Data Engineering for Data Science

M. TAMER ÖZSU

UNIVERSITY OF WATERLOO

CONTEXT – TWO MAIN CONCERNS

- Data enrichment, integration and storage
 - ETL/ELT process (?)
 - Data lakes
- Storage and management of big datasets
- Data processing platforms

CONTEXT – TWO MAIN CONCERNS

- Data enrichment, integration and storage
 - ETL/ELT process (?)
 - Data lakes
- Storage and management of big datasets
- Data processing platforms
- Data acquisition/gathering
- Data cleaning
- Data provenance & lineage

Traditional database applications	 Store numeric short textual information Typically for managing enterprises
Text and multimedia databases	 Store documents, digital images, audio, and video streams
Geographic information systems (GIS)	 Store maps, weather data, and satellite images Route-finding, agriculture, and natural resource management
Data warehouses & analytics systems (OLAP)	 Store historical business information For business analytics and decision support
Real-time and active database technology	 Store process models, constraints, and key performance indicators Control industrial and manufacturing processes

EARLY DATA MANAGEMENT - ANCIENT HISTORY

1950s and moving into 1960s

- Data are not stored on disk
- One data set per program
- High data redundancy

FILE PROCESSING - MORE RECENT HISTORY

Starting 1960s

- File systems introduced
- Various access methods
- Disk drives are introduced
- One file shared by several

programs

Starting mid-1960s

- A more integrated approach to organizing, managing, and accessing data
- Avoids uncontrolled duplication
- Better integrity, security and privacy control
- Databases really rely on disk storage

What is a Database Management System

- Database Management System (DBMS): A program (or set of programs) that manages details related to storage and access for a database.
- Examples of database management systems
 - IBM's DB2, Microsoft's Access and SQL Server, Oracle, MySQL, SAP Hana, ...

DATA MODEL

- Every DBMS has a data model
 - Description of the structure of
- Logical data model
 - Representation scheme within a database
- Physical model
 - Definition of how the data is stored and the access paths to reach data

PATIENT							
PID	PName	In	5No		Address		
ROOM	ROOM						
RoomNo	RoomTy	pe C	apacity				
MEDICI	NE						
MedCoo	MedCode Name Administ			stration			
SUPPLIE	R						
SID	Name	Ad	dress				
EMPLOYEE							
EID I	EName	Address		Sex	Salary		

RELATIONAL MODEL

Invented by E.F. Codd in 1970

- British; fighter pilot in WW2
- IBM 1948-53
- Was in Canada 1953-57
- Worked at IBM San Jose Research Lab. 1957-84

• Died in 2003

Information Retrieval

A Relational Model of Data for Large Shared Data Banks

E. F. CODD IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation). A prompting service which supplies such information is not a satisfactory solution. Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed. Changes in data representation will often be needed as a result of changes in query, update, and report traffic and natural growth in the types of stored information. Existing noninferential, formatted data systems provide users with tree-structured files or slightly more general network models of the data. In Section 1, inadequacies of these models are discussed. A model based on n-ary relations, a normal form for data base relations, and the concept of a universal data sublanguage are introduced. In Section 2, certain operations on relations (other than logical inference) are discussed and applied to the problems of redundancy and consistency in the user's model.

KEY WORDS AND PHRASES: data bank, data base, data structure, data organization, hierarchies of data, networks of data, relations, derivability, redundancy, consistency, composition, join, retrieval language, predicate calculus, security, data integrity CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

1. Relational Model and Normal Form

1.1. INTRODUCTION

This paper is concerned with the application of elementary relation theory to systems which provide shared access to large banks of formatted data. Except for a paper by Childs [1], the principal application of relations to data systems has been to deductive question-answering systems. Levein and Maron [2] provide numerous references to work in this area.

In contrast, the problems treated here are those of *data independence*—the independence of application programs and terminal activities from growth in data types and changes in data representation—and certain kinds of *data inconsistency* which are expected to become troublesome even in nondeductive systems. The relational view (or model) of data described in Section 1 appears to be superior in several respects to the graph or network model [3, 4] presently in vogue for noninferential systems. It provides a means of describing data with its natural structure only—that is, without superimposing any additional structure for machine representation purposes. Accordingly, it provides a basis for a high level data language which will yield maximal independence between programs on the one hand and machine representation and organization of data on the other.

A further advantage of the relational view is that it forms a sound basis for treating derivability, redundancy, and consistency of relations—these are discussed in Section 2. The network model, on the other hand, has spawned a number of confusions, not the least of which is mistaking the derivation of connections for the derivation of relations (see remarks in Section 2 on the "connection trap"). Finally, the relational view permits a clearer evaluation of the scope and logical limitations of present formatted data systems, and also the relative merits (from a logical standpoint) of competing representations of data within a single system. Examples of this paper. Implementations of systems to support the relational model are not discussed.

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS The provision of data description tables in recently developed information systems represents a major advance toward the goal of data independence [5, 6, 7]. Such tables facilitate changing certain characteristics of the data representation stored in a data bank. However, the variety of data representation characteristics which can be changed without logically impairing some application programs is still quite limited. Further, the model of data with which users interact is still cluttered with representational properties, particularly in regard to the representation of collections of data (as opposed to individual items). Three of the principal kinds of data dependencies which still need to be removed are: ordering dependence, indexing dependence, and access path dependence. In some systems these dependencies are not clearly separable from one another.

