
Symbolic Representation and Retrieval
of Moving Object Trajectories

Lei Chen, M. Tamer Özsu
University of Waterloo

School of Computer Science
Waterloo, Canada

{l6chen,tozsu}@uwaterloo.ca

Vincent Oria
New Jersey Inst. of Technology

Dept. of Computer Science
Newark, New Jersey, USA

vincent.oria@njit.edu

ABSTRACT
Searching moving object trajectories of video databases has
been applied to many fields, such as video data analysis,
content-based video retrieval, video scene classification. In
this paper, we propose a novel representation of trajecto-
ries, called movement pattern strings, which convert the tra-
jectories into symbolic representations. Movement pattern
strings encode both the movement direction and the move-
ment distance information of the trajectories. The distances
that are computed in a symbolic space are lower bounds of
the distances of original trajectory data, which guarantees
that no false dismissals will be introduced using movement
pattern strings to retrieve trajectories. In order to improve
the retrieval efficiency, we define a modified frequency dis-
tance for frequency vectors that are obtained from move-
ment pattern strings to reduce the dimensionality and the
computation cost. The experimental results show that us-
ing movement pattern strings is almost as effective as using
raw trajectories. In addition, the cost of retrieving similar
trajectories can greatly be reduced when the modified fre-
quency distance is used as a filter.

Categories and Subject Descriptors: H.2.4 [DATABASE
MANAGEMENT]: Systems - multimedia database; H.3.3
[INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval - information filtering

General Terms: Algorithms, Experimentation

Keywords: Trajectory, Symbolic representation, Movement
pattern string, Edit distance on real sequences

1. INTRODUCTION
Recently, a number of interesting applications have been

developed based on the analysis of trajectories of moving
objects in videos. For example, In sports videos, such as
hockey, it is quite useful for coaches or sports researchers
to know the movement patterns of top players. In a store
surveillance video monitoring system, finding the customers’

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIR’04, October 15–16, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-940-3/04/0010 ...$5.00.

movement patterns may help in the arrangement of mer-
chandise. All of these applications require the definition of
accurate and robust similarity measures to determine the
similarity among trajectories. A number of distance func-
tions have been proposed, such as Euclidean distance [2,
14], Dynamic Time Warping (DTW) [5], Edit distance with
Real Penalty (ERP) [3], but they are sensitive to noise, shifts
and scaling of data that commonly occur due to capturing
device failures, errors in detection techniques, and different
sampling rates. Even though Longest Common Subsequence
(LCSS) [19] is robust to noise, it is not always accurate. We
proposed a novel distance function, Edit Distance on Real
Sequence (EDR) to handel these problems [4]. EDR is based
on the Edit Distance (ED) on strings [15] which is widely
used in bio-informatics and speech recognition to measure
the similarity between two strings. Analysis and experi-
mental comparison of EDR with Euclidean distance, DTW,
ERP, and LCSS, indicate that EDR is more robust than
Euclidean distance, DTW and ERP, and it is more accurate
than LCSS.

However, the computation cost of EDR on trajectories
is quadratic; this time cost becomes critical when the tra-
jectory database is large. Since ED was originally defined
on strings for which many algorithms, data structures, and
embedded edit distance functions have been developed, it is
intuitive to think about the possibility of converting real val-
ued movement sequences into symbolic representation and
applying the string dimensionality reduction techniques to
reduce the computation and retrieval cost. Therefore, in
this paper, we propose a symbolic representation of trajec-
tories, movement pattern string (MPS). Furthermore, we
define a distance function, Edit Distance on MPS (EDM),
on the converted symbolic space and prove that EDM is a
lower bound of EDR on original space. This lower bound-
ing property guarantees that conducting a similarity search
on MPS will not introduce false dismissals [6]. Finally, we
define a modified frequency distance (MFD) between two fre-
quency vectors (FV) of MPSs to reduce the cost of CPU time
on computing EDR of two trajectories.

The main contributions of our paper are the following:

1. We develop a transformation scheme to convert a tra-
jectory into a symbolic representation, Movement Pat-
tern String (MPS). Compared to raw representation of
trajectories, MPSs need less storage space, and most
importantly, our experimental results show that MPSs
are almost as effective as raw representation in classi-
fication and clustering tasks.

227

2. We prove that EDM, computed over a symbolic space,
is a lower bound of EDR on real trajectory data.

3. We propose a modified frequency distance, MFD, as
a distance measure of frequency vectors that are ob-
tained from the MPSs. We also prove that MFD on
frequency vectors is a lower bound of EDM on the cor-
responding MPSs.

The rest of the paper is arranged as follows: Section 2 intro-
duces the distance measure EDR, and also briefly presents
some definitions. In Section 3, we present our symbolic rep-
resentation of trajectories and prove the lower bound prop-
erty. Section 4 introduces the modified frequency distances
followed by the retrieval efficiency study of our symbolic
representation and frequency vectors in Section 5. Section 6
provides a in depth comparison with the related work. We
conclude in Section 7 and indicate some further work.

2. EDIT DISTANCE ON REAL SEQUENCE
In this section, we first give the formal definitions of tra-

jectories, sequences of (movement direction, distance ratio)
pairs, we then briefly introduce Edit Distance on Real se-
quence between two trajectories proposed in [4].

