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Images like other multimedia data need to be described as it is difficult to grasp their
semantics from the raw data. With the emergence of standards like MPEG-7, multime-
dia data will be more and more produced together some semantic descriptors. But a
description of a multimedia data is just an interpretation, a point of view on the data
and different interpretations can exist for the same multimedia data. In this paper we
explore the use of view techniques to defines and manage different points of view on

images. Views have been widely used in relational database management systems to
extend modeling capabilities, and to provide logical data independence. Since our image
model is defined on an object-oriented model, we first propose a powerful object-oriented

mechanism based on the distinction between class and type. The object view is used
in the image view definition. The image view mechanism exploits the separation of the
physical representation in an image of a real world object from the real object itself to

allow different interpretations of an image region. Finally we discuss the implementation
of the image view mechanisms on existing object models.
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1. Introduction

Views are used in relational database management systems to extend modeling

capabilities and to provide data independence. Relational views can be seen as

formulae defining virtual relations that are not produced until the formulae are

applied to real relations (view materialization is an implementation/optimization

technique). View mechanisms are useful in other newly emerging application areas

of database technology. In this paper, we discuss a view mechanism for one of

those areas, image databases. This work is conducted within the context of the

DISIMA (DIStributed Image database MAnagement system)1. Since DISIMA uses

object-oriented technology, we deal with object-oriented views.
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Due to the volume and the complexity of image data, image databases are

commonly built on top of object or object-relational database systems. Image

databases, in particular, can benefit from a view mechanism. Specifically, an image

can have several interpretations that a view mechanism can model. The DISIMA

system2 defines a model that is capable of handling an image and all the meta-data

associated with it, including syntactic characterization (shape, color and texture)

of salient objects (region of interest) contained in the image. The level at which

the syntactic features are organized and stored is called the physical salient object

level. Each physical salient object can then be given a meaning at the logical salient

object level. In general, salient object detection and annotation is a semi-automatic

or a manual process.

Given the fact that we can manually or automatically extract meta-data infor-

mation from images, how do we organize this information so that an image can be

interpreted with regard to a context? That is, if the context of an image changes,

the understanding of the image may change as well. Let us take a picture of the

Smith family as an example. The family has four members: Mr. and Mrs. Smith,

their young son John, and their daughter Jane. If John is describing this picture

to his friends, he will say: “This is me, these are my mother and father and over

there is my sister.” The description of Mrs. Smith for the same picture will be:

“This is me, my husband, my young son John, and my daughter Jane.” The ex-

ample illustrates different descriptions of the same image. They are all valid within

the right context. As another example, consider an electronic commerce system

with a catalog containing photographs of people modeling clothes and shoes. From

the customer’s point of view, interesting objects in this catalog are shirts, shorts,

dresses, etc. But the company may want to keep track of the models as well as

clothes and shoes. Assume that the models come from different modeling agencies.

Each of the agencies may be interested in finding only pictures in which their mod-

els appear. All these users of the same database (i.e., the catalog) have different

interpretations of the content of the same set of images. In the first example, the

same regions of interest in the image are given different semantics depending on the

interpretation context and the second example the objects of interest are different

from one context to another.

Defining an image content with regard to a context helps capture more seman-

tics, enhances image modeling capabilities, and allows the sharing of images among

several user groups with different points of view on the image. Hence, the user

should not notice any difference in the way derived images and base images are

handled. However, in existing object view mechanisms3,4,5,6, derived objects are

not first class citizens. To that end, we first defined an object view mechanism on

top of which we built the image views.

An earlier version7 of this work was published in the IFIP DS-8 proceedings.

Section 2 discusses the existing image metadata and models. Section 3 describes

the image view mechanism and the object view on top of which it is built, Section

4 presents the image view definition language and discusses the implementation



Views or Points of View on Images

Figure 1: Image Preprocessing and Database.

issues. Section 5 discusses object and image view issues, and Section 6 concludes.

2. Image, Annotation, Metadata and Semantics

A common problem in multimedia data is their interpretation and understand-

ing. Raw multimedia data are sequences of bytes that cannot be directly used to

answer queries; they have to be preprocessed. The preprocessing represents the

multimedia data in a more digest form for a computer. The data obtained from the

preprocessing are metadata (data about data) for the raw multimedia data. We are

more interested in the content metadata that can be divided into two categories:

syntactic metadata and semantic metadata. For an image, the syntactic metadata

can be feature vectors representing visual features such as color, texture, and ge-

ometric shapes found in the image. The semantic metadata describes the image

content in terms of real-world objects, actions and feelings.

Hence an image database can be seen as composed of two distinct parts (Fig-

ure 1): The database component in charge of data organization and querying, and

the image preprocessing component that extracts features from the images, detects

and, sometimes, recognizes objects in the images. The preprocessing is, most of the

time, semi-automatic as automatic recognition of objects in an image of arbitrary
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scene is still a research problem in Computer Vision8.