1.2.1. Ordering Dependence. Elements of data in a data bank may be stored in a variety of ways, some involving no concern for ordering, some permitting each element to participate in one ordering only, others permitting each element to participate in several orderings. Let us consider those existing systems which either require or permit data elements to be stored in at least one total ordering which is closely associated with the hardware-determined ordering parts might be stored in ascending order by part serial number. Such systems normally permit application programs to assume that the order of presentation of records from such a file is identical to (or is a subordering of) the

P. BAXENDALE, Editor

Communications of the ACM 377

RELATIONAL MODEL

- Invented by E.F. Codd in 1970
- British; fighter pilot in WW2
- IBM 1948-53
- Was in Canada 1953-57
- Worked at IBM San Jose Research Lab. 1957-84

• Died in 2003

Information Retrieval	P. BAXENDALE, Editor	
A Relational Model of Data for	r The relational view (or model) of data described in	
A DATA BASE S The rel	SUBLANGUAGE FOUNDED ON ATIONAL CALCULUS 957	
	RELATIONAL COMPLETENESS OF DATA BASE SUBLANGUAGES	
	by	
IBM I San	E. F. Codd	
	IBM Research Laboratory San Jose, California	
ABSTRACT:	NORMALIZED	
Three principal types of languathe low-level, procedure-orient the intermediate level, algebra language), and the high level, an example of which is describ- informal and stresses concepts presented for the superiority language over the algebraic, a cedural. These arguments are system compatibility and stand	AFE A BRIEF TUTORIAL by AE t(at IBM Research Laboratory C(ir	
systems has been to deductive question-answering Levein and Maron [2] provide numerous references in this area. In contrast, the problems treated here are thos <i>independence</i> —the independence of application r and terminal activities from growth in data ty changes in data representation—and certain kind <i>inconsistency</i> which are expected to become trou even in nondeductive systems.	A al (t ABSTRACT: re Casual and other users of large formatted data bases need a simple tabular (relational) view of the data rather than a network or tree-structured view. Fi This paper illustrates the removal of repeating groups, hierarchic and plex or structures, and cross-referencing structures. Finally, the simplification of of data base relations by normalization is discussed. RJ Mi Cc)n

Volume 13 / Number 6 / June, 1970

RELATIONAL MODEL CONCEPTS

- Represent the miniworld as a collection of relations
- Each relation holds facts about a particular entity/concept
 - Each relation has a number of attributes
 - Store the property values of that entity/concept
 - Each relation consists of a set of tuples
 - Each tuple represents a record of related data values
 - Facts that typically correspond to an entity/concept
- A relation can be represented as a table
 - Each row corresponds to a tuple
 - Each column corresponds to an attribute

•

RELATIONAL MODEL CONCEPTS

- Represent the miniworld as a collection of relations
- Each relation holds facts about a particular entity/concept
 - Each relation has a number of attributes
 - Store the property values of that entity/concept
 - Each relation consists of a set of tuples
 - Each tuple represents a record of related data values
 - Facts that typically correspond to an entity/concept
- A relation can be represented as a table
 - Each row corresponds to a tuple
 - Each column corresponds to an attribute

PATIENT(PID, Pname, InsNo, Address) ROOM(RoomNo, RoomType, Capacity) MEDICINE(MedCode, Name, Administration) SUPPLIER(SID, Name, Address) EMPLOYEE(EID, EName, Address, Sex, Salary) NURSE(EID, EName, Address, Sex, Salary, Position) DOCTOR(EID, EName, Address, Sex, Salary, Specialization) TREATMENT(PID, EID, Tbegin, Tend, Cost) ASSIGNED(PatientNo, RoomNo, Admitted, Discharged) PRESCRIBED(PID, MedCode) SUPPLIED BY(MedCode, SID, Price) GOVERNS(NurselD, RNo, Begin, End) CONTACT(PID, PContactInfo)

ONE POSSIBLE (PARTIAL) DATABASE INSTANCE

For a relation schema R, instance r(R)

PATIENT

PID	PName	InsNo	Address
49875	Jane Smith	ON8677	54 Beachwood St, Waterloo, Ontario
15948	Ali Nadir	ON7740	583 College St., Toronto, Ontario
98143	Jiang Ni	AB39658	189-95 Ave., Edmonton, Alberta

ROOM

RoomNo	RoomType	Capacity
DC212	Private	I
DC259	Semi-private	2
MC187	Ward	4
MC489	Ward	8
RD552	Semi-private	2

MEDICINE

MedCode	Name	Administration
00216666	Novasen	Oral
02439816	Ramipril	Oral
02220261	Penicillin G	Intramuscular
02245385	Symbicort	Inhale
02339501	Afinitor	Oral

GOVERNS

RNo	NurseID	Begin	End
DC259	94729532	25-Jan-2017	31-Dec-2020
RD552	69367883	20-Apr-2017	31-Dec-2020
DC212	94729532	28-Jul-2016	20-May-2021
MC489	33857201	I-Sept-2020	5-Mar-2022
MC187	33857201	27-Oct-2019	30-Nov-2020

ONE POSSIBLE (PARTIAL) DATABASE INSTANCE

For a relation schema R, instance r(R)

PATIENT

Т

 (\mathbf{r})

[PID		PName	InsNo		Address	
	49875	Jane Smith		ON8677	54 Beachwo	ood St,Waterloo, On	tario
ſ	15948	Ali I	Vadir	ON7740	583 College	St., Toronto, Ontario)
Ī	98143	Jiang	g Ni	AB39658	189-95 Ave.	, Edmonton, Alberta	
		М	EDICINE	Attr (colu	ibutes umns)		
			MedCode	Nar	ne	Administration	
		,	00216666	Novasen		Oral	
	/		02439816	Ramipril		Oral	
ple			02220261	Penicillin G		Intramuscular	
- SW	(s)		02245385	Symbicort		Inhale	
			02339501	Afinitor		Oral	

ROOM

RoomNo	RoomType	Capacity
DC212	Private	I
DC259	Semi-private	2
MC187	Ward	4
MC489	Ward	8
RD552	Semi-private	2

GOVERNS

RNo	NurseID	Begin	End
DC259	94729532	25-Jan-2017	31-Dec-2020
RD552	69367883	20-Apr-2017	31-Dec-2020
DC212	94729532	28-Jul-2016	20-May-2021
MC489	33857201	I-Sept-2020	5-Mar-2022
MC187	33857201	27-Oct-2019	30-Nov-2020