2.1 Preliminaries
In the following, we assume that objects are points that

move in a two-dimensional space (x−y plane) and that time
is discrete.

Definition 1. Given a moving object A, its trajectory,
TA, is defined as a sequence of coordinates that are pairs
showing the position of an object A in the x − y plane:
TA = [(xa,1, ya,1), . . . , (xa,n, ya,n)], where n, the number of
positions in TA, is defined as the length of TA.

We refer to TA as the raw representation of the trajectory,
since this is the most likely data format that we can get from
tracing sensor or extraction techniques. However, directly
using this raw representation to compare trajectories will
miss the trajectories with similar movement but different
spatial rotation, shifting, or scaling factors. For example,
in Figure 1, three trajectories are shown: TB can be de-
rived from TA by scaling its x and y positions by a factor
of 2, while TC is translated from TB by shifting its x and
y positions by 1. The three trajectories have similar move-
ment patterns, however, comparing their raw representa-
tions, (which are: TA = [(3.5, 4.5), (1.5, 2.5), (2.5, 3.5), (2, 3),
(3, 4)], TB = [(7, 9), (3, 5), (5, 7), (4, 6), (6, 8)], and TC = [(8, 10),
(4, 6), (6, 8), (5, 7), (7, 9)].) can not lead to a conclusion that
they are similar unless scaling or shifting factors are intro-
duced in the similarity measures. However, this will increase
the cost for computing the similarity measure (e.g. in [19],
by only introducing the shifting factors in LCSS, the com-
putation cost is increased by O(n), where n is the length of
the trajectory).

Thus, instead of directly using raw representation of tra-
jectories, we represent them by means of a sequence of (move-
ment direction, distance ratio) pairs. This representation is
not affected by rotation, shifting or scaling [18].

Definition 2. Given a moving object A and its trajectory
TA of length n (n > 1), the sequence of (movement direction,
distance ratio) pair MA is defined as a sequence of pairs:
MA = [(θa,1, σa,1), . . . , (θa,m, σa,m)], where m = n − 1 and

0 1 2 3 4 5 6

0

2

4

6

8

10
0

2

4

6

8

10

time

X position

Y
 p

os
iti

on

T
A

T
B

T
C

Figure 1: The trajectories with different scaling and

shifting factors share similar movement pattern

n is the length of TA. The movement direction θa,i is

θa,i =

arctan(
ya,(i+1)−ya,i

xa,(i+1)−xa,i
) xa,(i+1) − xa,i ≥ 0,

arctan(
ya,(i+1)−ya,i

xa,(i+1)−xa,i
)− π ya,(i+1) − ya,i ≤ 0 and

xa,(i+1) − xa,i < 0,

arctan(
ya,(i+1)−ya,i

xa,(i+1)−xa,i
) + π ya,(i+1) − ya,i > 0 and

xa,(i+1) − xa,i < 0.

The movement distance ratio σa,i is

σa,i =

{√
(ya,(i+1)−ya,i)2+(xa,(i+1)−xa,i)2

TD(TA)
TD(TA) 6= 0

0 0

where the total movement distance of TA is TD(TA) =∑
1≤j≤n−1

√
(ya,(j+1) − ya,j)2 + (xa,(j+1) − xa,j)2.

Base on this definition, we know that θa,i ranges from
−π to π and σa,i ranges from 0 to 1. We use MA(n) to
denote the sequence [(θa,1, σa,1), . . . , (θa,n, σa,n)] where n is
the length of the sequence. All three examples of trajectories
in Figure 1 have the same sequence of (movement direction,
distance ration) pairs, which conforms to the fact that they
have similar movement patterns.

In the rest of this paper, we use the terms “movement
sequence” or “sequence” interchangeably to refer to the se-
quence of (movement direction, distance ratio) pairs unless
specified otherwise.

2.2 Edit Distance on Real sequence
Edit Distance on Real Sequence (EDR) between two move-

ment sequences counts similar subsequences and assigns penal-
ties to the gaps in between these subsequences, thus, un-
like LCSS, it considers gaps within sequences [4]. EDR is
based on ED ([15] on strings. Given two strings A and B,
ED(A, B) is the number of insert, delete, or replace opera-
tions that are needed to change A into B. Since movement
sequences are not strings but numerical value pair sequences,
we have to define the cases which element pairs of different
movement sequences match. We introduce two thresholds
εdir and εdis to that end: εdir is used to determine whether
two movement directions match and εdis is for determining
the similarity of two movement distance ratios.

228

Definition 3. Two (movement direction, distance ratio)
pairs (θa,i, σa,i) and (θb,j , σb,j) are said to match if and only
if |θa,i− θb,j | ≤ εdir and |σa,i−σb,j | ≤ εdis. This is specified
as predicate match((θa,i, σa,i), (θb,j , σb,j)).