2.1. Annotation

Well-known image processing techniques9 can be used to segment an image into

homogeneous regions (syntactic objects) and extract visual features (color, texture

and shape). Identifying the objects and interpreting the image is more challenging

and, in most cases, requires human intervention. Annotation is the process that

provides interpretations (semantics metadata) to an image. In the IKONA system10

a relatively small database is manually annotated by associated keywords to the

images. The system then finds correlations between the keywords and the image

visual features in order to propagate the keywords and annotate a larger image

database. The same approach can be used to associate keywords with regions of

an image. Semi-automatic annotation techniques based on the WorldNet electronic

dictionary11 have also been proposed12. Semantic classes defined as semantic labels

and visual descriptors are used to annotate the images. In the DISIMA system1, the

link between physical salient objects (regions of an image) and the corresponding

logical salient objects (meanings) are done manually.

2.2. Metadata for Images

Since it is difficult to directly use raw image data in queries, the acquisition,

organization and maintenance of the metadata for images are becoming a key issues

in image archiving. Several organizations are defining standard metadata structures

for images. Among these standards are the Dublin Core metadata, MPEG-7 and

RDF.

2.2.1. The Dublin Core Metadata Initiative

The Dublin Core (DC) is an international initiative whose goal is to define

metadata for digital resources. The initial metadata format published in 199513

was extended in 1996 to support images. The extension consisted in the addition

of two more elements to the thirteen originally defined and the adaptation of the

descriptions of some existing elements. The resulting simple Dublin Core14 is com-

posed of the following fifteen elements: Title [Name given to the resource by the

’Creator’ or Publisher], Author or Creator [person(s) or organization(s) primarily

responsible for the intellectual content of the resource], Subject and Keywords [the

topic of the resource (keywords, index terms or subject classification)], Description

[textual description of the resource], Publisher [the entity responsible for making

the resource available], Other Contributor [person(s) or organization(s)not included

under ’Creator’ who have made significant (but secondary)intellectual contribution

to the resource], Date [date the resource was made available in its present form],

Resource type [The category of the resource, e.g. ’image’], Format [the data rep-

resentation of the resource, e.g. ’text/html’, ’JPEG’], Resource Identifier [string or

number used to uniquely identify the resource, e.g. ’URI’, ’URL’], Source [Infor-
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mation on the work from which the resource is derived], Language [languages of

the intellectual content of the resource], Relation [relationship of the resource with

other resources], Coverage [spatial locations or temporal duration characteristic of

the resource], Rights Management [a link to a rights management statement].

2.2.2. The MPEG-7 Metadata Initiative

MPEG-7, formally known as Multimedia Content Description Interface mainly

concentrates on the description of multimedia content. The objective of MPEG-7 is

to provide a rich set of organized tools to describe multimedia content and represent

information about the content at different levels. MPEG-7 is an ISO standard and

addresses image, text, video, audio, speech, and graphics individually along with

their combinations.

The core elements of MPEG-7 standards are the Descriptors (D) to define the

syntax and semantics of each multimedia feature, Description schemes (DS) to

specify the structure and semantics of the relationships between their components.

The Description Definition Language (DDL) is used to define the syntax of MPEG-

7 and structure of descriptors. It allows creation of new description schemes and

descriptors. The DDL15 consists of (1) XML Schema structural components, (2)

XML Scheme data types, and (3) MPEG-7 specific extensions.

2.2.3. The Resource Description Framework (RDF)

RDF16 is defined by the World Wide Web Consortium (W3C) in order to provide

meaning to resources available on the Web (among which images). Meaning is

represented in RDF by sets of triples, each triple containing a subject, a verb

and an object of an elementary sentence. In RDF, a document makes assertions

that particular objects have properties, with certain values. This structure turns

out to be a natural way to describe the cast majority of the data processed by

machines. Subject and Object are each identified by a Universal Resource Identifier

(URI). The simplest form of a URI is the URL. The verbs are also defined by the

URI’s. A property is a specific aspect, attribute or relationship, used to describe

a resource. Each property has a specific meaning, defines its possible values, the

types of resources it can describe, and the relationships with other properties.

2.3. Image Database Models

The main objective of the standards or proprietary metadata structures is to

provide audio-visual and textual content descriptors for individual images. In the

presence of a large number of images, it is crucial to find a suitable representation

for images, their metadata and the operations to be applied to them in order to

answer users queries. This level corresponds to the conceptual level in the ANSI

relational database architecture17 where algebraic optimizations and algorithm se-

lections are performed. Physical optimizations at the physical level (data files and

indexes) consist of selecting the indexes and access methods to be used in the query
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processing. The image models are built on top of existing database models, mainly

object-relational and object-oriented.

2.3.1. An Example of Object-Relational Image Data Model

In 18, an image is stored in a table T (h : Integer, x1 : X1, . . . , xn : Xn) where

h is the image identifier and xi is an image feature attribute of domain (or type)

Xi (note that classical attributes can be added to this minimal schema). The tuple

corresponding the image k is indicated by T [k]. Each tuple is assigned a score (ζ)

which is a real such that T [k].ζ is a distance between the image k and the current

query image. The value of ζ is assigned by a scoring operator ΣT (s) given a scoring

function s: (ΣT (s))[k].ζ = s(T [k].x1, . . . , T [k].xn).

