
BlossomTree : Evaluating XPaths in FLWOR Expressions∗

Ning Zhang
University of Waterloo

School of Computer Science

nzhang@uwaterloo.ca

Shishir K. Agrawal†

Indian Institute of Technology, Bombay

Department of Computer Science

shishk@cse.iitb.ac.in

M. TamerÖzsu
University of Waterloo

School of Computer Science

tozsu@uwaterloo.ca

Abstract

Efficient evaluation of path expressions has been stud-
ied extensively. However, evaluating more complex FLWOR
expressions that contain multiple path expressions has not
been well studied. In this paper, we propose a novel pat-
tern matching approach, calledBlossomTree, to evalu-
ate a FLWOR expression that contains correlated path ex-
pressions. BlossomTree is a formalism to capture the
semantics of the path expressions and their correlations.
We propose a general algebraic framework (abstract data
types and logical operators) to evaluateBlossomTree pat-
tern matching that facilitates efficient evaluation and ex-
perimentation. We design efficient data structures and al-
gorithms to implement the abstract data types and logical
operators. Our experimental studies demonstrate that the
BlossomTree approach can generate highly efficient query
plans in different environments.

1. Introduction

In XML query languages, in particular XQuery, a path
expression is arguably the most natural way to retrieve
nodes from tree structured data, such as XML documents.
In a more general setting, e.g., XQuery FLWOR (for-let-
where-order-by-return) expressions, path expressions are
usually used as building blocks for retrieving relevant nodes
from XML documents. The intermediate results of these
path expressions can be bound to variables, which are fur-
ther referenced by other expressions.

The following FLWOR expression is such an example
excerpted from XQuery Use Cases with minor modifica-
tions:

<bib> {
for $book1 in doc("bib.xml")//book,

∗Research supported in part by grants from Communications and Infor-
mation Technology Ontario and from the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada.

†This research was done while the author was visiting the University of
Waterloo.

$book2 in doc("bib.xml")//book
let $aut1 := $book1/author
let $aut2 := $book2/author
where $book1 << $book2

and not($book1/title = $book2/title)
and deep-equal($aut1, $aut2)

return
<book-pair>

{ $book1/title }
{ $book2/title }

</book-pair>
} </bib>

To evaluate such a query, we first formalize this FLWOR
expression into a “BlossomTree” as shown in Figure 1.
TheBlossomTree is an annotated directed graph that cap-
tures all the semantics specified in the FLWOR expression.
A vertex in the graph represents a tag-name and value con-
straints (no value constrains in this particular example) in
a path expression. Variables can be bound to any vertex,
in which case the vertex is called ablossom. An edge rep-
resents the (structural, value-based, or mixed) relationship
between tree nodes that matches the two vertices. Among
these edges, solid lines representtree edgesthat are speci-
fied by path expressions. To distinguish different axes, we
use regular solid lines to represent /-axes, and bold solid
lines to represent //-axes. The dashed lines that connect two
blossoms arecrossing edges, which are usually generated
by operators on variable bindings in thewhere-clause. To
avoid clogging the graph, tree edges are not shown as di-
rected, but their directions follow the hierarchical structure.

Given such aBlossomTree, the problem of evaluating
FLWOR expressions can be reduced to matching theBlos-
somTree against an XML document. The focus of this pa-
per is, therefore, to define a general algebraic framework for
evaluating theBlossomTree and to develop optimization
techniques based on this framework. The detailed version
of this paper can be found in [1].

2. Evaluating BlossomTree

An algebraic framework includes a set of abstract data
types and operators defined on these types.

not =

author

book

bib.xml

book

author

//

title title($t2)($t1)

<<

($book2)

($aut2)

deep−equal

($aut1)

($book1)

//

~ ~

Figure 1. A BlossomTree
The basic idea of the design of the abstract data types

is to define more “regular” data structures that isolate the
irregular tree structures. This separation allows further op-
erations to operate on the regular data structures only, thus
the operators could be more efficiently implemented.