Based on the definition of match, the EDR between two
movement sequences is defined as follows:

Definition 4. Given two moving objects A and B and
their movement sequences MA of length n and MB of length
m, respectively, the EDR between MA and MB is the num-
ber of insert, delete, or replace operations that is needed to
change MA into MB . EDR(MA(n), MB(m)) can be com-
puted as follows:

n if m = 0;

m if n = 0;

EDR(MA(n− 1), MB(m− 1))

if match((θa,i, σa,i), (θb,j , σb,j))

min[EDR(MA(n− 1), MB(m− 1)) + 1,

EDR(MA(n− 1), MB(m)) + 1,

EDR(MA(n), MB(m− 1)) + 1]

otherwise

Although EDR is more accurate, its computation still
costs O(n×m) time and space with dynamic programming,
where n and m are the lengths of the two sequences MA

and MB , respectively. In next two sections, we will pro-
pose a symbolic representation of trajectories, discuss the
computation cost of the symbolic trajectories and propose
an improvement of the retrieval efficiency without affecting
the accuracy.

3. SYMBOLIC REPRESENTATION OF
TRAJECTORIES

In this section, we propose a symbolic representation of
movement sequences. The basic idea is to quantize the
(movement direction, distance ratio) space and represent
each subregion by a distinct symbol.

Figure 2: Probability distribution of movement di-
rections of hokey players

As defined in Section 2, the values of (movement direction,
distance ratio) of an object range from −π to π and 0 to 1,
respectively. We investigated the movement direction distri-
bution of three trajectory data sets, which are: hockey play-
ers’ trajectories that are extracted from National Hockey
League (NHL) videos, the “Cameramouse”, and Australian
Sign Language data sets (the last two data sets are explained
in detail in Section 5). We found that movement directions

of all three data sets are uniformly distributed. Figure 2
shows the values of the probability density function of move-
ment directions of NHL data, which shows that the move-
ment direction of a hockey player at each sampled position
follows an uniform distribution. Based on these observa-
tions, we divide the (movement direction, distance ratio)
space into equal sized subregions.

Figure 3: An example of (movement direction, distance

ratio) quantization map
Given εdir and εdis

1, we equally divide the two dimen-
sional (movement direction, distance ratio) space into (2π/εdir)
× (1.0/εdis) subregions and assign each subregion a distinct
symbol. The whole set of symbols makes up the movement
pattern alphabet, which we denote as A = A1, A2, . . . , As,
where the size of the movement pattern alphabet is s =
(2π/εdir) × (1.0/εdis). Once the two threshold values εdir

and εdis are given for the trajectory data, the size of move-
ment pattern alphabet is fixed. Ai is a distinct symbol that
represents a subregion SBi of size εdir × εdis (1 ≤ i ≤ s).
Each subregion SBi is represented by two (movement di-
rection, distance ratio) pairs: (θbl,i, σbl,i) and (θur,i, σur,i),
which are the bottom left and upper right coordinates of
SBi.

A quantization map (QM) that contains all the subregions
and associated symbols is stored as a lookup table, and is
used to convert (movement direction, distance ratio) pairs
into symbols and to obtain the neighbors for a given sym-
bol. The second function of QM is used to compute the dis-
tance in the converted symbolic space (Definitions 6 and 7).
Figure 3 gives an example quantization map, which divides
(movement direction, distance ratio) space into 64 subre-
gions, each subregion corresponding to a movement sym-
bol2.

Once we quantize the (movement direction, distance ra-
tio) space into subregions and derive the movement alpha-
bet A, we map a (movement direction, distance ratio) pair
(θ, σ) into a symbol. For example, according to the quan-
tization map in Figure 3, (π

3
, 0.16), (π

4
, 0.1), and (−π

4
, 1.0)

are mapped into symbols ‘N’, ‘E’, and ‘7’, respectively.

1
The values of εdir and εdis are application dependent. They must

be given beforehand to determine weather two elements match when
we use EDR as a similarity measure to query the trajectory data set.
2
In Figure 3,εdir = π/4 and εdis = 0.125.

229

Definition 5. Given a movement sequence MA = [(θa,1,
σa,1), . . . , (θa,n, σa,n)] of length n and a movement pattern
alphabet A, a movement pattern string (MPS) is defined as
a sequence of symbols: Sa,1Sa,2 . . . Sa,n, where each symbol
Sa,i (1 ≤ i ≤ n) is mapped from the movement direction
and distance pair (θa,i, σa,i) according to A.

MPS retains the order of movement sequences by arrang-
ing the corresponding symbols from left to right. We use
MPSA(n) to denote the string Sa,1Sa,2 . . . Sa,n. Figure 4
gives an example of converting a movement sequence MA =
[(π

3
, 0, 16), (−π

4
, 0, 16), (π

6
, 0.33), (−π

3
, 0.33)] of TA to the MPS

“NKUS” using movement pattern alphabet as given in Fig-
ure 3. It is obvious that the MPS representation is more
compact.

