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Abstract Several salient object-based data models have
been proposed to model video data. However, none of
them address the development of an index structure to
efficiently handle salient object-based queries. There are
several indexing schemes that have been proposed for
spatio-temporal relationships among objects and they
are used to optimize timestamp and interval queries,
which are rarely used in video databases. Moreover, these
index structures are designed without consideration of
the granularity levels of constraints on salient objects
and the characteristics of video data. In this paper, we
propose a multi-level index structure (MINDEX) to effi-
ciently handle the salient object-based queries with dif-
ferent levels of constraints. We present experimental re-
sults showing the performance of different methods of
MINDEX construction.

1 Introduction

has been used in many application fields, such as sports
video analysis, surveillance video monitoring systems,
digital news library, etc. However, current computer vi-
sion and image processing techniques can only offer lim-
ited query ability on primitive audio-visual features. The
query techniques which have been used in image databases,
such as query-by-example [22], can not be easily applied
to video retrieval because of the limited number of video
examples. Based on the characteristics of video data, the
content-based video retrieval approaches can be classi-
fied into the following three categories:

1. Visual feature-based retrieval [33,19]: In this approach,
a video is recursively broken down into scenes, shots

and frames. Key frames are extracted from the shots
and the scenes to summarize them, and visual fea-
tures from the key frames are used to index them.
With indexed key frames, this approach converts video
retrieval problem into the retrieval of images from
image databases.

2. Keywords or free text-based retrieval [26,14]: In this
approach, a content description (annotation) layer is
put on top of the video stream. Each descriptor can
be associated with a logical video sequence or physi-
cally segmented shots or scenes. Content-based video
retrieval is converted to a search for the specified text
in annotation data.

3. Salient object-based retrieval [18,20,5,15,9]: In this
approach, salient objects are extracted from the videos
and the spatio-temporal relationships among them
are described to express events or concepts. The salient
objects are the physical objects that appear in video
data, (e.g. houses, cars and people), that are of in-
terest in one or more applications.

Visual feature-based retrieval has the advantage that
visual feature extraction and comparison can be auto-
matically performed, with very little interpretation re-
quired on visual features. However, it is not realistic
to expect the users to be knowledgable about low level
visual features. Most importantly, high level semantic
similarity may not correspond to the similarity of low
level features. For example, sky and sea have a simi-
lar visual component, “blue color”, however, they ex-
press totally different concepts. Keyword or free text-
based retrieval is directly related to the semantics of
video content and is easier for users to understand and
use. It remains the most popular approach in current
video database systems such as news video and doc-
umentary video databases. However this approach re-
quires too much human effort to annotate video data
and annotations are subjective. Furthermore, text anno-
tations can not cover all the aspects of video data con-
tent. For example, it is very difficult to textually describe
the moving trajectory of a salient object. Compared to
these, salient object-based search is more intuitive and
more suitable for human understanding, especially for
naive users. Users can directly manipulate salient ob-
jects, their properties, and the spatio-temporal relation-
ships among them. They can also construct queries to
retrieve videos which contain events that the users are
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interested in. These events can be expressed through the
spatial or temporal relationships among the salient ob-
jects. For example, an interleaving pattern of the tempo-
ral relationship “before” between two cars can be used to
express a car chase event. Queries related to the spatio-
temporal relationships of salient objects can be classified
into four types:

1. Salient object existence. In this type of query, users
are only interested in the appearance of an object.
For example, given a movie database, a director may
submit the query “give me all the video shots in
which actor a appears” in order to observe the acting
skills of the actor.

2. Temporal relationships. These queries involve tempo-
ral relationships among objects in videos. One pos-
sible application for this type of query is to extract
interesting shots from movies and construct a trailer.
For example, in order to use the shot/reverse shot
patterns [1] to construct a car chase scene in a movie
trailer, a video editor may first submit two queries,
“Give me all the video shots in which car a appears
before car b” and “Give me all the video shots in
which car b appears before car a”. After that, he/she
can choose the shots from two results and concate-
nate them in an interleaving pattern to build a chase
scene between cars a and b.

3. Spatial relationships. In these queries, users express
simple directional or topological relationships among
salient objects. These queries may be useful, for ex-
ample, in sport video analysis. Consider a coach who
may want to analyze Michael Jordan’s movements
when he is under the backboard in order to train his
defense team. A query that he may submit the query
over a NBA video database: “Give me all the shots
in which Michael has an under relationship with the
backboard”.

4. Spatio-temporal relationships. Users are concerned with
the spatio-temporal relationships among salient ob-
jects in these queries. This type of query is useful, for
example, in surveillance video systems. Consider the
case where one may want to retrieve all the shots in
which suspect a enters bank b by submitting a query
“Give me all the shots in which a enters b ”.

A major problem in video databases is to find an
effective index that can optimize video query process-
ing. In the four types of queries listed above, the query
constraints are set on the spatial or temporal relation-
ships among salient objects. Therefore, it may appear
that well developed spatio-temporal index structures,
such as 3DR-tree [28], HR-tree [21], RT-trees [31], and
MVR-tree [27], may be used to improve the query ef-
ficiency of salient object-based queries. However, these
index structures are mainly designed to optimize times-

tamp and interval queries [31], which are common in
spatio-temporal databases, but not in video databases.
Timestamp queries retrieve all objects that intersect with

a value range window at a specific time. Interval queries
consider sequences of timestamps.

These types of queries are rarely, if ever, used in video
databases, because they require users to have a compre-
hensive knowledge of the story line of a video. It is very
difficult for users to accurately specify the timestamp or
time interval in which the events that they are interested
in occur, even though they may be interested in finding
the timestamps or intervals of interesting events. In this
paper, we focus on index structures to improve efficiency
of salient-object based queries.

Two aspects need to be considered when we design
an index structure for video databases:

1. Characteristics of queries: Creating index structures
without knowing the characteristics of queries may
result in the maintenance of redundant information.
For example, if we create an independent index for
each type of salient object-based queries, the index
on spatial relationships also contains the information
about object existence. Salient object-based queries
allow users to set constraints on salient objects at
four different granularity levels corresponding to the
four types of queries described above. Different amount
of information is required for different constraints.

2. Characteristics of video data: Characteristics of video
data may affect effectiveness and efficiency of an in-
dex structure. For example, in movies, it rarely hap-
pens that more than four actors appear in the same
frame. Therefore, an index structure on spatial re-
lationships which relate to more than three objects
will be less useful compared to an index structure on
pairwise spatial relationship, since most of the time,
video frames contain only two actors. Another in-
teresting characteristics of video data is due to the
shot/reverse shot techniques, which are often used by
video editors to construct dialog and action scenes
[1]. Even in sport videos, shot/reverse shot are often
used to give the audience different points of view.
These techniques cause similar spatial layouts of salient
objects to appear in an interleaving pattern.