Since many image queries are based on distance measures, a set of distance

functions (d : X → X → [0, 1]) are defined for each feature type X. Given an

element x : X and a distance function d defined on X, the scoring function s

assigns d(x), a distance from x to every element of X. In addition, a set of score

combination operators ♦ : [0, 1]× [0, 1]→ [0, 1] are defined.

New selection and join operators on the image table augmented with the scores

are defined to allow selection of the n images with lowest scores, the images whose

scores are less then a given score value ρ and the images from a table T1 that match

images from a Table T2 based on score combination functions.

2.3.2. The DISIMA Model: An Object-Oriented Approach

The DISIMA model is presented in more detail as it is the base of the view

mechanism. In the DISIMA model, as shown in Figure 2, an image is composed of

physical salient objects (regions of the image) whose semantics are given by logical

salient objects that represent real world objects. The DISIMA model introduces

three new types: Image, Physical Salient Objects, Logical Salient Objects and oper-

ators to manipulate them.

From the Image type, the user can define new types to classify the images.

Figure 3 depicts a type hierarchy for an electronic commerce application that rep-

resents the catalogs as classes. The general T Catalog type is derived from the root

type T Image, the root image type provided by DISIMA. The type T Catalog is

specialized by two types: T ClothingCatalog, and T ShoesCatalog.

An example of salient object hierarchy, corresponding to the image hierarchy

defined in Figure 3, is given in Figure 4.

A physical salient object (PSO) is a region of an image, a geometric object

(without any semantics) in a space (defined by an image) with properties like shape,

color, and texture. A logical salient object (LSO) is the interpretation of a region.

It is a meaningful object that is used to give semantics to a physical salient object.

If we denote by L the set of all logical salient objects and P the set of all physical

salient objects, the content of an image i is defined by a pair Cont(i) =< P i, s >

where:



Views or Points of View on Images

(represented_by)
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Figure 2: The DISIMA Model Overview.

T_Image

T_Catalog

T_ClothingCatalog T_ShoesCatalog

Figure 3: An Example of an Image Hierarchy.

T_Person

T_Politician T_Model T_AthleteT_ClothingT_Shoes

T_Item

T_Salient_object

Figure 4: An Example of Logical Salient Object Hierarchy.
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- Pi ⊆ P is a set of physical salient objects,

- s : Pi −→ L maps each physical salient object to a logical salient object.

An image i is defined by a triple < Rep(i), Cont(i), Desc(i) > where:

- Rep(i) is a set of representations of the raw image in a format such as GIF, JPEG,

etc;

- Cont(i) is the content of the image i;

- Desc(i) is a set of descriptive alpha-numeric data associated with i.

Color and texture characterizing the whole image are part of Desc(i).

The new operators introduced for objects of the new types are: contains or

semantic join (to check wether a salient object is found in an image), and the

similarity join that is used to match two images or two salient objects with respect

to a predefined similarity metric on some low-level features (color, texture, shape,

etc.). In addition, DISIMA supports the spatial join19 on physical salient objects.

3. Defining Image Views in DISIMA

The mechanism of image views in DISIMA exploits the distinction between an

image and its content represented as physical salient objects, and the distinction

between a physical salient object and its meaning represented as a logical salient

object. The idea is (1) to be able to define different sets of regions of interest

(physical salient objects) from the same image and (2) to be able to assign different

logical salient objects to a physical salient object depending on the context.

In the initial DISIMA model, a physical salient object is associated with one

and only one logical salient object but to a logical salient object can correspond

several physical salient objects. This allows only one context of interpretation for

an image.

Definition 1 An image interpretation context is defined by the minimal logical

salient object sub-schema and the logical salient object instances that give meanings

to the physical salient objects contained in the image.

The first extension to the model is to change the relationships between PSOs

and LSOs into a many-to-many relationships. This means that a physical salient

object can have different logical salient objects each of which can belong to a dif-

ferent interpretation context. A new interpretation can be derived from an existing

one by selecting, aggregating or redefining descriptor elements. These derived in-

terpretation are based on object view mechanism. The second extension is to allow

an image to have different contents in terms of the physical salient objects. These

two extensions form the image view mechanism based on an object view mechanism

that built on an object model20 we defined earlier.

3.1. The Object Model

We separate the definition of object characteristics (a type) from the mecha-

nism for maintaining instances of a particular type (a class) for several well known
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Figure 5: Image Views in DISIMA.

reasons20. A type defines behaviors (or properties) and encapsulates hidden be-

havioral implementations (including state) for objects created using the type as

template. We use the term behaviors (or properties) to include both public inter-

face functions (methods) and public state (public instance variables). The behaviors

defined by a type describe the interface for the objects of that class. A class ties

together the notion of type and object instances. The entire group of objects of a

particular type, including its subtypes is known as the extent of the type and is

managed by its class. We refer to this as deep extent and introduce shallow extent

to refer only to those objects created directly from the given type without consider-

ation of its subtypes. For consistency reasons all the type names used in this paper

start with T . The object model that we use in this study differentiates types from

classes. Let C be the set of class names. If C is a class name, T (C) gives the type

of C and Γ(C) denotes the extent of the class C. We denote by T , the graph rep-

resenting the type hierarchy. The main concepts for the model can be summarized

as follows:

• The set of types T with a partial order ≤t (subtyping). A type T X can define

a set of behaviors ({B alphai}). It can also bind behaviors to functions.