Figure 4: An example of converting a trajectory to a

MPS

After converting the movement sequences to MPSs, we
can think of directly applying ED on two MPSs since they
are strings. However, using the standard ED [15] will not
provide correct answers, since the ED computed on the
MPSs is not a lower bound of EDR on the original move-
ment sequences. The reason is that the (movement direc-
tion, distance ratio) pairs that are located near the bound-
aries of quantization subregions may be assigned different
symbols and require a replace operation that is not needed
in the original sequence comparison. For example, given
two movement sequences MA = [(0, 0.4), (π

4
, 0.6)], MB =

[(π
4
, 0.4), (π

2
, 0.6)] and εdir = π

4
, εdis = 0.125, the corre-

sponding MPSs are: MPSA = “bk” and MPSB = “cl” (us-
ing the same quantization map in Figure 3). EDR between
original movement sequences MA and MB is 0, whereas the
ED between MPSA and MPSB is 1. As a consequence,
trajectory retrieval using ED will introduce false dismissals,
which is not allowed in applications that require high accu-
racy. Therefore, we define a Edit Distance on MPSs (EDM),
which is a lower bound of the EDR between original move-
ment sequences. We need to define the cases that two sym-
bols approximately match.

Definition 6. Two symbols Ai and Aj are said to approx-
imately match (denoted by predicate ap match(Ai, Aj)), if
and only if Ai == Aj or Ai is the neighbor of Aj . Ai is a
neighbor of Aj if the subregions that they represent in the
quantization map are directly connected. For example, ac-
cording to the quantization map in Figure 3, the neighbors
of T are K, L, M, S, U, a, b, c and the neighbors of A are
H, B, P, I, J (note that movement directions are in polar
space).

Definition 7. The EDM(MPSA(n), MPSB(m)) be-
tween two MPSs MPSA and MPSB of length n and m,
respectively, is defined as the number of insert, delete, or
replace operations that is needed to change MPSA into

MPSB :

n if m = 0;

m if n = 0;

EDM(MPSA(n− 1), MPSB(m− 1))

if ap match(Sa,n, Sb,m)

min[EDM(MPSA(n− 1), MPSB(m− 1)) + 1,

EDM(MPSA(n− 1), MPSB(m)) + 1,

EDM(MPSA(n), MPSB(m− 1)) + 1]

otherwise

The computation of EDM on MPS is the same as that of
EDR in Definition 4. Now we need to prove that this EDM
on MPS is a lower bound of EDR on original movement
sequences.

Lemma 1. Given two movement sequences MA and
MB and their corresponding MPSs MPSA and MPSB , let
(θa,i, σa,i) and (θb,j , σb,j) be two (movement direction, dis-
tance ratio) pairs of MA and MB , respectively, and Sa,i

and Sb,j be their corresponding symbols from MPSA and
MPSB . If match((θa,i, σa,i), (θb,j , σb,j)) = true, then ap match
(Sa,i, Sb,j) = true and if ap match(Sa,i, Sb,j) = false, then
match((θa,i, σa,i), (θb,j , σb,j)) = false.

Proof: During the process of mapping (movement direc-
tion, distance ratio) pairs into symbols, there are only three
cases that could happen:

1. Sa,i and Sb,j are the same symbol;
2. Sa,i and Sb,j are neighbors;
3. Sa,i and Sb,j are not neighbors;

If match((θa,i, σa,i), (θb,j , σb,j)) = true, Sa,i and Sb,j must
be the same symbol or neighbors. Otherwise there are at
least one subregion gap between them in the quantization
map. From the definition of movement pattern alphabet, the
size of each subregion is εdir ∗ εdis. Thus, we have: |θa,i −
θb,j | > εdir and |σa,i − σb,j | > εdis, which contradict to
match((θa,i, σa,i), (θb,j , σb,j)) = true. Therefore, according
to Definition 6, ap match(Sa,i, Sb,j) = true.

If ap match(Sa,i, Sb,j) = false, then Sa,i and Sb,j are not
the same symbol or neighbors. As above, we have: |θa,i −
θb,j | > εdir and |σa,i − σb,j | > εdis. According to Definition
3, match((θa,i, σa,i), (θb,j , σb,j)) = false. 2

Theorem 1. Given two movement sequences MA and
MB , and their corresponding MPSs MPSA and MPSB ,
EDM(MPSA, MPSB) ≤ EDR(MA, MB).

Proof:
Let #ap match denote the number of pairs of symbols in

MPSA and MPSB that approximately match (i.e., #ap match
= count(ap match(Sa,i, Sb,j) = true), Sa,i ∈ MPSA, Sb,j ∈
MPSB).

Let #match denote the number of (movement direction,
movement distance ratio) pairs in MA and MB that match
(i.e.,#match = count(match((θa,i, σa,i), (θb,j , σb,j)) = true),
(θa,i, σa,i) ∈ MA, (θb,j , σb,j) ∈ MB).

Define #ap match and #match as converses of these (i.e.,
count where predicates are false). Then, according to Lemma
1, #ap match ≥ #match and #ap match ≤ #match. There-
fore the cost (in terms of number of edit operations) of
changing MPSA to MPSB is less than that of changing
MA to MB . 2

Converting movement sequences into MPS has several ad-
vantages:

1. MPSs require much less storage space compared to the
original movement sequences. For example, if each

230

Procedure MPS1-NN(MQ, MPSQ, QM, result) {
/* MQ ≡ a query movement sequence; MPSQ ≡ the query MPS;

QM ≡ a quantization map; result ≡ the 1-NN movement sequence */
(1) smallest distance = maxDistance /* the 1-NN distance so far */
(2) for each MPS MPSi in the database {
(3) compute EDM(MPSi, MPSQ)
(4) if (EDM(MPSi, MPSQ) < smallest distance) {