In this paper, based on a video data model [6], we
propose a multi-level index structure, called MINDEX,
to improve the efficiency of salient object-based queries
that takes into account above two points. At the first
level, an extendable hash is created to find the ID of a
salient object from its name. A B+ tree is set up at the
second level to index pairwise temporal relationships be-
tween two salient objects. Finally, at the third level, a
perfect hash is developed to index the spatial relation-
ships among salient objects that appear in each shot. In
order to find the optimal index methods for MINDEX,
we also propose alternative approaches: signature files
and inverted files as the second and third level of MIN-
DEX.

The rest of the paper is organized as follows: Sec-
tion 2 presents some related works on index structures.
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The video data model that forms the base of our index
structure is introduced in Section 3. Section 4 presents
the MINDEX. We give experimental results on the per-
formance comparison on different methods of MINDEX
construction in Section 5. We conclude in Section 6.

2 Related Work

As mentioned earlier, there has not been much work on
indexing salient objects and their spatio-temporal re-
lationships in video data. Several related index struc-
tures are proposed for spatio-temporal databases, image
databases and video databases. We briefly review some
of the index proposals in this section.

The 3DR-tree [30] is originally proposed to speed
up the operations of multimedia object composition and
synchronization. It requires that indexed objects do not
change their locations over time. 3D Minimum Bound-
ing Boxes (MBB) are used to encapsulate objects over
which a 3D R-tree is constructed. With the 3DR-tree,
an interval query can be efficiently answered by finding
the intersection between the 3D MBB of the query and
the MBBs in the 3DR-tree. However, MBBs of moving
objects that cover a large portion of the data space may
lead to high overlap and low discrimination ability of the
3DR-tree.

RT-trees [31], HR-trees [21], and MVR-trees [27] have
been proposed to index spatio-temporal relationships.
The RT-tree is a spatio-temporal version of the R-tree;
it indexes all the spatio-temporal information in one R-
tree, which makes it unmanageable when the number
of changing objects is large. The MVR-tree can be con-
sidered as a variation of the 3DR-tree in that it com-
bines the concepts of multi-version B tree [2] and the
3DR-tree. An HR-tree can efficiently handle timestamp
queries since such a query can be converted into a search
over a static R-tree. However, for an interval query, all
the trees whose timestamps are located inside the inter-
val have to be searched. The aims of these index struc-
tures are to improve the efficiency of the system in deal-
ing with the timestamp and interval queries. In order to
answer queries that involve salient objects, all the times-
tamped R-trees have to be searched in the HR-tree or a
large number of timestamp queries have to be executed
against the 3DR-tree.

Several approaches have been proposed to improve
the efficiency of spatial relationship-based queries on im-
age databases [12,17,3,10]. Basically, three index struc-
tures or their variations exist: inverted file, hash table,
and signature file. Inverted files [12] index the appear-
ance of objects in images by creating an index on the
name of each object. Querying multiple objects requires
taking the intersection of the results of multiple queries
over each of the objects. Building a perfect hash over
pairwise spatial relationships have been proposed [3].
Again, querying over multiple pairs of spatial relation-
ships requires multiple queries. Furthermore, the perfect

hash structure requires a priori knowledge of all the im-
ages. Finally, various signature file structures have been
proposed to represent 2D-strings [25] in image databases.
Two-level signature file [17] creates an image signature
based on spatial relationships among the objects in an
image and forms a block signature from all the objects
of the images in the block. This is improved upon by
a multi-level signature file structure [16] that creates
higher-level signatures with bigger size blocks. A two
signature-based multi-level signature file structure has
also been proposed handel a wider set of queries over
2D-strings.

In video databases, in addition to spatial relation-
ships, temporal relationships are important to describe
the characteristics of salient objects. A content-based
video query language (CVQL) is proposed in [15], that
supports video retrieval by specifying spatial and tem-
poral relationships of content objects. The queries are
processed in two phases: the elimination-based process-
ing phase and the query predicate evaluation phase. The
elimination phase is proposed to eliminate the unqual-
ified video without accessing the video data and the
behavior-based function evaluation phase is introduced
to examine video functions that are specified in query
predicates for retrieving query results. The behavior of
salient objects are classified into static, regular moving,
and random moving. In order to improve the efficiency
of evaluating video functions, an index structure named
M-index is proposed to store the behaviors of its content
objects. For each type of behavior in a video, an inde-
pendent index structure is created (e.g. Hash, B+ tree,
or R+ tree). However, M-index only indexes spatial po-
sition information of salient objects, while the temporal
relationships among salient objects are not considered.

Döndeler et al. [9] propose a rule-based video database
system which supports salient object-based spatio-temporal
and semantic queries. In their system, video clips are first
segmented into shots whenever the current set of rela-
tionships among the salient objects are changed. The
frame at which the change occurs is selected as a key
frame. The directional, topological and 3D relations of
salient objects in a shot in are stored as Prolog facts
of a knowledge-base. The comprehensive set of inference
rules of the system helps reduce the number of facts to
be stored. However, the system does not provide explicit
index structures to support salient object appearance or
spatio-temporal queries. It relies on the implicit indexes
provided by the implementation language SWI-prolog.
Therefore, the indexes in their system is implementation
dependent.

In an earlier work [4], we proposed a two level in-
dex structure for salient object-based queries. A Salient

Object Inverted List acts as the first level of the index
structure to index key frames in which salient objects ap-
pear. A variation of HR-tree (called VHR-tree) is used to
index the spatial relationships among the salient objects
in key frames, which constructs the second level of the
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index structure. VHR-trees are designed with the con-
sideration of shot/reverse shot patterns. Figure 1 shows
how a VHR-tree handles the spatial patterns brought by
shot/reverse shots. At timestamp T1, all the salient ob-
jects that appear at T0 disappear, and new set of nine
salient objects appear, thus setting up a new R-tree at
T1. At timestamp T2, instead of only searching its im-
mediate precedent R2 at T1 as the HR-trees does, the
VHR-tree checks the R-trees at T1 and T0, and uses the
unchanged part of the R-tree at T0. The same construc-
tion procedure applies for timestamp T3.
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Fig. 1 An example of VHR-tree

However, the two level index structure does not con-
sider the temporal relationships among the salient ob-
jects, and sequential scan has to be used to answer tem-
poral and spatio-temporal queries.

3 Modeling Video Data

3.1 Overview of the Video Data Model

We use a video data model [6] that captures the struc-
tural characteristics of video data and the spatio-temporal
relationships among salient objects that appear in the
video. The model extends the DISIMA model [23] by
adding a video data layer. Figure 2 shows an overview
of the improved video data model and its links to the
DISIMA image data model.