RELATIONAL DATABASE PROPERTIES

- Atomic values
 - Composite and multivalued attributes not allowed

PATIENT

PID	PName	InsNo	Contact	Address
49875	Jane Smith	ON8677	5195552389	54 Beachwood St, Waterloo, Ontario
15948	Ali Nadir	ON7740	226987778 5199953533	583 College St., Toronto, Ontario
98143	Jiang Ni	AB39658	7809495678	189-95 Ave., Edmonton, Alberta

This is a single string value

RELATIONAL DATABASE PROPERTIES

- Atomic values
 - Composite and multivalued attributes not allowed
- Normalized
 - Each fact in its own table

PATIENT(PID, Pname, InsNo, Address) ROOM(RoomNo, RoomType, Capacity) MEDICINE(MedCode, Name, Administration) SUPPLIER(SID, Name, Address) EMPLOYEE(EID, EName, Address, Sex, Salary) NURSE(EID, EName, Address, Sex, Salary, Position) DOCTOR(EID, EName, Address, Sex, Salary, Specialization) TREATMENT(PID, EID, Tbegin, Tend, Cost) ASSIGNED(PatientNo, RoomNo, Admitted, Discharged) PRESCRIBED(PID, MedCode) SUPPLIED BY(MedCode, SID, Price) GOVERNS(NurseID, RNo, Begin, End) CONTACT(PID, PContactInfo)

- Atomic values
 - Composite and multivalued attributes not allowed
- Normalized
 - Each fact in its own table
- Time-varying
 - Updates occur to data
 - Relation represents the state at a given time *t*

PATIENT

-				
PID	PName	InsNo	Contact	Address
49875	Jane Smith	ON8677	5195552389	54 Beachwood St, Waterloo, Ontario
15948	Ali Nadir	ON7740	2269873456 5199905555	583 College St., Toronto, Ontario
98143	Jiang Ni	AB39658	7809495678	189-95 Ave., Edmonton, Alberta

PID	PName	InsNo	Address
49875	Jane Smith	ON8677	54 Beachwood St, Waterloo, Ontario
15948	Ali Nadir	ON7740	583 College St., Toronto, Ontario
98143	Jiang Ni	AB39658	189-95 Ave., Edmonton, Alberta
75880	Tom White	ON6409	884 Water St., Burlington, Ontario

- A relational schema captures only the structure of relations
- Can be extended by rules called constraints
- Examples:
 - Each relation has to have a key attribute (PID)
 - Functional dependency (FD)
 - Foreign key (FK)

<u>PID</u>	PName	InsNo	Address
49875	Jane Smith	ON8677	54 Beachwood St, Waterloo, Ontario
15948	Ali Nadir	ON7740	583 College St.,Toronto, Ontario
98143	Jiang Ni	AB39658	189-95 Ave., Edmonton, Alberta

PID	MedCode
49875	00216666
15948	02439786
74956	02521156

PRESCRIBED

PATIENT

- A relational schema captures only the structure of relations
- Can be extended by rules called constraints
- Examples:
 - Each relation has to have a key attribute (PID)
 - Functional dependency (FD)
 - Foreign key (FK)

PATIENT

	_		
PID	PName	InsNo	Address
49875	Jane Smith	ON8677	54 Beachwood St, Waterloo, Ontario
15948	Ali Nadir	ON7740	583 College St., Toronto, Ontario
98143	Jiang Ni	AB39658	189-95 Ave., Edmonton, Alberta

PID	MedCode
49875	00216666
15948	02439786
74956	02521156

PRESCRIBED

- A relational schema captures only the structure of relations
- Can be extended by rules called constraints
- Examples:
 - Each relation has to have a key attribute (PID)
 - Functional dependency (FD)
 - Foreign key (FK)

PATIENT

PID	PName	InsNo	Address
49875	Jane Smith	ON8677	54 Beachwood St, Waterloo, Ontario
15948	Ali Nadir	ON7740	583 College St., Toronto, Ontario
98143	Jiang Ni	AB39658	189-95 Ave., Edmonton, Alberta

PRESCRIBED

- A relational schema captures only the structure of relations
- Can be extended by rules called constraints
- Examples:
 - Each relation has to have a key attribute (PID)
 - Functional dependency (FD)
 - Foreign key (FK)

Key	FD			PATIENT
	PID	PName	InsNo	Address
	49875	Jane Smith	ON8677	54 Beachwood St, Waterloo, Ontario
	15948	Ali Nadir	ON7740	583 College St., Toronto, Ontario
	98143	Jiang Ni	AB39658	189-95 Ave., Edmonton, Alberta

PRESCRIBED

- A relational schema captures only the structure of relations
- Can be extended by rules called constraints
- Examples:
 - Each relation has to have a key attribute (PID)
 - Functional dependency (FD)
 - Foreign key (FK)

PRESCRIBED

HOW TO ACCESS THE DATABASE

PATIENT

- SQL Declarative Query Language
 - State what you want in the result, not how to compute it

<u>PID</u>	PName	InsNo	Street	City	Province
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario
15948	Ali Nadir	ON7740	583 College St.	Toronto	Ontario
98143	Jiang Ni	AB39658	189-95 Ave.	Edmonton	Alberta
75880	Tom White	ON6409	884 Water St.	Burlington	Ontario
13086	Mark Smith	ON7843	54 King St.	Waterloo	Ontario

HOW TO ACCESS THE DATABASE

PATIENT

- SQL Declarative Query Language
 - State what you want in the result, not how to compute it
- Example I : Find the names and insurance numbers of patients in Ontario

<u>PID</u>	PName	InsNo	Street	City	Province
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario
15948	Ali Nadir	ON7740	583 College St.	Toronto	Ontario
98143	Jiang Ni	AB39658	189-95 Ave.	Edmonton	Alberta
75880	Tom White	ON6409	884 Water St.	Burlington	Ontario
13086	Mark Smith	ON7843	54 King St.	Waterloo	Ontario

SELECT	PName, InsNo
FROM	PATIENT
WHERE	Province = 'Ontario'