/* need to check */
(5) compute EDR(Mi, MQ) /* compute true EDR distance */
(6) if (EDR(Mi, MQ) < smallest distance) { /* update result */
(7) smallest distance = EDR(Mi, MQ)
(8) result = Mi

} /* end-if, line 6 */
} /* end-if, line 4 */

} /* end-for, line 2 */
(9) return result

}
Figure 5: The algorithm for answering 1-NN query us-

ing MPS

symbol in a MPS is stored as a character, a MPS
only needs 1byte

8bytes
= 12.5% of the storage space needed

to store the original movement sequence (assuming a
character type needs 1 byte and floating type (real
value) needs 4 bytes). As a consequence, the retrieval
cost of a MPS should be less than its corresponding
movement sequence.

2. According to Theorem 1, the EDM of the two MPSs
is a lower bound of the EDR of the original sequences,
which guarantees that no false dismissals will be in-
troduced when we use MPS in answering queries such
as k-nearest neighbors. As mentioned in Section 1,
two factors affect the efficiency of retrieval: I/O cost
and CPU cost. The MPS representation is based on
the assumption that the retrieval cost may be reduced
due to the smaller size of MPS compared to movement
sequences. Procedure MPS1-NN shown in Figure 5 de-
scribes how MPS is used to answer 1-nearest neighbor
query (1-NN).

3. Compared to movement sequences, MPSs are one di-
mensional strings, so the dimensionality reduction tech-
niques for strings can be applied to them. This is ad-
dressed in detail in the next section.

4. MODIFIED FREQUENCY DISTANCES
Even though we reduce the storage requirements by con-

verting movement sequences into MPSs, the cost of comput-
ing the EDM between two MPSs is still O(n ∗m), since the
length of a movement sequence and that of its corresponding
MPS are the same (there is a little time saving in terms of
comparing each element of the sequences, MPS only com-
pares one symbol and a movement sequence compares two
real values). Therefore, directly using MPSs in trajectory
retrieval will not reduce that much the computation cost.
In [10], a transformation of strings into a multidimensional
integer space was proposed by mapping strings to their fre-
quency vectors (FV). A frequency vector of a string over an
alphabet records the frequency of occurrence of each char-
acter of the alphabet in that string. They prove that the
frequency distance (FD) between the FVs of two strings is a
lower bound of the actual edit distance. FD of two points
u and v in s-dimensional space, FD(u, v), is defined as the
minimum number of steps that is required to go from u to v
(or equivalently from v to u) by moving to a neighbor point
at each step. u and v are neighbors if one of them can be

Procedure ComputMFD(u, v, QM, result) {
/* u, v ≡ s dimensional integer points; QM ≡ a quantization map;

result ≡ a MFD */
(1) posDist=0, negDist=0
(2) for i = 1 to s { /*checking moves to its neighbour */
(3) ui = ui − vi

} /*end-for line2 */
(4) for i = 1 to s {
(5) if (ui 6= 0) {
(6) for each neighbor uj of ui { /* check each neighbour */
(7) if (ui ∗ uj < 0) {
(8) if (abs(ui) > abs(uj)) {
(9) ui = ui + uj , uj = 0 }
(10) else {uj = uj + ui, ui = 0 }

} /*end-if line7 */
}/*end-for line6 */

} /*end-if line5 */
} /*end-for line4 */

(11) for i = 1 to s {
(12) if (ui > 0) posDist+ = ui

(13) else negDist+ = (−ui)
} /*end-for line11 */

(14) result = (posDist > negDist)?posDist : negDist
(15) return result

}
Figure 6: The algorithm for computing the MFD

obtained from the other using a single edit operation. How-
ever, their proof uses standard ED [15] between strings. In
contrast to EDM of two MPS that is based on the concept of
approximately match (Definition 6), ED is computed based
on the equality of two symbols. Therefore their results can
not be directly applied to MPS. In order to reduce the di-
mensionality of MPS, we define a modified frequency distance
(MFD) as an extension of frequency distance.

Definition 8. Let u and v be integer points in s- dimen-
sional space. The modified frequency distance MFD(u, v)
between u and v is defined as the minimum number of steps
required to go from u to v (or equivalently from v to u) by
moving to a next-to-neighbor point at each step. u and v
are next-to-neighbors if one of them can be obtained from
the other using a single edit operation of EDR on movement
sequences.

Compared to FD, MFD takes boundary cases into con-
sideration, which corresponds to the approximately match
concept defined in Definition 6.

Theorem 2. If MPSA and MPSB are two strings from
the movement pattern alphabet A = A1, A2, . . . , As, then
MFD(f(MPSA), f(MPSB)) ≤ EDM(MPSA, MPSB), where
f(Si) is the FV of string Si.

Proof: A straightforward extension of proof of Theorem
in [10].