The DISIMA model captures the semantics of im-
age data through salient objects, their shapes and the
spatial relationships among them. It is composed of two
main blocks (a block is defined as a group of semantically
related entities), as shown on the right hand side of Fig-
ure 2: the image block and the salient object block. The
image block consists of two layers: the image layer and
the image representation layer. The DISIMA model cap-
tures both specific information on every appearance of a
salient object in an image (by means of physical salient

objects and properties) and the semantics or meaning of
the salient object (by means of logical salient objects).
The DISIMA model supports a wide range of queries,
from semantic-based to feature-based queries.

A video is often recursively decomposed into scenes
and shots. Shots are summarized by key frames. A frame
is an image with some specifics (time information, shot
it is extracted from, etc.) which can be represented as a
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Fig. 2 Overview of the video data model and its links to the
DISIMA data model

special kind of image (subclass of image). A new video
block, as shown on the left hand side of Figure 2, is in-
troduced to capture the representation and the recursive
composition of videos. The lowest level in the video block
is the shot, and a shot is linked to its key frames stored
as images in the image block. The video block has four
layers: video, scene, shot and video representation. Be-
cause a video frame is treated as a special type of image,
it inherits all the attributes defined for image entities
in addition to a time-related attribute that models the
temporal characteristics. The relationship between key
frames and shots sets up the connection between a video
block and a DISIMA image block.

3.2 Components of the Video Data Model

The definitions of components of the video data model
are given below.

Definition 1. A key frame is a video frame that is
selected from a shot to represent the salient contents of
the shot. A key frame KFi is defined as a six-tuple

< i,Ri, Ci, Di, SHi, LSi >
where

– i is the unique frame identifer;
– Ri is a set of representations of the raw frame (e.g.

JPEG, GIF);
– Ci is the content of a key frame KFi (Definition 3);
– Di is a set of descriptive alpha-numeric data associ-

ated with KFi;
– SHi is the shot (Definition 5) to which KFi belongs;
– LSi is the life-span of the frame represented as a

closed time interval [Ts, Te], which specifies the por-
tion of the shot that KFi represents. Since LSi is
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within the shot, it must satisfy LSi 4 SHi.Ii where
4 is a “sub-interval” operation, defined as follows.
Given two time intervals IA and IB , IA 4 IB if and
only if IB .Ts ≤ IA.Ts and IA.Te ≤ IB .Te, where Ts

and Te are the starting and end times of an interval.

In this data model, key frames are first selected through
the automatic processes (using any of the existing key
frame selection algorithms (e.g. [32])) and manual inter-
pretation processes are used to mark out the changes of
salient objects. With these two steps, a key frame is se-
lected to represent a duration within a shot in which the
spatial relationships among salient objects contained in
that video frame hold.

We identify, as in DISIMA, two kinds of salient ob-
jects: physical and logical.

Definition 2. A physical salient object is a part of a
key frame and is characterized by a position (i.e. a set
of coordinates) in the key frame space. A logical salient

object is an abstraction of a set of physical salient objects
and is used to give semantics to that set.

Based on the definitions of physical and logical salient
objects, we define the content of a key frame as follows:

Definition 3. Ci, the content of key frame KFi, is
defined by a triple

< Pi, s, T riplelist >
where

– Pi is the set of physical salient objects which appear
in KFi and P is the set of all physical salient objects
(P = ∪iPi);

– s : Pi → L maps each physical salient object to a
logical salient object, where L is the set of all logical
salient objects.

– Triplelist is a list of spatial triples (Definition 4),
which is used to represent the spatial relationships
among objects that appear in KFi.

Definition 4. A spatial triple is used to represent the
spatial relationship between two salient objects, denoted
as:

< Oi, Oj , SRij >
where

– Oi and Oj are the physical objects that appear in
the key frame.

– SRij is the spatial relation between Oi and Oj with
Oi as the reference object. The spatial relations con-
sist of 8 directional relations (north, northwest, west,

southwest, south, southeast, east, northeast) and 6
topological relations (equal, inside, cover, overlap,

touch, disjoint).

Given n salient objects in a key frame, we need to
store n× (n− 1)/2 pairwise spatial relations in order to
capture all the spatial relationships among the salient
objects.

Definition 5. A shot is an unbroken sequence of
frames recorded from a single camera operation. A shot
SHj is defined as a five-tuple

< j, Ij ,KFSj , SCj , Dj >
where

– j is the unique shot identifier;
– Ij is a time interval which shows the starting and end

time of SHj ;
– SCj is the scene (Definition 6) to which SHj belongs.

Since SHj is within SCj , it satisfies: Ij 4 SCj .Ij ;
– KFSj is a sequence of key frames [KFj,1, . . . ,KFj,m],

where m is the number of key frames in SHi. KFSj

is used to represent the content of a shot.
– Dj is as given in Definition 1.

Definition 6. A scene is a sequence of shots which
are grouped together to convey the concept or story. A
scene SCk is defined by a five-tuple

< k, Ik, SHSk, Vk, Dk >
where

– k is the unique scene identifer;
– Ik is a time interval which shows the starting and

end times of the SCk;
– Vk is the video (Definition 7) to which SCk belongs.

SCk is a part of Vk, therefore, SCk satisfies Ik 4

Vk.Ik;
– SHSk is a sequence of shots [SHk,1, . . . , SHk,m], where

m is the number of shots in SCk. SHSk is used to
construct SCk;

– Dk is as given in Definition 1.

Definition 7. A video consists of a sequence of scenes.
A video Vn is defined by a five-tuple

< n, In, Rn, SCSn, Dn >
where

– n is the unique video identifer;
– In is a time interval which describes the starting and

end times of the video Vn. In.Ts = 0, since all the
video start at time 0;

– SCSn is a sequence of scenes [SCn,1, . . . , SCn,m] that
is contained by Vn, where m is the number of scenes
in Vn;

– Rn is a set of representations of Vn. We consider
two main representation models for videos: raster and
CAI. Raster representations are used for video pre-
sentation, browsing and navigation, while CAI (Com-
mon Appearance Interval) representations are used
to express spatio-temporal relationships among salient
objects and moving trajectories of moving objects.
The raster presentation may be one of MPEG-1, MPEG-
2, AVI, NTSC, etc. Shots and scenes are not directly
represented in the representation layer. Through time
intervals that record durations of shots or scenes and
video identifiers that indicate the video to which shots
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or scenes belong, portions of video representations
can be quickly located and used as the representa-
tion for shots or scenes;

– Dn is as given in Definition 1.