PName	InsNo
Jane Smith	ON8677
Ali Nadir	ON7740
Tom White	ON6409
Mark Smith	ON7843

HOW TO ACCESS THE DATABASE

PATIENT

- SQL Declarative Query Language
 - State what you want in the result, not how to compute it
- Example I : Find the names and insurance numbers of patients in Ontario
- Example 2: Retrieve the name, city and treatment cost of all patients whose treatment cost more than \$15,000

PID	PName	InsNo	Street	City	Province
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario
15948	Ali Nadir	ON7740	583 College St.	Toronto	Ontario
98143	Jiang Ni	AB39658	189-95 Ave.	Edmonton	Alberta
75880	Tom White	ON6409	884 Water St.	Burlington	Ontario
13086	Mark Smith	ON7843	54 King St.	Waterloo	Ontario

TREATMENT

<u>PID</u>	<u>Begin</u>	End	EID	Cost
49875	25-Jan-2017	31-Dec-2020	34757200	11500
15948	20-Apr-2017	31-Dec-2020	85993920	37300
49875	I-Sept-2020	5-Mar-2022	34757200	25000

SELECT	P.PName, P.City, T.Cost	PN
FROM	PATIENT P, TREATMENT T	Jane S
WHERE	Cost > 15000	Ali N
AND	P.PID = T.PID;	Jiang

PName	City
Jane Smith	Waterloo
Ali Nadir	Toronto
Jiang Ni	Edmonton

"refers to large, diverse, complex, longitudinal, and/or distributed data sets generated from instruments, sensors, Internet transactions, email, video, click streams, and/or all other digital sources available today and in the future."

NSF BIGDATA Solicitation

Volume

- Scale of data
- Data at rest

Source: Infosys

Volume

- Scale of data
- Data at rest

IBM.

- Scale of data
- Data at rest •

challenges

Velocity

- Streaming data
- Data in motion •
BIG DATA – FOUR VS

Global Video Streaming Software Market, by Region

- Streaming data
- Data in motion

BIG DATA – FOUR VS

BIG DATA – FOUR VS

Unstructured

challenges

•

•

•

Data in motion

incorrectness in

Data quality

data

- Data at rest

BIG DATA MANAGEMENT

- Can you manage "big data" using relational DBMS?
 - Yes, but problematic
- Characteristics of 4Vs demand more flexibility and more scalability
 - May not have schema
 - Scale-out solutions
 - May not need SQL

NOSQL DATABASE SYSTEMS – DEALING WITH VARIETY

Any DBMS that is not relational and does not have the relational restrictions

PATIENT

PID:	PName:	InsNo:	Street:	City:	Province:		
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario		
PID:	FName:	LName:	Street:	City:	Province:		
15948	Ali	Nadir	583 College St.	Toronto	Ontario		
PID:	PName:	Address:	dress:				
98143	Jiang Ni	583 College	3 College St., Toronto, Ontario				
PID: 75880	FName: Tom	Lname: White	Contact: 〈2269873456, 5199905555〉	Address: 189-95 Ave., Edmonton, Alberta			

TREATMENT

PID: 49875	TBegin: 25-Jan-2017		TEnd: 31-Dec-2020		Cost: 11500		
PID: 15948	TBegin: 20-Apr-2017		Doctor: 31-Dec-2020				
PID: 98143	TBegin: I-Sept-2020	Т 5	End: -Mar-2022	Inv 25(oice\$:)00	Insui Man	rance: ulife

NOSQL DATABASE SYSTEMS – DEALING WITH VARIETY

Any DBMS that is not relational and does not have the relational restrictions

PATIENT

PID:	PID: PName: 49875 Jane Smith	InsNo: th ON8677	Street:	City:	Province:							
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario	PID:	TBegin:	TEnd:	Co	st:		
PID:	FName:	LName:	Street:	City:	Province:	470/5	25-jan-2017	31-Dec-2020		300		
15948		INADIC	583 College St.	Ioronto		PID:	TBegin:	Doctor:				
PID:	Address: Jiang Ni 583 College St., Toronto, Ontario			13740	20-Apr-2017	31-Dec-2020						
78143				PID:	TBegin:	TEnd:	Invoice	\$: Insurance Manulifa				
PID:	FName:	Lname:	Contact:	Address:		70143	1-Sept-2020	5-Mar-2022	25000	Manuffe		
/ 5660	IOM	vvnite	5199905555	Alberta	Edmonton,							
						J		Varving struct	ire			
			T									

Varying structure

NOSQL DATABASE SYSTEMS – DEALING WITH VARIETY

Any DBMS that is not relational and does not have the relational restrictions

PATIENT

PID:	PName:	InsNo:	Str No connect	tion	Province:	T	REATM	ENT				
498/5	jan e Smith		54	terioo	Ontario		PID:	TBegin:	TEnd:		Cost:	
PID:	FName:	LName:	Street:	City:	Province:		498/5	25-jan-2017	31-Dec-2020		11500	
15948		Nadir	583 College St.	loronto	Ontario		PID:	TBegin:	Doctor:			
PID:	PName:	Address:					15748	20-Apr-2017	31-Dec-2020			
98143	Jiang Ni	583 College	e St., Toronto, Ontar	onto, Ontario			PID:	TBegin:	TEnd:	Inv	voice\$:	Insurance:
PID:	FName:	Lname:	Contact:	Address:			98143	1-Sept-2020	5-11ar-2022	25	000	Manulife
/5880	Iom	VVhite	<pre></pre>	Alberta								
]		,	arving structu	iro		
	γ								vai ynig sti utti			

Varying structure

Relational

- Strict schema
- Strict consistency
- High-level query language
 - Complex query support
- Scalability possible, but limited

NoSQL

- Flexible schema
- Some inconsistency is OK
 - Eventual consistency
- Highly scalable
- Fast access
- No complex query support
 - Give a key, retrieve the value