• The set of classes C. Each class X has an associated type T (X) = T X (type

of the objects in the class) and manages a set of objects of type T X: [Γ(X)]

• The set of behaviors B.

• The set of functions F . A function is defined by a signature and a body.

• The set of objects O. Each object o belongs to a single class [X = C(o)] and

each object knows its type [T X = T (o)].
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3.1.1. Derived Classes

We consider two types of derived classes: simple derived classes (derived from a

single class called the parent class) and composed derived classes (derived from two

or more parent classes). We will use the term base class to refer to a non-derived

class. In the same way, a base object refers to an object of a base class. The

derivation relationship is different from the specialization/generalization one in the

sense that the objects and properties introduced are obtained from data previously

stored in the database.

Simple Derived Class: A simple derived class is a virtual class derived from

a single parent class.

Definition 2 A derived class Cd is defined by (C,Φ,Ψ) where:

• C is the parent class

• Φ, the filter, is a formula that selects the valid objects from C for the extent

of Cd

• Ψ, the interface function, defines the type of Cd by combining the functions

A: Augment and H: Hide such that Ψ = A ◦H, where A maps a set of objects

of a particular type to a set of corresponding objects in a type with some

additional properties. Similarly H hides some properties.

• Γ(Cd) = Ψ(Φ(Γ(C)))

As defined, Ψ, A and H have to be applied to sets of objects of a certain type to

return sets of objects of another type. To avoid introducing news terms, we will

extend their applications to types.

If α, β, γ, δ are properties defined in T C, H(T C, {α, β}) will create a new type

(let us call it T Restricted C) in which only the properties γ, δ are defined. Hence

T Restricted C is a supertype of T C.

A(T C, {(µ : f1), (ν : f2)}) will create a type (T Augmented C) with the addi-

tional properties µ and ν, where f1 and f2 are functions that implement them.

T Augmented C is a subtype of T C.

A(H(T C, {α, β}), {(µ : f1), (ν : f2)}) defines the type T Cd for a class Cd derived

from a class C with the properties α, β of T C hidden and µ, ν as new properties.

In general, the type T Cd of a class Cd derived from the class C, is a sibling

of T (C). However, if no properties are hidden, T (Cd) ≤t T (C) (≤t stands for the

subtyping relationship). Alternatively, if no properties are added, T (Cd) ≥t T (C)

(≥t stands for the supertyping relationship). The notion of sibling generalizes the

notion of subtyping and supertyping. The most general case where some properties

are removed and new ones are added is illustrated by Figure 6. In this example, we

assume that the following properties are defined for the different types:

• T Person(SIN: int, LastName: string, FirstName: string, Sex: char, DateOf-

Birth: date)

• T Restricted Person(SIN: int, LastName: string, FirstName: string, Sex:

char)
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• T Augmented Restricted Person(SIN: int, LastName: string, FirstName: string,

Sex: char, Age: int)

type

T_Augmented_Restricted_Person T_Person

(has_type)

Augmented_Restricted_Person Person

T_Restricted_Person

(subtype_of)

class

Figure 6: An Example of a Derived Class and its Type

In Figure 6, the extent of Augmented Restricted Person is a subset of the

extent of Person with a different interface defined by the type T Augmented Re-

stricted Person.

Composed Derived Class: Assume that the type T Person has two sub-

types T Student and T Faculty. Some of the students teach and some faculty do

only research. The Type T Student has the properties (Year: int) and (Teach:

boolean) while the properties (HiringDate: date) and (Teach: boolean) are defined

for Faculty. We would like to derive a class Teacher of all the persons who teach

with the property (TimeServed: int) obtained either from HiringDate or from Year

depending on the type of the base object. The class Teacher cannot be directly de-

rived from the class Person since the useful properties are not defined in T Person.

In the following, we propose a way (composed derived class) to solve this problem.

Definition 3 Let (C1, C2) ∈ C
2 be a pair of classes. Then:

• Cd = C1 ∗ C2 with a filter Φ and an interface Ψ is a composed derived class

with Γ(Cd) = Ψ(Φ(Γ(C1) ∩ Γ(C2))

• Cd = C1 +C2 with a filter Φ and an interface Ψ is a composed derived class

with Γ(Cd) = Ψ(Φ(Γ(C1) ∪ Γ(C2))

• Cd = C1 −C2 with a filter Φ and an interface Ψ is a composed derived class

with Γ(Cd) = Ψ(Φ(Γ(C1)− Γ(C2))

with T (Cd) a sibling of Anc(T (C1), T (C2)) where Anc(X,Y ) is a function that

returns the first common ancestor of (X,Y ) in the type hierarchy T .
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Student_Teacher Faculty_Teacher

TeacherStudent Faculty

T_Person

T_Student T_FacultyT_Teacher

+

type

class

derived_from

subtype_of

has_type

Figure 7: An Example of a Composed Derived Class and its Type.