3.3 Modeling Temporal Relationships Within a Shot

In our proposed video data model, the video shot is the
smallest querying unit. Therefore, efficient capture of the
appearance of salient objects and the temporal relation-
ships among them directly affects the performance of
salient object-based queries.

The CAI model [5] captures the appearance and dis-
appearance of the salient objects. A video shot can be
represented as a sequence of CAIs, each representing an
interval in which salient objects appear together. Fig-
ure 3 shows an example shot extracted from the movie
“Gone in 60 seconds”. In this video, object O1 is Randall
and object O2 is Sara, CAI(O1) = I1, CAI(O2) = I2

and CAI(O1, O2) = I3.

I
1
 I
3
I
2


Fig. 3 CAIs of an example shot

For any two salient objects that appear in a video
shot, we define two types of temporal relationships be-
tween them: appear together and appear before:

Definition 8. Given two salient objects Oi and Oj

that appear in shot SHk, if there exists a time inter-
val [Ts, Te] 4 SHk.Ik such that both Oi and Oj appear
in [Ts, Te], we say Oi and Oj appear together in SHk,
denoted as Oi ' Oj .

Definition 9. Given two salient objects Oi and Oj

that appear in shot SHk. If Oi and Oj appear in two time
intervals [T i

s , T
i
e ] and [T j

s , T j
e ], respectively, and T i

e 6 T j
s ,

then Oi is said to appear before Oj , denoted as Oi . Oj .
The temporal relationships appear together and ap-

pear before can be used to construct other temporal re-
lationships [13]. For example, O1 . O1 ' O2 . O2
represents that O1 overlaps O2.

Definition 10. Given a shot SHi with n salient
objects O1, O2, . . . , On, the temporal string of SHi is
O1θO2θ . . . θOn (θ ∈ {',.}).A temporal string repre-
sents the temporal relationships among salient objects
that appear in a shot.

For the sample shot in Figure 3, a temporal string
is: O1 . O2 . O1 ' O2. Since ' is symmetric, another
valid temporal string of this shot is: O1 . O2 . O2 '

O1. Note that unintuitive relationships such as O2 .

O2 are acceptable since they represent occurrences in
different intervals (e.g. frames) and the relationship is
temporal.

4 MINDEX: A Multi-Level Index Structure

The analysis of the four types of salient object-based
queries discussed earlier reveals the following:

1. For salient object existence queries, it is only neces-
sary to find all the shots in which the specified salient
objects appear without any regard to their temporal
appearance orders.

2. For queries related to temporal relationships among
salient objects, in addition to checking the existence
of the salient objects, it is necessary to investigate the
temporal relationships among the salient objects.

3. For spatial queries, all the shots should be retrieved
in which the specified salient objects appear, followed
by a filtering of the shots in which the specified salient
objects have appear together temporal relationships.
These are kept as candidate shots, over which the
spatial relationships among the salient objects are
checked.

4. For spatio-temporal queries, besides following the same
steps as (3), temporal relationships among the salient
objects in the candidate shots are also checked.

Among these four different granularity levels of constraints
on salient objects, object existence queries help remove
the shots that do not contain the specified salient ob-
jects; these shots also do not satisfy the other three
types of queries. Similarly, the temporal queries with
appear together constraints can be considered as filters
to avoid unnecessary searches for spatial and spatio-
temporal queries, because the shots in which the salient
objects do not appear together can not satisfy any spa-
tial relationships. Therefore, we create an index that con-
siders different granularity levels of constraints on salient
objects. Figure 4 shows an overview of MINDEX. The
first level is a hash table on names of salient objects, a
B+ tree is used to index pairwise temporal relationships
and acts as the second level of the index structure. At
the third level, a perfect hash table is created to index
all the spatial triples that are contained in each shot.
Figure 4 only shows one possible construction of MIN-
DEX; we also propose two other alternative approaches:
signature files and inverted files [4]. The construction us-
ing signature files is presented in this paper and details
for inverted files is described in [4].

4.1 The First Level Index Structure: Hash on Names

It is more natural for users to query video databases us-
ing names of salient objects instead of their IDs (e.g.
“give me all the shots in which Tom Cruise appears”
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Fig. 4 An overview of MINDEX

is more intuitive than “give me all the shots in which
salient object 001 appears”). Furthermore, generally, users
do not know salient object IDs. Therefore, we create an
extendable hash on the names of salient objects as the
first level index structure. Hash is selected because it of-
fers O(1) access time on data files. We assume that a
name is assigned to a salient object when the video is
added to the video database. Among the many possibil-
ities, we select the shift-add-xor hash function [24] due
to its low collision rate. We use L = 5 and R = 2 in our
index structure as suggested in [24].

Since there exists the possibility that different name
strings have the same hash value, chained lists are used
to handle collisions (as shown in Figure 4). Each data
bucket of the hash table stores the ID of a salient object
and a pointer which points to next data bucket in the
chain. Each salient object is stored in a object record
structure which is defined as:

struct object record{

int ID;

string name;

pointer rootnode;

}

where “rootnode” refers to a root node of B+ tree which
is created as the second level of the index structure.

4.2 The Second Level Index

The second level of MINDEX is proposed to quickly filter
out the false alarms in answering salient object existence
queries and temporal relationship queries. We propose
three approaches, a B+ tree, a multi-level signature file
filter, and an inverted file. In the experiment section, we
compare the performance of these three access methods.

4.2.1 A B+ tree on Pairwise Temporal Relationships

Spatial, temporal, and spatio-temporal relationship queries
set constraints on at least a pair of salient objects, since
there is no spatial or temporal relationship for a sin-
gle salient object. Queries that involve more than two
salient objects can be handled by taking the intersection
of a set of query results on pairs of objects. Therefore,
for each salient object Oi, we create a B+ tree to in-
dex all pairwise temporal relationships between Oi and
other salient objects. IDs of salient objects are used as
keys. Each non-leaf node contains q + 1 pointers and q
entries for keys. The structure of leaf node is shown in
Figure 5. The value of “key” is the ID of a salient object,
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which is an integer, “overflow page” is a pointer to the
overflow pages and “next page” points to next leaf node.
The internal structure of “record of the key” is defined
as following:

struct record of the key{

int tempRel;

string linkedList;

}

where tempRel is used to store the temporal relation-
ship, it is a mapped integer value from a temporal re-
lationship. The IDs of shots in which the tempRel rela-
tionship hold are stored in the linkedList.

key
1

record of

the key
1


next

page


overflow

page
 key
2


record of

the key
2


......