- Key-value
- Wide-column (columnoriented; big table)
- Document
- Graph
- Multimodel

KEY-VALUE STORES

- Simple (key, value) data model
 - Key = unique id
 - Value = a text, a binary data, structured data, etc.
- Simple queries
 - put(key, value)
 - Inserts a (key, value) pair
 - value = get(key)
 - Returns the value associated with key
 - {(key, value)} = get_range(key1, key2)
 - Returns the data whose key is in interval [key1, key2]

Databas									_
PID: 49875	PName: Jane Smith	InsNo: ON8677	Street: 54 Beachw	vood St.	City: Wate	rloo	Prov Ont	vince: ario	:
PID: 15948	FName: Ali	LName: Nadir	Street: 583 Colleg	ge St.	City: Toror	nto	Prov Ont	vince: ario	:
PID: 98143	PName: Jiang Ni	Address: 583 College St., Toronto, Ontario							
PID: 75880	FName: Tom	Lname: White	name: Contact: Address: Vhite 〈2269873456, 189-95 Ave., 5199905555〉 Alberta			Edmo	ontor	٦,	
TablerT			TDesing	TE					
Table: Tr		49875	1 Begin: 25-Jan-2017	31-De	ec-2020		Lost: 1500		
		PID: 15948	TBegin: Docto 20-Apr-2017 31-De		or: ec-2020				
		PID: 98143	TBegin: I-Sept-2020	TEnd: 5-Mar-20	022	Invoid 2500	ce\$: 0	Insur Manı	ance: ulife

KEY-VALUE STORES

- Simple (key, value) data model
 - Key = unique id
 - Value = a text, a binary data, structured data, etc.
- Simple queries
 - put(key, value)
 - Inserts a (key, value) pair
 - value = get(key)
 - Returns the value associated with key
 - {(key, value)} = get_range(key1, key2)
 - Returns the data whose key is in interval [key1, key2]

WIDE-COLUMN SYSTEMS

- Reverse relational maxim of "each fact in its own table"
 - "everything about an entity are together"
- Loose schema
 - Define column family
 - Column families exist in each row, but not columns
- Operators for creation, insertion, retrieval, and deletion

Name Jane Smith Address 54 Beachwood St.,Waterloo Insurance ON8677 Medications Info Name Novasen MD Info Name YYY ZZZ 15948 Patient Info Name Ali Nadir Address 583 College St., Toronto MD Info Medications Info Mame YYY ZZZ Mame ZZZ	49875	Patient Inf	0		
Jane Smith 54 Beachwood St.,Waterloo ON8677 Medications Info MD Info Name Pharmacy Novasen XXX 15948 Patient Info Name Address Ali Nadir 583 College St., Toronto Medications Info MD Info Name Address Ali Nadir S83 College St., Toronto		Name	Address		Insurance
Medications Info MD Info Name Pharmacy Novasen XXX IS948 Patient Info Name Address Ali Nadir 583 College St., Toronto Medications Info MD Info Name Address Ali Nadir S83 College St., Toronto		Jane Smith	54 Beachwo	od St.,Waterloc	ON8677
Name Novasen Pharmacy XXX Name YYY Name ZZZ 15948 Patient Info Name Ali Nadir Address 583 College St., Toronto Medications Info MD Info Name XAYA		Medicatio	ns Info	s Info MD Info	
Novasen XXX YYY ZZZ 15948 Patient Info		Name	Pharmacy	Name	Name
15948 Patient Info Name Address Ali Nadir 583 College St., Toronto Medications Info MD Info Name XAYA		Novasen	XXX	YYY	ZZZ
Name Address Ali Nadir 583 College St., Toronto Medications Info MD Info Name XAYA	15948	Patient Inf	fo		
Ali Nadir 583 College St., Toronto Medications Info MD Info Name XAYA		Name	Address		
Medications Info MD Info Name XAYA		Ali Nadir	583 College	e St., Toronto	
Medications Info Name XAYA					
Name XAYA		Medicatio	ons Info		,
				Name	
	98143				

Table: Something

WIDE-COLUMN SYSTEMS

- Reverse relational maxim of "each fact in its own table"
 - "everything about an entity are together"
- Loose schema
 - Define column family
 - Column families exist in each row, but not columns
- Operators for creation, insertion, retrieval, and deletion

DOCUMENT STORES

Documents

- Hierarchical structure, with nesting of elements
- Value is a JSON object -

	Databa	ase			
C	ollectior	n: Patient			
Γ	PID: 4987	⁷⁵ Address:			
		Street: 54 Beachw	City: rood St. Waterl	00	Province: Ontario
· –		Medicatio	Medications:		
		[00216666,	02439816, 0222	0261]	
L	PID:1594	8			
	PID: 9814	43	····		
	olloctio	e: Modicino			
	onection				
Ме 002	edCode: 216666	Name: Novasen	Vendor: XXX	Admi Oral	nistration:
Ме 02-	edCode: 439816	Name: Ramipril	Vendor: [XXX,YYY]	Admii Oral	nistration:
	dCode:	Name:	Vendor:	Admi	nistration:

DOCUMENT STORES

Documents

- Hierarchical structure, with nesting of elements
- Value is a JSON object
- Simple queries
 - db.Medicine.find({Vendor:"XXX"})
 - Find all medicines supplied by XXX
 - db.Patient.find({Address.Province:"Ontario"})
 - Find the records of patients who live in Ontario

	Database			
Сс	ollection: P	atient		
	PID: 49875	Address: Street: 54 Beachwood St. Medications: [00216666, 024398	City: Waterloo 16, 02220261]	Province: Ontario
1	PID:15948			
	PID: 98143			

Collection: Medicine

MedCode:	Name:	Vendor:	Administration:
00216666	Novasen	XXX	Oral
MedCode:	Name:	Vendor:	Administration:
02439816	Ramipril	[XXX,YYY]	Oral
MedCode:	Name:	Vendor:	Administration:
02220261	Penicillin	[ZZZ,AAA]	Intramuscular