The semantics of the constructive operations {∗,+,−} are respectively based on the

basic set operations ∩,∪ and −. As defined, {∗,+,−} are binary operations but the

formulae obtained can be seen as terms and be combined for more complex ones.

Note that C1 and C2 can be derived classes as previously defined. The ancestor

function Anc works fine when T is rooted. When this is not the case, a common

supertype T C is created for T (C1), T (C2). In the worst case, T C will not have any

properties in it.

The problem of deriving a class Teacher can be solved by defining a simple

derived class Student Teacher whose extent is a subset of all the students. In the

same way, we derive the class Faculty Teacher from Faculty. Teacher is then

defined as Teacher = Student Teacher + Faculty Teacher. The type T Teacher

is a subtype of T Person which is the common ancestor (Figure 7).

3.1.2. Identifying and Updating a Derived Object

A derived object is always derived from one and only one base object although

its properties can be totally different from the properties of the base object. This



Views or Points of View on Images

happens when all the properties of the base class are hidden and new ones are

defined for the derived class. Hence, a derived object can be seen as a base object

viewed from another angle (the interface function of the derived class). Both the

derived object and its corresponding base object can be identified by the OID of

the base object (BASE OID). If we redefine the notion of OID as follows: OID=

< class name,BASE OID > then the base object can be differentiated from the

derived one. This OID defines a logical idenfier for any object including the derived

ones independently from any view implementation technique. In the case of view

materialization with incremental maintenance, an active research area21,22,23,24, the

derived object OID is a key candidate and can be directly used as identifier.

A derived object knows its base object. Therefore, updating a property inherited

from the base type can easily be propagated to the base object. Creating new objects

for a derived class should first create the objects in the base class with some possible

unknown property values.

3.1.3. Inserting the Type of a Derived Class into the Type System

The type of a derived class has to be inserted at the right place in the type

system. The insertion is simple when the associated type of a derived class is a

subtype of the type of the parent class (or an ancestor of the parent classes). This

happens when the definition of a derived class uses only the function augment. In

this case, the new type is simply inserted as a subtype of the type of the parent

class. The problem of inserting the new type into the type system is more complex

when the function hide is used in the definition of a derived class, especially when

the type associated to the parent class inherits some properties from another type.

For example, all the behaviors inherited by T RestrictedPerson in Figure 6 and

Figure 7 are defined in T Person. Therefore T RestrictedPerson should be defined

as a supertype of T Person, and T Person should have locally defined only the

behaviors not in T RestrictedPerson. The type system is automatically updated

when classes are derived.

3.1.4. Derived Classes and Subclassing

As indicated earlier, the class derivation relationship is different from the sub-

class/superclass relationship. However Xd derived from a class X can be defined as

a subclass of X (Xd ≤c X), if the following two conditions are satisfied:

• T Xd ≤t T X

• Γ(Xd) ⊆ Γ(X)

These two constraints ensure that we keep the same semantics of subclass/superclass

relationships as traditional object models. That is, an object of a subclass is also

an object of the superclass, and any behavior defined for objects of the superclass

can be applied to objects of the subclass.
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3.2. Derived Image Classes and Derived Salient Object Classes

3.2.1. Derived Image Classes

A derived image class, in addition to defining a new type, selects the the needed

physical salient objects from the base image possibly with new semantics.

Definition 4 A derived image class is a class derived from an image class that

specifies the valid logical salient objects for images in its extent. If id is an image

derived from an image i, then the set of physical salient objects contained in id
is a subset of the set contained in i. The physical salient objects in id are those

for which the corresponding logical salient objects belong to one of the valid logical

salient objects.

In addition to redefining the type, a derived image class redefines the content of the

images it contains. For example, from the ClothingCatalog class defined in Figure 3,

we can derive two different catalogs giving different interpretations of the images in

the ClothingCatalog image class: the customer catalog class (CustomerCatalog) and

the clothing company catalog (CompanyCatalog). The customers are interested in

finding clothing from the catalog. Therefore, the valid logical salient object class

is Clothing. In addition to the clothing, the company may be interested in keeping

some information about the models.

A composed derived image class can also be created. For example, from Cloth-

ingCatalog we can derive the class FemaleClothingCatalog. We can also derive Fe-

maleShoesCatalog from ShoesCatalog. FemaleClothingCatalog and FemaleShoesCat-

alog can be combined using the + operator to derive a class FemaleApparelCatalog.

The common ancestor of FemaleClothingCatalog, and FemaleShoesCatalog is Cata-

log. Therefore the type of FemaleApparelCatalog has to be a sibling of the type of

Catalog (Figure 8).