Fig. 5 Layout of the leaf node of the B+ tree

4.2.2 A two signature-based multi-level signature filter

Signature files have been widely used in information re-
trieval [11,8,16]. Recently, they have been used in spatial
similarity-based image retrieval [17,29,10]. The steps to
construct signatures for images are described as follows:

1. For each salient object in an image, we transform it
into a binary code word using a hash function. The
binary code is m (signature width) bits wide and
contains exactly w (signature weight) 1s.

2. Each image signature is formed by superimposing
(inclusive OR) of all the binary codes of salient ob-
jects that are contained in the image.

When querying the appearance of salient objects, the
objects that are specified in the query are also trans-
formed into binary codes and all the binary codes are
superimposed together to form a query signature. The
query signature is checked (ANDed) with each image
signature. However, due to the false drop probability Pf

of signature files (the probability that the signature is
identified as containing the query signature, but the real
record does not contain the query terms [11]), the im-
ages that are pointed at by matched signatures need to
be further verified to remove false drops. With Pf , the
number of image n and the number of distinct salient ob-
jects s, we can compute the optimal values of signature
width m and signature weight w [16].

The image signatures that are generated using only
salient objects are called salient object-based signatures.
We can also use the same steps as above to generate spa-
tial relation-based image signatures by coding the spatial
relationship pair of salient objects that appear in the im-
ages. Elkwae and Kabuka [10] integrate two signatures
into a single index structure, named two signature-based

multi-level signature filter (2SMLSF), to index appear-
ance of salient objects and spatial relationships among
objects in images.

In this paper, we use 2SMLSF to index the appear-
ances of salient objects and pairwise temporal relation-
ships of salient objects in video shots.

Use object

signatures only


Level 1 signature
 Level h-1 signature
 Level h signature


Use temporal relation

signatures only


Video

Shots


Two signautre-based multi-level signature filter


f
1
 f
n-1
 f
n


Access Pointers
 Signature Generation Pointers


Fig. 6 Two signature-based multi-level signature filter

As shown in Figure 6, a 2SMLSF file is a forest of b-
ary trees. Every non-leaf node has b child nodes. There
are h levels in the 2SMLSF. Assume all the trees are
complete b-ary trees, the number of nodes in the struc-
ture is: n = bh. We generate salient object-based shot
signatures by superimposing binary codes of salient ob-
jects that appear in the shots and temporal relation-
based shot signatures from the temporal relation pairs
in the shots. The temporal relation-based shot signa-
tures are used as leaf nodes of the 2SMLSF, the rest of
non-leaf (block) signatures are only based on salient ob-
jects. We also propose a modified version of 2SMLSF,
named 2SMLSF+. Compared to 2SMLSF, we add one
more level signatures into the 2SMLSF that are gen-
erated from salient objects. As shown in Figure 7, in
2SMLSF+, the level 1 to h signatures are generated from
signatures of salient objects and level h + 1 signatures
(same as h level in 2SMLSF) are generated from tempo-
ral relationships among the salient objects. Due to one
more level filtering, 2SMLSF+ can remove more false
alarms when it is used to answer salient object appear-
ance and temporal relationships queries. Our experimen-
tal results in Section 5 verify this claim.

4.3 The Third Level Index: Perfect Hash for Spatial

Relationships

Both spatial and spatio-temporal queries relate to spa-
tial relationships among salient objects; therefore, an
index structure on spatial relationships will be helpful
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Fig. 7 Two signature-based multi-level signature filter +

to answer these queries. In our video data model, a se-
quence of key frames are chosen to represent a shot. The
spatial relationships among the salient objects in each
key frame are described by a list of spatial triples. Al-
though the number of key frames that are selected to rep-
resent a shot may not be large, scanning each key frame
to find the specified spatial relationship is still time con-
suming, especially when there exists a large number of
candidate shots. We use a hash table as the third level
index structure to index pairwise spatial relationships
in each shot and adapt the technique described in [3]
for this purpose. As depicted in Figure 4, key frames
that contain the same spatial triple (Oi, Oj , SRij) will
be mapped to the same hash entry and IDs of these key
frames are linked together. For each shot, since the num-
ber of key frames and the spatial relationships among
salient objects in each key frame are known, a minimum
perfect hash algorithm can be employed to reduce the
storage and avoid the conflicts. 14 integers are used to
denote spatial relationships (8 directional and 6 topolog-
ical). The hash address of a spatial triple (Oi, Oj , SRij)
is:

h(Oi, Oj , SRi,j) = SRij + associated value of Oi

+ associated value of Oj

To assign the associated values to symbols of spatial
tuples, we use Cook and Oldehoeft’s algorithm [7], which
is also used in [3].

The third level index structure is not created for each
shot. We define a shot as spatial indexable if there are
at least two salient objects that appear together in the
shot. Shots in which only one salient object appears or no
salient objects appear together do not need indexes on
spatial relationships, since there are no spatial relation-
ships that can be derived from these shots. However, cre-
ating a hash table for each spatial indexable shot induces

redundant information because shots/reverse shots cause
similar spatial layouts to appear in an interleaving pat-
tern. Figure 8 shows an example of this interleaving pat-
tern which appears in a dialog scene between “Maximus”
and “Princess” in movie “Gladiator”. In the four exam-
ple shots, SH1 has a spatial layout similar to that of SH3

as well as to SH2 and SH4. Therefore, when we create

SH
1

SH
2
 SH
4
SH
3


Fig. 8 An example of shot/reverse shot pattern in a dialog
scene

a hash table for an indexable shot SHi and (i > 1), two
precedent shots SHi−2 and SHi−1 are checked first. If
SHi−2 or SHi−1 has exactly the same spatial triples with
those of SHi, we define the corresponding hash table as
sharable to SHi. Thus, instead of creating a new hash
table for SHi, the hash table pointer of SHi is pointed
to the sharable hash table, which removes the possible
redundant information from the index structure. Figure
4 shows an example that SHj+2 and SHj share a hash
table.

We also implement two other alternatives approaches
to third level indexes: spatial relation-based image sig-
nature files and inverted files. The pairwise spatial re-
lationships between two salient objects that exist in a
key frame are hashed into binary code words and all the
binary code words of the key frame are superimposed to
get the image signature of that key frame. Since there are
a limited number of key frames for each shot, we store
the image signatures sequentially. The inverted files are
used to index each distinct pairwise spatial relationship
of each shot.

4.4 Creation of the Multi-level Indexing Structure

In general, given a set of n shots, three steps are needed
to create a MINDEX when we use a B+ tree as the
second level of MINDEX:

1. For all salient objects of each shot, use their names
to find their IDs in the hash (the first level index)
and update the hash directory if these objects are
new ones.

2. For all the temporal relationships in the shot, use IDs
of involved salient objects to update the correspond-
ing B+ tree (the second level index structure).