Based on Theorem 1 and Theorem 2, we have:
Corollary 1. Given two movement sequences MA and

MB of length n and m and their corresponding MPSs MPSA

and MPSB , MFD(f(MPSA), f(MPSB)) ≤ EDR(MA, MB).
Corollary 1 proves that the MFD between two FVs of

MPSA and MPSB is a lower bound of the EDR between
the corresponding movement sequences. Therefore, in order
to answer queries such as k-nearest neighbor queries, instead
of directly computing the EDR of movement sequences, we
can compute the MFD to prune out false candidates from
the database. Most importantly, the computation cost of
MFD is linear! Procedure ComputMFD shown in Figure
6 computes MFD between two FVs. The nested loops in
the algorithm may suggest that the computation time of
MFD is non-linear. However, as the number of neighbors
of each integer point in the frequency space is limited (at

231

Procedure FV1-NN(FVQ, MQ, QM, result) {
/* MQ ≡ a query movement sequence; FVQ ≡ the query FV;

QM ≡ a quantization map; result ≡ the 1-NN movement sequence*/
(1) smallest distance = maxDistance /* the 1-NN distance so far*/
(2) for each FV FVi in the database {
(3) compute MFD(FVi, FVQ)
(4) if (MFD(FVi, FVQ) < smallest distance) {

/* need to check */
(5) compute EDR(Mi, MQ) /* compute true EDR distance */
(6) if (EDR(Mi, MQ) < smallest distance) {
(7) smallest distance = EDR(Mi, MQ)
(8) result = Mi

} /* end-if, line 6 */
} /* end-if, line 4 */

} /* end-for, line 2 */
(9) return result

}
Figure 7: The algorithm for answering 1-NN query us-

ing FV

most 8), the computation time of Procedure ComputMFD
is still linear. Our experimental results also confirm this.
Using FV as filter further reduces the retrieval cost since the
dimensionality of FV is usually smaller compared to that of
movement sequences. Procedure FV1-NN shown in Figure 7
lists steps in answering a 1-NN query with FV as a filter.

5. EXPERIMENTS
In this section, we present the experimental results on

comparing the efficacy using MPS and the retrieval effi-
ciency using frequency vectors. All experiments were run
on a Sun-Blade-1000 workstation with 1G memory under
Solaris 2.8. Since εdir and εdis are data and application
dependent [4, 19], in our experiments, we run several prob-
ing 1-NN queries on each data set with different matching
thresholds and choose the one that ranks the results close
to human observations.

5.1 Efficacy of MPSs
As we mentioned in Section 3, converting movement se-

quences into MPSs has several advantages. However, quan-
tizing real values to symbols will loose accuracy. In this sec-
tion, we show that using MPSs in trajectory clustering and
classification is nearly as effective as using the real move-
ment sequences. In our first experiment, we perform hierar-
chy clustering using MPSs and movement sequences of two
labelled data sets.

The two labelled data sets are generated using Australian
Sign Language (ASL) and “cameramouse” (CM) [7] data
sets as seeds, respectively. The original CM data set con-
tains 15 trajectories of 5 words (3 for each word) obtained
by tracking the tip of finger from videos that record people
“write” various words. The original ASL data set from UCI
KDD data archive 3 consists of samples of Australian Sign
Language signs. 95 signs are collected for 5 different writ-
ers. We extract 5 recording for each of following 10 words:
“Norway”, “cold”, “crazy”, “eat”, “forget”, “happy”, “in-
nocent”, “later”, “lose”, and “spend”, which were also used
in [13, 19]. The average lengths of CM and ASL data are
1103 and 65, respectively. We use the program [20] to add
interpolated Gaussian noise (about 10-15% of the length of
trajectories) and time warping [20] to two data sets. The
data set that is generated from CM contains 5 classes and

3
http://kdd.ics.uci.edu

30 examples of each class, and the one from ASL data con-
tains 10 classes where each class has 50 examples.

The raw trajectories in both data sets are converted into
movement direction and distance sequences. For each data
set, we take all possible pairs of words (10 pairs for CM
data and 45 pairs for ASL data) and use the “complete link-
age” hierarchy clustering algorithm [9], which produces the
best clustering results [19] to partition them into two clus-
ters. We draw the dendrogram of each clustered result to see
whether it correctly partitions the trajectories. The results
are reported in Table 1. The Table 1 shows the clustering
results using MPS is very close to that of using movement se-
quences, therefore, we do not loose much accuracy on using
MPSs.

Correct clustering results movement sequences MPSs
CM (total 10 correct) 10 10
ASL (total 45 correct) 21 19

Table 1: Clustering results of using movement sequences

and MPSs

In our second experiment, we carry out simple classifi-
cation using 1-Nearest Neighbor and test the classification
results using the “leave one out” verification mechanism [12].
The error rate is the ratio of number of wrong classifications
to the total number of trajectories in the data set. We use
the same data sets of Experiment 1. Table 2 reports the
results. The classification results using MPSs are a little
worse than those using movement sequences.

Error Rate (%) movement sequences MPSs
CM 3 4
ASL 9 12

Table 2: Classification results of using movement se-

quences and MPSs

To summarize, in terms of efficacy, using MPSs is al-
most same as using original movement sequences. In fact,
MPS provides an approximation of the original movement
sequences. The accuracy of the approximation can be im-
proved by increasing the number of quantization regions.