In our algebraic framework, the “more regular” data
structure isNestedList, which is the output of NoK pat-
tern matchings. Many operations, such as selection, projec-
tion and joins, can be applied toNestedList. Another ab-
stract data typeEnv is generated when variables are bound
to some specific values in theNestedList. The final XML
document result is constructed fromEnv. The relationship
between these abstract data types is illustrated in Figure 2.

NoK

projection
join

variable
binding

XMLTree NestedList Env

construction

selection

Figure 2. Abstract data types and operators
Consider the NoK Pattern Tree illustrated in Figure 3(a),

where all nodes in the tree are returning nodes. To be able to
reference the tree node, we first (arbitrarily) fix an order on
the children, and assign each tree node a Dewey ID shown
in the parenthesis. This artificial ordering does not affect
the semantics of the pattern matching.

Figure 3(b) shows an example XML tree, where eachti

(1.1.1)

a

b

d

c

(1)

(1.2)(1.1)

(a) NoK tree
d3

b1 c1 b2

d1 d2

c2

a1

b3

(b) XML tree

b1 b2 b3 c1 c2

a1

d1 d2 d3

(c) Matchings

Figure 3. NoK Pattern Tree Pattern Matching
against an XML tree

represents thei-th occurrence of tagt. The resulting tree
is shown in Figure 3(c). The result of the match can be
thought of as a special tree structure that conforms to the
NoK pattern tree. For instance, all XML tree nodes (b1 ,
b2 , andb3) that are matched with pattern tree node1.1 are
grouped together, indicated by the box around the nodes.
By grouping such nodes together, it is efficient to retrieve
all nodes that are matched with a pattern tree node, given
its Dewey ID. The tree edges in Figure 3(c) indicate which
pairs of nodes satisfy the structural relationships specified
by the NoK pattern tree. Ifxi has an edge toym and,xi+1

has an edge toym+k, this implies thatxi can pair any of
ym up toym+k−1 to form a match to the edge(x, y) in the
NoK pattern tree. For instance, the tree edges between the
b’s andd’s in Figure 3(c) indicate thatb1 has no children
in the match,b2 has two childrend1 andd2 , andb3 has
one childd3 in the match.

The result tree is a compact representation of all map-
pingsf from NoK Pattern Tree nodes to XML tree nodes.
Conceptually, the result tree can be defined as an instance
of an abstract data type, which we termNestedList.

Logical operators can be defined onNestedList. To be
able to reference nodes, these operators take Dewey ID’s as
parameter. The signature of each of these operations is from
a NestedList (in the case of Join, twoNestedList’s) to a
NestedList. The semantics of each operator is as follows:
• Projection (πID): Navigate theNestedList according

to the Dewey ID to a list of subtrees. The result is the
concatenation of all the roots of the subtrees.

• Selection (σϕ(ID)): First project on the Dewey ID,
then evaluate the predicateϕ on the projected list and
remove items that return false.

• Join (1ϕ(ID1,ID2)): First project the Dewey ID’s on
the corresponding twoNestedList’s, and then apply
join predicateϕ on the projected lists.

Note that the abstract data types and operators are defined
at conceptual level, they can be implemented using differ-
ent physical data structures and algorithms. We defined
different algorithms for these operators. A particularly in-
teresting operator is the join operator since it could be a
blocking operator depending on the type of the join condi-
tion (descendant, document order, etc.). Based on differ-
ent blocking properties, we developed pipelined joins and
nested-loop joins for different types of join conditions. Our
experiments show that different plans of the same query can
result in very different performance. A cost model is crucial
to choose the best plan.

References
[1] N. Zhang, S. K. Agrawal, and M. T.̈Ozsu. BlossomTree:

Evaluating XPaths in FLWOR Expressions. Techni-
cal Report CS-2004-58, University of Waterloo, 2004.
Available at http://db.uwaterloo.ca/ ∼ddbms/
publications/xml/TR-CS-2004-58.pdf .

http://db.uwaterloo.ca/~ddbms/publications/xml/TR-CS-2004-58.pdf
http://db.uwaterloo.ca/~ddbms/publications/xml/TR-CS-2004-58.pdf

	1 . Introduction
	2 . Evaluating BlossomTree