3. For all the spatial relationships in the shot, create a
new perfect hash table (the third level index struc-
ture) for all the spatial triples contained in the shot if
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there is no sharable hash table in the two precedent
shots.

In the first step, besides finding the IDs for salient
objects, we also need to create an ID for the new salient
object and insert it into the hash directory. We consider
a salient object as a new one if NULL is returned af-
ter searching the data bucket which is pointed by the
hash directory entry of the salient object. Algorithm 1
presents the steps that are followed to update the second
level index structure. The standard update operation of
B+ tree is used in the algorithm. When we use signature
files at the second and third levels of MINDEX, we can
use the first step as we use for creating MINDEX with
B+ tree as the second level, the second and third steps
are described as follows: step 2 is similar to the creation
of 2SMLSF for image databases [10]:

Algorithm 1 The algorithm for updating second level
index structure
ht

Require: /*input: the IDs of all salient objects in a given
shot SHi*/

Ensure: /*output: updated B+ tree of each object record*/
1: Compute all distinct pairwise temporal relationships be-

tween two salient objects from temporal strings of SHi

2: For each temporal relationship TRij (appear together or
appear before) between two salient objects whose IDs
are IDi and IDj , respectively

3: Insert IDj and TRij into the B+ tree of the object record
which is identified by IDi

4: Insert IDi and TRij into the B+ tree of the object record
which is identified by IDj

Algorithm 2 The searching algorithm for salient object
existence queries using B+ trees

Require: /*input: the names of salient objects */
Ensure: /*output: the set of IDs of shots that specified

salient objects appear*/
1: find IDs of all the salient objects that specified in the

queries through the first level of MINDEX
2: the object records that stored specified salient objects are

identified through IDs
3: select one B+ tree that pointed one of the identified ob-

ject records
4: if only one object in the query then

5: insert all the IDs of shots that are stored in the leaf
node of the B+ tree into result set Reset

6: end if

7: search the B+ tree with the rest of object IDs and get the
intersection of all the searching result sets as the result
set Reset

8: return the result set Rset

1. Determine the height h of 2SMLSF and 2SMLSF+

according to the number of shots n, maximum num-

ber of distinct salient objects of each shot s, and
global false drop probability pf . For each level, com-
pute the signature width and weight.
– For each shot, compute all distinct pairwise tem-

poral relationships between two salient objects
from the temporal string of that shot. For each
pairwise temporal relationship, generate a signa-
ture to represent it and superimpose all the sig-
natures of pairwise temporal relationships to con-
struct the temporal relation-based shot signature
as leaf node of 2SMLSF or 2SMLSF+. A pointer
is used to link the leaf node and the logical shot.

– For each shot, generate h−1 salient object-based
signatures (h signatures for 2SMLSF+) that are
based on salient objects of the shot. For each level
i, superimpose bh−i salient object-based signa-
tures to get block signature at that level.

2. For each key frame in a shot, generate a signature for
each distinct pairwise spatial relationship and super-
impose all the signatures of spatial pairs to construct
a spatial relation-based image signature for the key
frame. Store all the image signatures of the shot se-
quentially in a file.

4.5 Query Processing using Multi-level Indexing

Structure

In this section, we discuss how the four types of queries
are executed using MINDEX. To answer object existence
and pure temporal relationship queries, only the first
and second level indexes are needed, while for queries
involving spatial and spatio-temporal relationships, all
three levels are used. We first present the algorithms in
answering different types of queries when a B+ tree is
used as the second level of MINDEX.

1. Salient object existence queries: Algorithm 2 presents
the steps in answering salient object existence queries.

2. Temporal relationships queries: Algorithm 2 can be
used to search results for temporal relationship queries;
the only additional work is to check the temporal re-
lationship stored at leaf node of the B+ tree.

3. Spatial relationship queries: Algorithm 3 presents the
steps in answering spatial relationship queries.

4. Spatio-temporal relationships queries: Steps similar
to Algorithm 3 are followed to find the candidate
shots that contain the specified salient objects and
spatial relationships. The candidate shots are further
checked to verify whether the specified the temporal
relationships are satisfied among the spatial relation-
ships in the candidate shots.

When we use signature files as second and third levels of
MINDEX, the following algorithms are used to answer
different type of queries:

1. Salient object existence queries: The steps in answer-
ing salient object existence using 2SMLSF is described
in Algorithm 4.
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Algorithm 3 The searching algorithm for spatial rela-
tionship queries using B+ tree

Require: /*input: the names of salient objects and spatial
relationships among them*/

Ensure: /*output: the set of IDs of shots that contain
salient objects and specified spatial relationships*/

1: find IDs of all the salient objects that specified in the
queries through the first level of MINDEX

2: the object records that stored specified salient objects are
identified through IDs

3: select one B+ tree that pointed one of the identified ob-
ject records

4: search the B+ tree with the rest of object IDs and get the
intersection of all the searching result sets as candidate
set CanSet

5: for all each candidate shot in CanSet do

6: compute the hash address of the third level index struc-
ture for the spatial triple which is constructed from the
object IDs and the specified spatial relationships

7: load the corresponding hash table that is referred by
the candidate shot

8: if the hash entry of computed hash address is not
empty then

9: insert ID of the candidate shot into Rset

10: end if

11: end for

12: return the result set Rset

2. Temporal relationship queries: Algorithm 5 presents
the steps in answering temporal relationship queries
using 2SMLSF. Algorithms 4 and 5 can be applied to
2SMLSF+ by slightly modifying the searching level
and generating query signatures.

3. Spatial and spatio-temporal queries: Due to space lim-
its, the detailed algorithms are not given here, we
briefly describe the steps as follows:
(a) Algorithm 5 is used to find the candidates shots

that contained specified query objects and tem-
poral relations.

(b) Check the spatial relation-based query signature
with each image signature of the candidate shots.

(c) If the result is equal to the spatial query signa-
ture, the corresponding key frame will be checked
to see if it indeed contains the specified spatial
relations. If this is the case, insert the candidate
shot into the result set.

(d) Return the result set.

5 Experiment Results and Discussion

We have run experiments to compare the performance of
different methods of MINDEX construction in answering
salient object-based queries. Due to the lack of sufficient
amount of annotated video data, we generated synthetic
data to test the performance of MINDEX.