5.2 Efficiency of FV in Retrieval
As shown in Procedure FV1-NN, FV can be used as a fil-

ter to remove false candidates before computing EDM on
the movement pattern strings. The aim of the filtering is to
remove as many false candidates as possible to reduce the re-
trieval and computation cost. Therefore, in our experiment,
we use pruning power as a measure of the filtering effect of
FV. The pruning power is measured by P , which is defined
as the fraction of the data set that must be examined before
we can guarantee that the answer to 1-NN is found [11].

P =
number of movement sequence that needed to compute EDR

total number of movement sequences in the data set

In the third experiment, we use five data sets with dif-
ferent trajectory lengths. The first two data sets are the
same data sets that used in Experiment 1. The third and
fourth data sets are synthetic trajectories that are gener-
ated by the program used in [22]. The first synthetic data
set (SYN1) contains 500 trajectories and the length of each
trajectory is 128. The second synthetic data set (SYN2)
has 500 trajectories and the length of each trajectory is 512.
The program generates the trajectories by simulating the
change in moving speeds and directions when people walk
freely on a plane. The frequencies of the changes in these

232

values are altered randomly in order to generate complex
moving shapes. The trajectories are limited to an area of
fixed size (500x500) and the movement directions follow a
uniform distribution. The last data set contains 589 tra-
jectories of hockey players, which were extracted from NHL
videos. The length of each trajectory is 256.

For each data set, we randomly select 10% of the se-
quences as query data. A randomly selected movement se-
quence and FV are used to conduct a 1-NN query using
Procedure FV1-NN. Results are averaged over the queries.
Figure 8 reports the pruning power of FV on different data
sets. The x-axis is used to denote different data sets that
are arranged from left to right according to their average
data length.

Figure 8: The pruning power of FV using data sets with

different lengths

As shown in Figure 8, the pruning power of FV drops
with increase of the trajectory length. The reason is that
FV does not keep the sequence order information of the
original movement sequence (only count the frequency).

We conduct the fourth experiment to check the retrieval
efficiency of FV in terms of total time that is spent on an-
swering 1-NN queries. Here the total time refers to the time
that is spent on data retrieval and the time that is spent
on computing the distance measures. Because the real data
set we obtained is quite small, we use the same program
as in the third experiment to generate 5 synthetic data sets
with trajectory lengths ranging from 64 to 1024. Each data
set contains 10,000 trajectories. As in the third experiment,
we randomly select 10% of the sequences as query data and
conduct 1-NN queries using FV (fv-scan). We also run the
queries using linear-scan, which sequentially scans the move-
ment sequences and computes EDR. All the results are av-
eraged over 50 queries. Figure 9 shows the total time of
different methods on different data sets.

As shown in Figure 9, since the computation cost of MFD
is only linear, fv-scan needs much less time compared to lin-
ear scan. Especially when the trajectory length is shorter,
the higher pruning power of FV results in bigger improve-
ments over linear-scan.

In the last experiment, we test the scalability of fv-scan
with different sizes of data sets. We run 1-NN queries using
fv-scan and linear-scan on 5 synthetic data sets with sizes
ranging from 1,000 to 100,000. The trajectory length of all
data sets is 256. The results are shown in Figure 10.

In Figure 10, we can see that fv-scan scales smoothly with
the increasing database size and it always takes nearly one
third of the total time of linear-scan (note that the y-axis
scale is logarithmic).

Figure 9: Comparison of total time of two methods on

synthetic data sets with different lengths

Figure 10: Comparison of total time of fv-scan and
linear-scan on synthetic data sets with different sizes

Based on the experiments on retrieval efficiency of FV, we
draw the following conclusions:

1. In terms of total retrieval efficiency, fv-scan is much
better than linear scan due to the linearity of the com-
putation cost of FV. Using FV as a filter can save
nearly 2-10 (trajectory length ranges from 60-1000)
times of the retrieval cost compared to that of linear
scan without the filter.

2. The pruning power of FV scales well with the increas-
ing of database size.

6. RELATED WORK
Very limited work has been done on symbolic representa-

tion of moving object trajectories. Wai and Chen [21] en-
code movement directions of moving objects in videos into
strings. Li et al. [16] represent the trajectory of a moving ob-
ject as a sequence of eight movement directions, North (NT),
Northwest (NW), Northeast (NE), West (WT), Southwest
(SW), East (ET), Southeast (SE), and South (ST). Both
approaches only consider the directional and topological in-
formation of moving object trajectories and discard the in-
formation on movement distances. Several approaches have
been proposed to represent one dimensional time series data
in symbolic form. Agrawal et al. [1] proposed SDL, which
was a language for describing and retrieving the “shape” of
one dimensional time series. The “shape” was defined based
on the difference of every two consecutive values, which was
quantized and represented by a distinct symbol. Huang and

233

Yu [8] proposed IMPACT algorithm to transform time series
data into symbol strings using change ratios between consec-
utive values. Lin et al. [17] proposed a symbolic representa-
tion of one dimensional time series data by first transforming
it into piecewise aggregate approximation. They defined a
new distance function between the symbolic representation
which is a lower bound of the Euclidean distance between
original time series data.