3.2.2. Derived Logical Salient Object Classes

Definition 5 defines the content of an image i as a pair Cont(i) =< P i, s > where

Pi represents the physical salient objects and the function s maps each physical

salient object to a logical salient object. An image id can be derived from i and

Cont(id) =< P i, sd >. Assume we derived a logical salient object class L1 from

the logical salient object class L and that all the physical salient objects in P i are

mapped to objects of L. If we note by f the interface function that transforms an

object of L to an Object of L1, and we define sd = s ◦ f , then id is a derived image

that contains L1 objects.

For example, the classes FemaleClothing and FemaleShoes can be respectively

derived from Clothing and Shoes (Figure 4). A composed derived class FemaleAp-

parel can be derived from the two previously derived classes and the derived image

class FemaleApparelCatalog can be defined as images containing female appar-

els. Of course, T FemaleClothing and T FemaleShoes can respectively be different
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type

class

FemaleApparelCatalog

+

T_Catalog

FemaleClothingCatalogFemaleShoesCatalog

ShoesCatalog

T_ClothingCatalogT_ShoesCatalog

ClothingCatalog

Studenthas_type

derived_from

subtype_of

Figure 8: An Example of a Composed Derived Image Class
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from T Clothing and T Shoes. T FemaleApparel is then, a sibling of T Apparel.

Definition 5 An image view is defined by:

• a derived image class

• an interpretation context defined as a set of selected logical salient object

classes (base or derived).

4. The Image View Definition Language

The view definition language allows the definition of derived image and logical

salient classes. Queries in the view definition are expressed in MOQL (Multimedia

Object Query Language)25, the query language defined for DISIMA. MOQL extends

the standard object query language, OQL26 with predicates and functions to capture

temporal and spatial relationships. Most of the extensions have been introduced in

the where clause in the form of new predicates as the new operators introduced by

the DISIMA model are joins. The convention used in the language definition is: [ ]

for optional, { } (different from {} which are part of the language) for 0 to n times,

and | for one and only one among different possibilities.

• Create a derived class
derive { <derived class name> from <class definition >

[ augment {<virtual behavior name> as <query> |
<function name> ;}]

[ hide < behavior list>]
{cast < behavior—type > into <new type> }
[ content< interpretation context>]
extent <extent name > [as <query>]

};

<class definition> := <class name> |
(<class definition > union | intersect | minus <class definition>)

• Delete a derived class

delete <derived class name | image view name>

• Create an Image View
create image view <image view name> as

{ {<derived image class definitions >};
{<derived logical salient object class definitions >}
}

• Select an Image View
set image view to <image view class name>

The derive command is used to define a derived logical salient object class, as

well as derived image classes. The classes that the derived classes are derived from

one or more base or derived classes. The query in the extent clause defines the

derived class extent and must return a unique subset of the combination of the
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parent class extents. The augment clause is used to define new properties. A query

can invoke an existing property. In this case, the keyword this is used to refer to the

current object. If (α : T (C)) is a property and Cd is a class derived from C, then

the clause cast can be used to cast the type of α into T (Cd). The content clause

allows to define the logical salient object classes that will form the interpretation

context. This clause is used only for derived image classes and is used to select the

interpretation context. It is complemented by the cast clause. If a logical salient

object class mentioned in the view is a derived class, then the salient objects from

parent image should be casted to the derived type. Assume a salient object class

Sd is derived from class S and an image i (element of the image class I) contains a

salient object of type T (S). If we derive an image class Id from I with the clause

content Sd, image id derived from i will contain a salient object of type T (Sd)

instead of T (S). For example, in the image view CustomerClothing that follows,

an image of CustomerCatalog contains elements of CustomerClothing, rather than

Clothing as salient objects. Derived classes can dynamically be deleted.

An image view defines the interpretation context for one or more image classes.

An image view is created using the command create image view and contains de-

rived image and salient object classes. The salient objects classes do not have to

be derived. They can be base classes introduced to provide complementary inter-

pretations. In this case the image view just selects the the logical salient objects

to form the interpretation context. The Set Image View to command is used to set

the current image interpretation for querying purpose.

4.1. Examples of Image Views

In the following, we give some examples of image views derived from the catalog

database. The corresponding schema expressed in the ODMG object model26 is

given in the Appendix. The schema given in the Appendix can be seen as the most

general view, the view of the company owner of the catalog: each image contains

models and clothes. The example views correspond to the Customer View, the

Female Clothing Catalog View, and the Female Apparel Catalog view.

Create Image View CustomerCatalog
{

derive {CustomerClothing from Clothing
augment inStock as this.inStock();

avgPriceForType as
avg(Select c.price
From Clothes c
Where c.type = this.type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
extent CustomerClothes};
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derive {CustomerCatalog from ClothingCatalog
hide photographer, date, time, place
cast accessories into Set<Ref<CustomerCatalogs>>

cast Clothing into CustomerClothing
extent CustomerCatalogs
content CustomerClothing}

}

The derived class CustomerClothes redefined Clothes for the customers’ use.

Attributes stock, lastOrderDate, lastArrivalDate, nextArrivalDate are hidden and

the virtual attribute avgPriceForType returns the average price for this type of

clothing.