Algorithm 4 The searching algorithm for salient object
existence queries using 2SMLSF

Require: /*input: the names of salient objects */
Ensure: /*output: the set of IDs of shots that specified

salient objects appear*/
1: find IDs of all the salient objects that specified in the

queries through the first level of MINDEX
2: generate h − 1 salient object-based shot signatures as

query signatures: S1
q , S2

q , ..., Sh−1
q

3: check (AND operation) S1
q with root signatures of

2SMLSF
4: if the result equals to S1

q then

5: put the access pointer of the root into the candidate
block set CanBlkSet1

6: end if

7: level i← 2
8: while level i 6= h do

9: if CanBlkSeti−1 is empty then

10: return NULL
11: end if

12: check (AND operation) Si
q with the block signature

at level i which is pointed by the access pointer in
CanBlkSeti−1

13: if the result equals to Si
q then

14: put the access pointer of the block signature into the
candidate block set CanBlkSeti

15: end if

16: level i← i + 1
17: end while

18: if CanBlkSeth−1 is empty then

19: return NULL
20: else

21: check each shot pointed by the access pointers in
CanBlkSeth−1

22: if the shot contains the IDs of salient objects specified
in the query then

23: insert the ID of the shot into the result set Reset

24: end if

25: end if

26: return Reset

5.1 Experiment Setup

In order to generate the synthetic data similar to real
movie data, we investigated the appearance frequencies
of salient objects in each key frame and the number of
salient objects in each shot in three movies1. As ex-
pected, the appearance frequencies of main actors are
higher than those of supporting actors and the number
of actors that appear frequently is much less than that of
actors who appear only once or twice in the whole movie.
Figure 9 shows the number of appearances of actors in
three movies. The horizontal axis denotes the actor IDs,
the lower IDs are given to the main actors. The vertical
axis indicates the number of shots in which an actor ap-
pears. This data distribution is very similar to the ZIPF
distribution [34]: Pi ∼ 1/ia, where Pi is the frequency

1 1. “Gladiator”, 2000; 2. “Crouching Tiger Hidden
Dragon”, 2000; 3. “Patch Adams”, 1998.
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Algorithm 5 The searching algorithm for temporal re-
lationship queries using 2SMLSF

Require: /*input: the names of salient objects and temporal
relationship among them */

Ensure: /*output: the set of IDs of shots that contain spec-
ified salient object and temporal relations */

1: find IDs of all the salient objects that specified in the
queries through the first level of MINDEX

2: generate h−1 salient object-based shot signatures S1
q , S2

q ,
..., Sh−1

q and one temporal relation-based shot signatures
Sh

q as query signatures
3: check (AND operation) S1

q with root signatures of
2SMLSF

4: if the result equal to S1
q then

5: put the access pointer of the root into the candidate
block set CanBlkSet1

6: end if

7: level i← 2
8: while level i 6= h + 1 do

9: if CanBlkSeti−1 is empty then

10: return NULL
11: end if

12: check (AND operation) Si
q with the block signature

at level i which is pointed by the access pointers in
CanBlkSeti−1

13: if the result equals to Si
q then

14: put the access pointer of the block signature into the
candidate block set CanBlkListi

15: end if

16: level i← i + 1
17: end while

18: if CanBlkSeth is empty then

19: return NULL
20: else

21: check each shot pointed by the access pointers in
CanBlkSeth

22: if the shot contains the IDs of salient objects and tem-
poral relationships specified in the query then

23: insert the ID of the shot into the result set Reset

24: end if

25: end if

26: return Reset

of occurrence of the ith ranked event, i is the rank of
the event which is determined by the above frequency of
occurrence and a is close to 1. Thus, a few events occur
very often while many others occur rarely.

We also found that there are at most five salient ob-
jects that appear in one frame (not counting the crowd)
and the number of salient objects that appear in key
frames also follows ZIPF-like distribution as shown in
Figure 10.

According to the changes of spatial relationships among
the salient objects that appear in a shot, we manually
selected the key frames for each segmented shot of these
movies. We found that for each shot, the number of se-
lected key frames is around 1 to 5. In these experiments,
we assumed that all salient objects are people and cre-
ated synthesized names from a list of top 1000 given

Fig. 9 The appearances distribution of actors

Fig. 10 The distribution of number of actors

names with appearance probability of each name2. We
do not use randomly generated strings as names for the
salient objects simply because it is not realistic. Further-
more, since the hash value is computed based on each
character of a string, randomly generated strings do not
reflect the real data distribution of each character as it
appears in person names. A random number generator
with ZIPF distribution was used to select object IDs that
may appear in each key frame. We used another random
number generator with ZIPF data distribution to sim-
ulate the number of salient objects that may appear in
each key frame. Five data sets were created with differ-
ent numbers of shots and different numbers of salient
objects. For each shot, 1 to 5 key frames are randomly
generated.

1. 4,096 shots with 41 salient objects;
2. 8,192 shots with 82 salient objects;
3. 16,384 shots with 164 salient objects;
4. 32,768 shots with 328 salient objects;
5. 131,072 shots with 1311 salient objects.

We generated the number of shots as the power of 2 in
order to satisfy the assumption of complete b-ary (b = 2)
trees of 2SMLSF and 2SMLSF+. We set the false drop

2 Obtained from http://www.ssa.gov/OACT/babynames/index.html.
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probability of signature files as 1/n, where n is the num-
ber of shots in the data set. We randomly generated
three types of queries: salient object existence, temporal
relationship, and spatial relationship queries, with a uni-
form distribution and a ZIPF distribution, 100 queries
for each type. Spatio-temporal relationship queries are
not tested. In order to answer spatio-temporal relation-
ship queries, MINDEX is used to find the candidate
shots that satisfy the specified spatial relationships, and
within those shots, we need to check whether the tempo-
ral relationships among the spatial relationships satisfy
the query constraints. Therefore, we only need to test
spatial relationship queries. For object existence queries,
the randomly generated queries specify the appearances
of 1-5 salient objects. For temporal and spatial queries,
the number of objects that are specified is 2 to 5. All the
results are averages that are obtained from 100 query
results.

The experiments were run on a Sun-Blade-1000 work-
station with 512M RAM under Solaris 2.8.

5.2 Query Performance

4096 8192 16384 32768 131072

No.

obj.

U Z U Z U Z U Z U Z

1 0.087 0.797 0.047 0.093 0.031 0.416 0.018 0.243 0.011 0.067

2 0.011 0.602 0 0.031 0.001 0.159 0 0.069 0 0.005

3 0 0.095 0 0 0 0.092 0 0.037 0 0.002

4 0 0.016 0 0 0 0.055 0 0.015 0 0.001

5 0 0.006 0 0 0 0.028 0 0.009 0 0

Table 1 The selectivity ratios of two types of salient object-
based existence queries on five data sets

The first experiment was designed to test the perfor-
mance of MINDEX with different construction on an-
swering salient object existence queries. We use the fol-
lowing abbreviations for four types of MINDEX: B-M for
using B+ tree in MINDEX, S-M for using 2SMLSF, S+-
M for using 2SMLSF+ and I-M for using inverted file.
We use two performance measures: one is the time that
is spent on index retrieval and processing time, called
PINDEX. For queries that are related to more than
two salient objects, PINDEX includes the time that
is spent on finding the intersection of candidate sets for
B+ tree and inverted files. The other one is the total
time that is spent on index retrieval, processing and re-
trieving the results, named TRESULT . For signature
files, TRESULT includes the time to remove the false
drops. Table 1 presents the selectivity ratios of queries
and shows that object existence queries that are gener-
ated from ZIPF (Z) distribution have much higher selec-
tivity ratios compared to those of queries from uniform
(U) distribution. We tested both types of queries. Figure
11 shows the PINDEX and TRESULT values of four
types of MINDEX in answering salient object existence
queries that are generated from a uniform distribution
and Figure 12 shows the same for ZIPF distribution.

