0 . . . 0

0 xp−2
2 0 . . . 0

...
. . . . . . . . .

...

0 . . . 0 xp−2
N−1 0

0 . . . 0 0 xp−2
N




(31)

Note that p−2 < 0 and that Q is a matrix of constants, i.e., Q is independent
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of x. Now let ei denote column i of the identity matrix and choose ei − ek for

i = 1, 2, ..., k − 1, k + 1, k + 2, ..., n as n− 1 vectors which form a basis for the

null space of the linear constraint matrix. It is straightforward to verify that

these vectors are linearly independent and span the null space. This choice of

basis will make it easy to see that κ(Hr) →∞.

So with

Z =




1

1

. . .

1

−1 −1 . . . −1 −1 . . . −1 −1

1

. . .

1

1




row k

(32)

let Qr = ZT Q̄Z and note that Qr is a constant matrix. The matrix Dr =

ZT D̄Z has diagonal elements
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−µp(1− p)




xp−2
1 + xp−2

k

. . .

xp−2
k−1 + xp−2

k

xp−2
k+1 + xp−2

k

. . .

xp−2
n + xp−2

k




(33)

and each off-diagonal element has value −µp(1− p)xp−2
k .

Now because xq → 0, consider column q of Hr = Qr + Dr. One element

in this column is Qr(q, q) + −µp(1 − p)(xp−2
q + xp−2

k ) where Qr(q, q) denotes

entry (q, q) of Qr. Observe that xp−2
q → ∞ as xq → 0 because p < 1. So

∑n
i=1 |Hr(i, q))| → ∞ as xq → 0 and hence ‖Hr‖ → ∞ as xq → 0. To prove

κ(Hr) → ∞ as xq → 0 it suffices to show that ‖H−1
r ‖ is bounded away from

zero.

To see this, first note that ‖H−1
r ‖ ≥ ‖H−1

r ej‖ by (30) and
∑n−1

i=1 Hr(j, i)H
−1
r (i, j) =

1. The elements Hr(j, i) (the elements in row j of Hr) are bounded in abso-

lute value because the elements in row j of Qr are constant, and the ele-

ments in row j of Dr are −µp(1 − p)xp−2
k (all elements except Dr(j, j)) and

−µp(1− p)(xp−2
k + xp−2

j ) (Dr(j, j)). But by assumption xk ≥ ε and xj ≥ ε, so

the elements of row j of Dr are bounded in absolute value by 2µp(1− p)εp−2.

So let z ∈ < be an upper bound for the absolute value of elements in row j of
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Hr = Qr + Dr. Now we must have |H−1
r (i, j)| ≥ 1

(n−1)z
for some i. Otherwise,

if for all i |H−1
r (i, j)| < 1

(n−1)z
we have

1 =
n−1∑

i=1

Hr(j, i)H
−1
r (i, j) ≤

n−1∑

i=1

z|H−1
r (i, j)| <

n−1∑

i=1

z
1

(n− 1)z
= 1 (34)

which is a contradiction. So for some i, |H−1
r (i, j)| ≥ 1

(n−1)z
and

‖H−1
r ‖1 ≥ ‖H−1

r ej‖1 ≥ 1

(n− 1)z
. (35)

So as xq → 0 we have ‖Hr‖ → ∞ and ‖H−1
r ‖ ≥ 1

(n−1)z
, hence κ(Hr) →∞.
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Algorithm. Let λ > 0 be a large constant and {ρk} be a

monotonically increasing sequence which converges to +∞.

Step 0 Compute a minimizer to the tracking error minimiza-

tion problem (10) without cardinality constraint. Let

k = 1.

Step 1 Compute a solution to (12), the problem Pk, using the

solution of the approximation at Pk−1 as a starting point

Step 2 If, for all i, either (xk)i ≤ qk or (xk)i ≥ rk, terminate.

Otherwise, k ← k + 1 and go to Step 1.

Exhibit 4: A Graduated Non-Convexity Method for Index Tracking Problem
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Exhibit 5: Line Elimination
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Data set n m

Hang Seng 31 291

DAX 100 85 291

FTSE 100 89 291

S&P 100 98 291

Nikkei 225 225 291

Exhibit 6: Data Sets
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Data set n ρk+1 = 1.2ρk N ρk+1 = 2ρk N

Hang Seng 31 .0127 71 .0140 19

DAX 100 85 .0225 71 .0251 19

FTSE 100 89 .0210 71 .0205 19

S&P 100 98 .0219 71 .0233 19

Nikkei 225 225 .0206 72 .0198 20

Exhibit 7: Annualized Optimal Tracking Errors Using GNC with K = 25
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K=3

Data set n GNC (TEJD)1/2 optimal (TEJD)1/2

Hang Seng 31 .0961 .0869

DAX 100 85 .0850 .0732

FTSE 100 89 .0924 .0825

S&P 100 98 .0891 .0854

Nikkei 225 225 .0881 .0810

Exhibit 8: Comparing Tracking Errors using GNC with the Global Minimum

Tracking Errors
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µ Avg. # of assets Avg (TEJD(x))1/2 GNC portfolio size GNC (TEJD(x))1/2

.02 9.64 .0504 10 .0437

.0105 15.08 .0373 15 .0344

.005 25.29 .0245 25 .0218

Exhibit 9: Comparison of Annualized Tracking Error: average from (13) vs.

GNC
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Data set n GNC unconstrained GNC (k = 10) BMC (K = 10)

Hang Seng 31 9.94× 10−5 2.37× 10−4 4.21× 10−4

DAX 85 2.91× 10−4 3.79× 10−4 4.28× 10−4

FTSE 89 6.31× 10−5 3.90× 10−4 5.42× 10−4

S&P 98 4.21× 10−5 3.67× 10−4 4.60× 10−4

Nikkei 225 1.31× 10−5 3.53× 10−4 4.59× 10−4

Exhibit 10: GNC Results and BMC (Beasley et. al. [1999]) Results Using

TEBMC(x)
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