The image view CustomerCatalog uses the image class Catalog renamed as

CustomerCatalog with CustomerCatalogs as its extent name. All the images are

available but their content will be limited to objects of CustomerClothes which

redefines Clothing. Attributes photographer, date, time, place are hidden. The

attribute accessories was defined as a set of images from Catalog. Its type has to

be changed to set of CustomerCatalogs to ensure consistency.

Create Image View FemaleClothingCatalog
{

derive {FemaleClothing from CustomerClothing
extent FemaleClothes as

Select c
From CustomerClothes c
Where c.sex = ’female’ or c.sex = ’unisex’};

derive {FemaleClothingCatalog from ClothingCatalog
hide photographer, date, time, place
cast accessories into Set<Ref<CustomerCatalogs>>

cast CustomerClothing into FemaleClothing
extent FemaleClothingCatalogs
content FemaleClothing};

}

Only images containing female items are selected from the clothing catalog. The

salient objects are restricted to female clothing.

Create Image View FemaleApparelCatalog
{

derive {FemaleShoes from Shoes;
augment inStock as this.inStock();

avgPriceForType as
avg(Select s.price
From Shoes s
Where s.type = this.type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
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extent FemaleShoesExtent as
Select s
From ShoesExtent c
Where c.sex = ’female’ };

derive {FemaleShoesCatalog from ShoesCatalog
hide photographer, date, time, place
extent FemaleShoesCatalogs
content FemaleShoes};

derive {FemaleApparelCatalog from FemaleClothingCatalog union
FemaleShoesCatalog

extent FemaleApparelCatalogs};
}
The FemaleApparelCatalog combines the FemaleClothingCatalog and the Fe-

maleShoesCatalog into a new derived catalog.

4.2. Implementing Derived Classes in DISIMA

The distinction between types and classes is not supported by most object-

oriented languages in current use. DISIMA is being implemented on top of Object-

Store27 using C++. DISIMA provides types for image and logical salient objects

that can be subtyped by the user. The implementation we describe in this section

simulates the idea using C++. We implement all our types as C++ classes. We call

these C++ classes type classes and their names start with T . For example T Person

will be a type class for the class Person. Our classes are objects of the C++ class

C Class. C Class has a subclass D Class for derived classes. The properties defined

for C Class are:

• Name: name of the class

• Type: type class name

• SuperclassList: list of the superclasses

• SubClassList: list of the subclasses

• ShallowExtent (virtual function): The shallow extent of the class

• DependentList: list of classes derived depending on this one

The properties defined for D Class are:

• Base ClassList: list of the classes it is derived from

• Filter: filter function

• ShallowExtent: redefined

• MaterializationFlag: set when the ShallowExtent is up-to-date

• Change: function used to unset the MaterializationFlag

The DependentList in the class C Class contains all the classes derived from that

class and also all the derived classes for which an augmented property is computed

using objects of that class. Since the type of a derived class can be different from
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the type of its base class we choose to materialize the derived class extent. An

object of C Class represents a user’s class and the extent (ShallowExtent) property

returns objects of the type class (Type). The SubClassList can be used to recursively

compute the deep extent. To simplify the materialization process, we only store one

level of base class. That is, the Base ClassList of a derived class contains only non-

derived classes. A derived class extent is materialized the first time the class is

referred to and the materialization flag is set. Each time new objects are created,

modified or deleted in a base class, a change message is sent to each of the classes

in the DependentList to unset the materialization flag. If the materialization flag is

unset when a derived class is accessed, the derived class extent is recomputed and

the materialization flag is reset.

When the augmented properties of a derived object are computed from the single

base object without any aggregate, the management algorithm for incremental view

maintenance can easily be implemented as follows. An object of a derived class

contains the OID of the base object it is derived from. The Change method passes

the OID of the changed base object (new, deleted or updated) to the derived class

object where it is kept in the ChangeList of the derived class object. The ChangeList

can then be visited to update or create the derived objects for modified or new base

objects and to delete derived objects corresponding to deleted base objects.

5. Object Models and Views

5.1. Object Models

In most object systems, as indicated earlier, the terms type and class are used

interchangeably to refer to one or more of the following notions: (1) real-world

entity, (2) programmatic interface, (3) implementation of the programmatic inter-

face, (4) internal machine representation, (5) factory for creation of instances, (6)

maintainer of the extent (the set of all the instances of a class). For example, in

GemStone28, class refers to all of the above notions. In ObjectStore27, type refers

to (2) and (4), while class refers to (1), (3), and (5). Alternately, the type of an

object of a particular class is implicitly defined by that class, so it may also be

argued that class in ObjectStore actually refers to all notions except (6). In O2
29,

type refers to (2) and (4), while class is a special kind of type that refers to (1)

through (6). In Iris30, type refers to (1), (4), (5), and (6); (2) and (3) are defined

with respect to the type but are not a part of the type. In VODAK31 (which is

built on top of ObjectStore but has a different data model), type refers to (2), (3),

and (4), while class refers to (1) and (5). Type in VODAK has two components:

the interface, referring to (2), and the implementation, referring to (3). Both parts

of the VODAK type can define the representation. In relational database systems,

type refers to (2) and (4). XML32 and DAML+OIL33, through XML Schema, offer

a variety of types that refer to (2) and (4) But XML has no explicit constructs to

define classes. RDF16, has only literal (strings) as type (2) and (4) and uses the
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< rdfs : class > to define classes (5).