Compared to the previous work on symbolic representa-
tion, our approach focuses on two dimensional trajectory
data. MPSs are obtained from sequences of (movement di-
rection, distance ratio), which encode both movement di-
rection and distance into strings and are invariant to spa-
tial scaling, rotation and translation. Most importantly, we
prove that the EDM computed on MPS is a lower bound of
the EDR that is computed on original movement sequences,
which guarantees that no false dismissals will be introduced
during the retrieval. Furthermore, we define MFD between
two frequency vectors and use frequency vectors as filters to
save the cost of CPU time on computing EDR.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel symbolic representa-

tion, called movement pattern string (MPS), for moving
object trajectories. MPS approximates the real trajecto-
ries according to quantization map defined on the space and
replaces the pair (movement direction, movement distance
ration) by a single symbol. MPS is invariant to spatial scal-
ing, rotation and translation and needs less storage space
compared to raw trajectories. Most importantly, we prove
that the EDM computed on MPS is a lower bound of the
EDR that is computed on original trajectories. Further-
more, we define the modified frequency distance (MFD) be-
tween two frequency vectors extracted from MPSs and prove
that MFD is also a lower bound of EDR between original
sequences. This results means that, during the similarity-
based retrieval, we can use the frequency vector as a filter
to prune out the false candidates before we compute the
EDR between movement sequences. Our experimental re-
sults confirm that using MPSs is almost as effective as using
raw trajectories and feature vectors with MFD can effec-
tively reduce the false candidates in trajectory retrieval.

Our future work will include finding an embedding method,
which keeps both the lower bound property and the tempo-
ral order of elements in the strings and investigating the
mechanisms to handle sub-trajectory matching efficiently.
Furthermore the filtering property of MFD can be used to
define some indexes on the movement pattern strings.

Acknowledgements
Thanks to Michalis Vlachos, Yutaka Yanagisawa, and Ea-
monn Keogh for providing their source codes or data sets.
This research is funded by Intelligent Robotics and Infor-
mation Systems (IRIS), a Network of Center of Excellence
of the Government of Canada.

8. REFERENCES
[1] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zäıt.

Querying shapes of histories. In Proc. 21th Int. Conf. on
Very Large Data Bases, pages 502–514, 1995.

[2] Y. Cai and R. Ng. Indexing spatio-temporal trajectoires
with chebyshev polynomials. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 599–610, 2004.

[3] L. Chen and R. Ng. On the marriage of edit distance and lp
norms. In Proc. 30th Int. Conf. on Very Large Data Bases.

[4] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In CS
Tech. Report. CS-2004-33, School of Computer Science,
University of Waterloo.

[5] S.-C. Chen and R. L. Kashyap. A spatio temporal semantic
model for multimedia presentations and multimedia
database systems. IEEE Trans. Knowledge and Data Eng.,
13(4):607–622, 2001.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages
419–429, 1994.

[7] J. Gips, M. Betke, and P. Fleming. The camera mouse:
Preliminary invertigation of automated visaul tracking for
computer access. In In Proc. Conf. on Rehabilitation
Engineering and Assistive Technology Society of North
America, pages 98–100, 2000.

[8] Y. Huang and P. S. Yu. Adaptive query processing for
time-series data. In Proc. 5th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 282–286,
1999.

[9] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice-Hall, 1988.

[10] T. Kahveci and A. Singh. Variable length queries for time
series data. In Proc. 17th Int. Conf. on Data Engineering,
pages 273–282, 2001.

[11] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra.
Locally adaptive dimensionality reduction for indexing
large time series databases. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 151–162, 2001.

[12] E. Keogh and S. Kasetty. On the need for time series data
mining benchmarks: a survey and empirical demonstration.
In Proc. 8th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 102–111, 2002.

[13] E. Keogh and M. Pazzani. Scaling up dynamic time
warping for datamining applications. In Proc. 6th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 285–289, 2000.

[14] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W.
Chung. Similarity search for multidimensional data
sequences. In Proc. 16th Int. Conf. on Data Engineering,
pages 599–608, 2000.

[15] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Cybernetics and Control
Theory, 10(8):707–710, 1966.

[16] J.Z. Li, M.T. Özsu, and D. Szafron. Modeling of moving
objects in a video databas. In Proc. 4th Int. Conf. on
Multimedia and Computing System, pages 336–343, 1997.

[17] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs
in time series. In Proc. 2nd Int. Workshop Temporal Data
Mining, pages 370–377, 2002.

[18] J. L. Little and Z. Gu. Video retrieval by spatial and
temporal sturcture of trajectories. In Proc. 13th Int. Symp.
on Storage and Retrieval for Image and Video Databases,
pages 544–553, 2001.

[19] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering
similar multidimensional trajectories. In Proc. 18th Int.
Conf. on Data Engineering, pages 673 – 684, 2002.

[20] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A
wavelet-based anytime algorithm for k-means clustering of
time series. In Proc. Workshop on Clustering High
Dimensionality Data and Its Applications, pages 23–30,
2003.

[21] T. T. Y. Wai and A. L. P. Chen. Retrieving video data via
motion tracks of content symbols. In Proc. 6th Int. Conf.
on Information and Knowledge Management, pages
105–112, 1997.

[22] Y. Yanagisawa, J. Akahani, and T. Satoh. Shape-based
similarity query for trajectory of mobile objects. In Proc.
4th Int. Conf. on Mobile Data Management, pages 63–77,
2003.

234