DOCUMENT STORES

Documents

- Hierarchical structure, with nesting of elements
- Value is a JSON object
- Simple queries
 - db.Medicine.find({Vendor:"XXX"})
 - Find all medicines supplied by XXX
 - db.Patient.find({Address.Province:"Ontario"})
 - Find the records of patients who live in Ontario

GRAPH DATABASES

- When relationships are important
- Model:
 - Vertices represent entities
 - Edges represent relationships
- Consider Facebook graph and find friends of my friends

```
MATCH pMutualFriends=(me { name: 'Tamer' })-
[:FRIEND*2..2]->(foaf)
WHERE NOT (me)-[:FRIEND]-(foaf) AND NOT me=foaf
RETURN foaf.name
```


Social network

GRAPH DATABASES

- When relationships are important
- Model:
 - Vertices represent entities
 - Edges represent relationships
- Consider Facebook graph and find friends of my friends

```
MATCH pMutualFriends=(me { name: 'Tamer' })-
[:FRIEND*2..2]->(foaf)
WHERE NOT (me)-[:FRIEND]-(foaf) AND NOT me=foaf
RETURN foaf.name
```


SCALE-OUT SOLUTIONS – DEALING WITH VOLUME

Data may be too big to fit in one machine

Computation may be too heavy to be done by one machine

Employ a number of machines, distribute data and distribute computation

GEOGRAPHICALLY DISTRIBUTED DATA CENTRES

CLOUD COMPUTING

On-demand, reliable services provided over the Internet in a cost-efficient manner

- Cost savings: no need to maintain dedicated compute power
- Elasticity: better adaptivity to changing workload
- Infrastructure-as-a-Service (laaS)
- Platform-as-a-Service (PaaS)
- Software-as-a-Service (SaaS)

INSIDE A DATA CENTRE – PARALLEL DBMS

DATA PARTITIONING & QUERYING

PATIENT

PID	PName	InsNo	Street	City	Province
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario
15948	Ali Nadir	ON7740	583 College St.	Toronto	Ontario
98143	Jiang Ni	AB39658	189-95 Ave.	Edmonton	Alberta
75880	Tom White	ON6409	884 Water St.	Burlington	Ontario
13086	Mark Smith	ON7843	54 King St.	Vancouver	BC

TREATMENT

PID	<u>Begin</u>	End	EID	Cost
49875	25-Jan-2017	31-Dec-2020	34757200	11500
15948	20-Apr-2017	31-Dec-2020	85993920	37300
49875	I-Sept-2020	5-Mar-2022	34757200	25000

Treatment Part-4 Treatment Part-2

DATA PARTITIONING & QUERYING

PATIENT

<u>PID</u>	PName	InsNo	Street	City	Province
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario
15948	Ali Nadir	ON7740	583 College St.	Toronto	Ontario
98143	Jiang Ni	AB39658	189-95 Ave.	Edmonton	Alberta
75880	Tom White	ON6409	884 Water St.	Burlington	Ontario
13086	Mark Smith	ON7843	54 King St.	Vancouver	BC

TREATMENT

PID	<u>Begin</u>	<u>End</u>	EID	Cost
49875	25-Jan-2017	31-Dec-2020	34757200	11500
15948	20-Apr-2017	31-Dec-2020	85993920	37300
49875	I-Sept-2020	5-Mar-2022	34757200	25000

SELECT P.PName, P.City, T.Cost
FROM PATIENT P, TREATMENT T
WHERE Cost > 15000
AND P.PID = T.PID;

Treatment Part-2

Input Data Data Partition I	Data Partition 2	Data Partition 3	Data Partition 4
-----------------------------	------------------	------------------	------------------

STREAMING DATA – DEALING WITH VELOCITY

- Data is not static, but "streams" into the system
- Unbounded
- Examples
 - Streaming video/music
 - Sensor data
 - Financial ticker data

Time

PID	Reading	Timestamp
-----	---------	-----------

PID	Reading	Timestamp
1342	Reading I	5


```
5 __ (1342, Reading I)
6 __
7 __ (1896, Reading I)
```

PID	Reading	Timestamp
1342	Reading I	5
1896	Reading I	7

Time

```
5 ____ (1342, Reading 1)
6 ___
7 ___ (1896, Reading 1)
8 ___ (1342, Reading 2)
```

PID	Reading	Timestamp
1342	Reading I	5
1896	Reading I	7
1342	Reading 2	8
Time

```
5 __ (1342, Reading 1)
6 __
7 __ (1896, Reading 1)
8 __ (1342, Reading 2)
9 __ (9546, Reading 3)
```

PID	Reading	Timestamp
1342	Reading I	5
1896	Reading I	7
1342	Reading 2	8
9546	Reading 3	9

Time

```
5 (1342, Reading I)

6 (1342, Reading I)

7 (1896, Reading I)

8 (1342, Reading 2)

9 (9546, Reading 3)

10 (4678, Reading 10)
```

PID	Reading	Timestamp
1342	Reading I	5
1896	Reading I	7
1342	Reading 2	8
9546	Reading 3	9
4678	Reading 10	10

Time

•

```
(1342, Reading 1)
5
6
7
      (1896, Reading 1)
8
      (1342, Reading 2)
      (9546, Reading 3)
9
      (4678, Reading 10)
10
11
12
      (4678, Reading 11)
13
      (1342, Reading 2)
14
•
```

PID	Reading	Timestamp
1342	Reading I	5
1896	Reading I	7
1342	Reading 2	8
9546	Reading 3	9
4678	Reading 10	10
4678	Reading 11	13
1342	Reading 2	14

Time

•

•

			PID	Reading	Timestamp
5 +	(1342, Reading 1)	How to process streaming data			_
6 +			1342	Reading I	5
7 +	(1896, Reading 1)		1896	Reading I	7
8 +	(1342, Reading 2)		1342	Reading 2	8
9 +	(9546, Reading 3)		9546	Reading 3	9
10+	(4678, Reading 10)		4678	Reading 10	10
			4678	Reading 11	13
12 -	(4678, Reading 11)		1342	Reading 12	14
14-	(1342, Reading 12)				