5.2. Views and Objects

Several object view mechanisms have been proposed since the early 1990s3,4,5,6,34.

In general, the main problems with these views6 are (i) expressive power (restric-

tions on queries defining views); (ii) reusability and modeling accuracy (insertion of

the views into the generalization hierarchy); and (iii) consistency (stability in OID

generation).

Problems (i) and (ii) are somewhat related. For example, using the view mecha-

nism in 5, if the user wants the view class to be linked to the generalization hierarchy,

the query that generates the view class has to be restricted. In addition, problem

(ii) raises a typing problem (how is the type of the virtual class related to the type

hierarchy?) and a classification problem (how is the extent of a virtual class related

to the existing ones?). Finding an answer to these two questions in an environment

where the only relationship is the is-a relationship can lead to contradictions. The

distinction between the derivation hierarchy and the generalization hierarchy in our

proposal, based on the distinction between type and class, provides an elegant so-

lution to problems (i) and (ii). For example, the fact that the associated type of a

class is not tied to the class allows a view based on a projection of its parent type

behaviors to be created with an associated type defined as a supertype of the parent

type, while the extent is a subset of the extent of the parent class extent. The type

of a derived class is computed from the view definition and inserted into the type

system. The insertion of the new type can lead to local reorganization of the type

hierarchy without any effect on existing classes.

In addition, the object view mechanism proposed in this paper allows us to

derive classes from several existing ones. Problem (iii) is solved by the fact that

a derived object is seen as a base object with a different interface function. A

derived object and its base class share the same OID but are uniquely identified

by the pair < class name,OID >, which is invariant even if the derived object is

recomputed. These problems needed to be solved in order to provide clean image

views as for the user there should not be any difference between an image view (a

derived context) and a base context. The two levels of salient objects ensure the

semantic independence and multi-representation of salient objects.

6. Conclusion

Because of their nature, images are often represented using object or object-

relational models. Hence, an image view mechanism should should be an extension

of object models. The aim of an image view mechanism is to provide a way to define

different context of interpretations for the same image without having to duplicate

the image data.

The image view is based on an object model. The distinction between type

and class in the model used in our view mechanism allows the manipulation of
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both the type and the extent in a view definition. The distinction also facilitates

the integration of the type of a virtual class into the type hierarchy. A virtual

class can be derived from one or several classes without any constraint on the

query defining it. The DISIMA model separates the objects contained in an image

(physical salient objects) from their semantics (logical salient objects). Using our

object view mechanism, we proposed an image view mechanism that allows us to

give different semantics to the same image. For example, a derived image class can

be defined by deriving new logical salient object classes that give new semantics to

the objects contained in an image or by hiding some of the objects using a derived

image class.

The main contributions of this paper are the proposal of a powerful object-

oriented view mechanism based on the distinction between class and type, a pro-

posal of an image view mechanism based on image semantics and the image view

implementation using a language that does not intrinsically support the distinction

between class and type.
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Appendix A

class Image{

Set<Ref<Representation>> representations;

Set<Ref<PhysicalSalientObject>> physicalSalientObjects

inverse image;

// Methods

display(); }

class Catalog: Image{

Person photographer; Date date; Time time; String place; }

class LogicalSalientObject{

Set<Ref<PhysicalSalientObject>> physicalSalientObjects

inverse logicalSalientObject;

//Methods

Region region(Image m); // salient object’s region in image m

Color color(Image m); // salient object’s color in image m

Texture texture(Image m); // salient object’s texture in image m }

class Person: LogicalSalientObject{
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String name; String occupation; Address address; }

class Model: Person{

String : agency; }

class Apparel: LogicalSalientObject{

String name; String type; Real price; Set<Real> size;

Manufacturer manufacturer; Integer stock; String colors;

Date lastOrderDate; Date lastArrivalDate; Date nextArrivalDate;

//Methods

Boolean inStock(); // true if the the clothing is in stock }

class Clothing: Apparel {

Set<Ref<Catalog>> accessories;// images of items that match with the cloth }

class Shoes: Apparel {

String sole;String upper; }

class PhysicalSalientObject{

Ref<LogicalSalientObject> logicalSalientObject

inverse physicalSalientObjects;

Ref<Image> image

inverse physicalSalientObjects;

Region region; Color color; Texture texture }

Set<Ref<LogicalSalientObject>> LogicalSalientObjects; //all salient objects

Set<Ref<Person>> Persons; //salient objects of type Person

Set<Ref<Model>> Models; //salient objects of type Model

Set<Ref<Clothing>> Clothes; //salient objects of type Clothing

Set<Ref<Shoes>> ShoesExtent; //salient objects of type shoes

Set<Ref<Image>> Images; //all images
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