The horizontal axis denotes the different sizes of data
sets. For each data set (e.g. data set 4096), the results
of queries on 1 to 5 salient objects are shown sequen-
tially starting from the position of the label. The verti-
cal axis indicates the time that is spent on PINDEX
or RRESULT in milliseconds.

As shown in Figure 11(a), considering index process-
ing time, B-M outperforms other three index structures.
When the selectivity ratio is low, B-M and I-M are al-
ways better than S-M or S+M, because of the false drops
that are introduced by signature files. Since B-M uses B+

trees to index pairs of salient objects, it produces fewer
candidate shots compared to that of I-M which creates
an inverted list for each individual object. As a conse-
quence, B-M needs less time to find the intersection from
candidate sets. This has been shown in both figures, es-
pecially in Figure 12(a) in which I-M spent much more
time in finding the intersection of candidate sets. We also
find that the index processing time for S+-M is nearly
the same as that of S-M, because signature files are bi-
nary words and the time for loading and comparing one
more level of signature files is minimal especially when
we use multi-level filtering. Considering the total time
that is used to retrieve the answers (Figures 11(b) and
12(b)), B-M is also the best. However, the difference be-
tween B-M and I-M is very little when the selectivity
ratio is higher, since the time that is spent on index
processing only counts for a very small portion of total
retrieval time. There is another interesting fact that is
shown in Figures 11(b) and 12(b); the difference between
S+-M and S-M on TRESULT becomes larger with the
increasing of the size of the data set. This confirms that
S+-M can remove more false drops than S-M; the bigger
the size of data set, the more false drops can be removed
by S+-M.

The second experiment was designed to test the query
performance of four different types of MINDEX on an-
swering temporal relationship-based queries. We present
results of queries from uniform and ZIPF distributions
in Figures 13 and 14, respectively. Similar to Figures 11
and 12, the horizontal axis denotes the different sizes of
data sets. For each data set, the results of queries on 2
to 5 salient objects are shown sequentially.

Figures 13 and 14 show that B-M saves significant
amount of time in PINDEX and TRESULT . Since B-
M encodes the pairwise temporal relationship into the
key record of B+ tree, the size of candidate sets that are
obtained from B-M is much smaller than those from I-
M. Therefore, B-M saves time on both index processing
(finding the intersection set) and retrieving results (re-
moving false alarms). I-M only creates an index on the
appearance of salient objects, it requires further exami-
nation on the candidate shots to confirm the existence of
the query temporal relationships. The existence of false
drops for signature files again leads to the inefficiency
in answering temporal relationship queries. As shown in
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Fig. 11 A comparison of four types of MINDEX on salient object existence queries (Uniform)
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Fig. 12 A comparison of four types of MINDEX on salient object existence queries (ZIPF)
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Fig. 13 A comparison on four types of MINDEX on temporal relationship queries (Uniform)

Figures 13(b) and 14(b), S+-M again performs better
than S-M in terms of total retrieval time.

From above two experiments, we conclude that B+

tree on pairwise salient objects is the best index struc-

ture that acts as second level of MINDEX. As discussed
in Section 4.5, spatial relationship queries help to iden-
tify the candidate shots for spatio-temporal queries. There-
fore, the last experiment was designed to check the per-
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Fig. 14 A comparison on four types of MINDEX on temporal relationship queries (ZIPF)

formance of processing spatial queries on different in-
dex structures for third level of MINDEX. In this ex-
periment, we use B+ tree as second level of MINDEX,
and three index structures are tested: perfect hash ta-
ble (HT), sequentially stored signature files (SSF), and
inverted files (IF). Compared to salient object existence
and pure temporal queries, spatial queries incur extra
cost on reading in key frames to obtain spatial informa-
tion. Figure 15 shows the TRESULT of retrieval key
frames to answer spatial queries on two salient objects
that generated from ZIPF distribution. The reason that
we select queries on two salient objects is because they
have higher selectivity ratio. The results show that HT
is the best candidate for the third level of MINDEX.
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Fig. 15 Performance of spatial relationship queries on two
salient objects

6 Conclusions

Several approaches have been proposed in literature for
salient object-based queries on video databases. How-
ever, most of them focus on modeling video data using

salient objects and sequential search is used to answers
these queries. However, when the size of a video database
grows, it is quite time consuming to answer queries us-
ing sequential scan. Very few indexes have been pro-
posed to quickly answer salient object-based queries, and
these either create indexes only for spatial relationships
or rely on implicit indexing mechanism provided by the
implementation languages. Querying video databases on
salient objects is quite different from querying spatio-
temporal databases. The two fundamental types of queries
in spatio-temporal databases, timestamp and interval

queries, are rarely used in salient object-based video
databases, since users normally do not have any knowl-
edge about the timestamps or intervals in which some
specified event happens. What they are interested in is
exactly to retrieve those timestamps or intervals! There-
fore, the index structures on spatio-temporal databases
cannot be directly applied to salient object-based video
databases.

In this paper, we present a multi-level index struc-
ture (MINDEX) for salient object-based queries. The in-
dex structure considers the different levels of constraints
on salient objects that users may have when they pose
queries to the video database. An extendable hash ta-
ble is created for quickly locating IDs of salient objects
through their names, which act as the first level of the in-
dex structure. Four candidate index structures, B+ trees,
two types of multi-level signature files and inverted files,
are proposed for the second level of MINDEX. Perfect
hash table, sequential stored signature files and inverted
files are selected as candidates for the third level. All the
index structures have been tested with various sizes of
synthetic data which are generated according to the data
distribution of real movies. Based on the experimental
results, we conclude that a B+ tree used to index pair-
wise temporal relationships between two salient objects
is the best one for the second level index structure. The
ideal index structure for the third level of MINDEX is a
perfect hash table which indexes all the pairwise spatial
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relationships within a shot. The characteristic of video
data brought by shot/reverse shots is utilized to share
hash tables of the third level index, which avoids saving
redundant information.
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