Time

•

```
5
      (1342, Reading 1)
6
7
      (1896, Reading 1)
8
       (1342, Reading 2)
      (9546, Reading 3)
9
      (4678, Reading 10)
10
11
12
      (4678, Reading 11)
13
      (1342, Reading 12)
14
•
```

- How to process streaming data •As data arrives
 - Simple operations (e.g., filtering)

PID	Reading	Timestamp
1342	Reading I	5 🔶
1896	Reading I	7
1342	Reading 2	8
9546	Reading 3	9
4678	Reading 10	10
4678	Reading 11	13
1342	Reading 12	14

Time

•

```
5
      (1342, Reading 1)
6
7
      (1896, Reading 1)
8
       (1342, Reading 2)
      (9546, Reading 3)
9
      (4678, Reading 10)
10
11
12
      (4678, Reading 11)
13
      (1342, Reading 12)
14
•
```

- How to process streaming data •As data arrives
 - Simple operations (e.g., filtering)

PID	Reading	Timestamp
1342	Reading I	5
1896	Reading I	7 🔶
1342	Reading 2	8
9546	Reading 3	9
4678	Reading 10	10
4678	Reading 11	13
1342	Reading 12	14

Time

•

```
5
      (1342, Reading 1)
6
7
      (1896, Reading 1)
8
       (1342, Reading 2)
      (9546, Reading 3)
9
      (4678, Reading 10)
10
11
12
      (4678, Reading 11)
13
      (1342, Reading 12)
14
•
```

- How to process streaming data •As data arrives
 - Simple operations (e.g., filtering)

PID	Reading	Timestamp
1342	Reading I	5
1896	Reading I	7
1342	Reading 2	8 🗕 🚽
9546	Reading 3	9
4678	Reading 10	10
4678	Reading 11	13
1342	Reading 12	14

Time

•

```
(1342, Reading 1)
5
6
7
      (1896, Reading 1)
8
      (1342, Reading 2)
      (9546, Reading 3)
9
      (4678, Reading 10)
10
11
12
      (4678, Reading 11)
13
      (1342, Reading 12)
14
•
```

 How to process streaming data As data arrives Simple operations (e.g., filtering) Batching Analytics Windowing 	342 896 342 9546 4678 4678

PID	Reading	Timestamp	
342 896 342	Reading I Reading I Reading 2	5 7 8	
546	Reading 3	9	
678	Reading 10	10	
678	Reading II	13	
342	Reading 12	14	

Time

•

•

```
(1342, Reading 1)
5
6
7
      (1896, Reading 1)
8
      (1342, Reading 2)
      (9546, Reading 3)
9
      (4678, Reading 10)
10
11
12
      (4678, Reading 11)
13
      (1342, Reading 12)
14
•
```

 How to process streaming data As data arrives Simple operations (e.g., filtering) Batching Analytics Windowing 	342 896 342 9546 4678 4678 342
Windowing	4678 4678 1342

D	Reading	Timestamp	
2	Reading I	5	
6	Reading I	7	
2	Reading 2	8	
6	Reading 3	9	
8	Reading 10	10	
8	Reading 11	13	
2	Reading 12	14	

PII

TRADITIONAL DBMS VS STREAMING

- Other differences
 - Push-based (data-driven)
 - Persistent queries

- Unbounded stream
- System conditions may not be stable

Big Data Concerns

Logical Integration

Physical Integration = Data Warehouse

DATA WAREHOUSE

"A subject-oriented, integrated, nonvolatile, time-variant collection of data in support of management's decisions." [W.H.Inmon] Data comes from multiple databases

Tools to make business decisions quickly and reliably based on historical data

DATA MODELING FOR DATA WAREHOUSES

- Usually multi-dimensional
- Advantages
 - Hierarchical views
 - Roll-up/drill-down
 - Querying directly in any combination of dimensions
- In relational implementations, dimensions mapped to tables

DATA MODELING FOR DATA WAREHOUSES

- Usually multi-dimensional
- Advantages
 - Hierarchical views
 - Roll-up/drill-down
 - Querying directly in any combination of dimensions
- In relational implementations, dimensions mapped to tables

WAREHOUSE FUNCTIONALITY

- Roll-up: Data is summarized with increasing generalization
 - E.g., going from daily or weekly reports to annual aggregations
- Drill-Down: Increasing levels of detail are revealed
 - E.g., going from national sales to sales from a particular region

WAREHOUSE FUNCTIONALITY

- Roll-up: Data is summarized with increasing generalization
 - E.g., going from daily or weekly reports to annual aggregations
- Drill-Down: Increasing levels of detail are revealed
 - E.g., going from national sales to sales from a particular region
- Slice-and-dice: Select and project data with respect to some dimensions
 - E.g., finding sales in a given region in a given quarter

DATA INTEGRATION – DATA LAKES

"massive collection of datasets that:

- may be hosted in different storage systems;
- may vary in their formats;
- may not be accompanied by any useful metadata or may use different formats to describe their metadata; and
- may change autonomously over time."

DATA LAKE

- Capture data in its raw form
- No schema
 - No ETL/ELT
 - Schema-on-read
- Do not know what the data will be used for
- Let downstream tasks (applications) provide schema
- Easier to participate, harder to use

CONTENTS OF DATA LAKE & USE

- Raw data
 - Structured (Tabular)
 - Semi-structured (JSON, log files)
 - Unstructured (videos, images, binary files)
- Schema-on-Read
 - Application finds data
 - How?
 - Application formats data
 - ETL on Read

BEWARE OF DATA SWAMPS

DATA WAREHOUSES VS DATA LAKES

- Simpler to architect
- Single store
- Centralized analytics
- Privacy concerns

- Complexity of dealing with autonomous systems
- Distributed
- Federated/distributed analytics
- Maintain original ownership of data

DATA PREPARATION

DATA PREPARATION

DATA INTEGRATION \Rightarrow DATA QUALITY ISSUES

89% of executives believe that data quality issues impact the quality of customer service they provide (2017)

experian.

Only 33% of senior executives have a high level of trust in the accuracy of their big data analytics (2016)

KPMG

59% of executives do not believe their company has capabilities to generate business insights from their data (2016)

DATA INTEGRATION \Rightarrow DATA QUALITY ISSUES

DATA QUALITY – DEALING WITH VERACITY

DAMA UK Working Group, 2013

DATA CLEANING

- What do we want to do?
 - Remove errors
 - Fill missing values
 - Transform units and formats
 - Map and align columns
 - Remove duplicate records
 - Fix integrity constraints violations
- Data unification
- Data repair

ERROR DETECTION

Ilyas and Chu, **Trends in Cleaning Relational Data: Consistency and Deduplication** Foundations and Trends in Database Systems, 2015

DATA UNIFICATION

SCHEMA MAPPING

MedCode

Code

- How entities in different data repositories map to each other
- Part of ETL/ELT process

Name

Name

Administration

Use

DATA UNIFICATION

DATA DEDUPLICATION

- Eliminating duplicate records
- Comparison → similarity measure
- Machine learning for classifying items as duplicates

MISSING VALUES

- Real data is full of Nulls, and special values (99999)
- Curse of Nulls
 - N/A
 - Don't know
 - Not entered
- Make query answering difficult

PATIENT

<u>PID</u>	PName	InsNo	Street	City	Province
49875	Jane Smith	ON8677	54 Beachwood St.	Waterloo	Ontario
15948	Ali Nadir	ON7740	583 College St.	Toronto	Ontario
98143	Jiang Ni		189-95 Ave.	Edmonton	Alberta
75880	Tom White	ON6409	884 Water St.	Burlington	
13086	Mark Smith	ON7843	54 King St.	Waterloo	Ontario

DATA REPAIR

RULE VIOLATIONS

• Consider integrity constraints

EMPLOYEE

ID	FNname	LName	ROLE	CITY	PROV	SALARY
105	Anne	Nash	Mgr	Toronto	ON	110
211	Mark	White	Eng	Vancouver	BC	80
386	Mark	Lee	Eng	Edmonton	AB	75
235	John	Smith	Mgr	Toronto	ON	1200

DATA REPAIR

RULE VIOLATIONS

- Consider integrity constraints
 - Describe business rules
 - (ROLE, CITY) \rightarrow SALARY

EMPLOYEE

ID	FNname	LName	ROLE	CITY	PROV	SALARY
105	Anne	Nash	Mgr	Toronto	ON	110
211	Mark	White	Eng	Vancouver	BC	80
386	Mark	Lee	Eng	Edmonton	AB	75
235	John	Smith	Mgr	Toronto	ON	1200

Two employees of the same role, the one who lives in Toronto cannot earn less than the one who does not live in Toronto

DATA REPAIR

RULE VIOLATIONS

- Consider integrity constraints
 - Describe business rules
 - (ROLE, CITY) \rightarrow SALARY

EMPLOYEE

ID	FNname	LName	ROLE	CITY	PROV	SALARY
105	Anne	Nash	Mgr	Toronto	ON	110
211	Mark	White	Eng	Vancouver	BC	80
386	Mark	Lee	Eng	Edmonton	AB	75
235	John	Smith	Mgr	Toronto	ON	1200

Two employees of the same role, the one who lives in Toronto cannot earn less than the one who does not live in Toronto
DATA REPAIR

RULE VIOLATIONS

- Consider integrity constraints
 - Describe business rules
 - (ROLE, CITY) \rightarrow SALARY
- Rule violations need to be repaired

EMPLOYEE

ID	FNname	LName	ROLE	CITY	PROV	SALARY
105	Anne	Nash	Mgr	Toronto	ON	110
211	Mark	White	Eng	Vancouver	BC	80
386	Mark	Lee	Eng	Edmonton	AB	75
235	John	Smith	Mgr	Toronto	ON	1200

Two employees of the same role, the one who lives in Toronto cannot earn less than the one who does not live in Toronto

Data Integration

Data Preparation/Cleaning

" 'Data provenance' refers to a record trail that accounts for the origin of a piece of data (in a database, document or repository) together with an explanation of how and why it got to the present place. "

[Encyclopedia of Database Systems]

- How was this result generated?
- What mappings produced it?
- How trustable is it?

- How was this result generated?
- What mappings produced it?
- How trustable is it?

- How was this result generated?
- What mappings produced it?
- How trustable is it?

Find names of patients and the names of medications that they take.

- How was this result generated?
- What mappings produced it?
- How trustable is it?

Find names of patients and the names of medications that they take.

SELECT P.Pname AS PatientName, M.Name AS MedName
FROM P, T, M
WHERE P.PID = T.PID
AND T.MedCode = M.MedCode;

- How was this result generated?
- What mappings produced it?
- How trustable is it?

Find names of patients and the names of medications that they take.

	•
PatientName	MedName
John Doe	Medicine A
John Doe	Medicine C
C. Preeti	Medicine B

MANAGEMENT STRATEGIES

- Lazy
 - Compute provenance when needed
 - Access to source is needed
- Eager
 - Keep an annotation with the result
 - Provenance info can be looked up
- Annotation
 - Why what data contributed
 - How what process created result
 - Where What column of what row does each result row value come from

PROVENANCE – FINAL WORDS

- Provenance is critical to understanding and assessing the believability of data
- Provenance can be helpful in
 - Explainability
 - Why an item exists
 - Scoring
 - Ranked list of results in terms of relevance
 - Reasoning about interactions
 - Demonstrate data relationships
- Careful: I have only covered the basics of provenance
 - Deriving mapping
 - Representing mapping
 - Storing annotations
 - How to query provenance

All of this gets data ready for analysis!

All of this gets data ready for analysis! Remember ...

