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Images like other multimedia data need to be described as it is difficult to grasp their
semantics from the raw data. With the emergence of standards like MPEG-7, multime-
dia data will be increasingly produced together with some semantic descriptors. But a
description of a multimedia data is just an interpretation, a point of view on the data
and different interpretations can exist for the same multimedia data. In this paper we
explore the use of view techniques to define and manage different points of view on
images. Views have been widely used in relational database management systems to
extend modeling capabilities, and to provide logical data independence. Since our image
model is defined on an object-oriented model, we will first propose a powerful object-
oriented mechanism based on the distinction between class and type. The object view
is used in the image view definition. The image view mechanism exploits the separation
of the physical representation in an image of a real world object from the real object
itself to allow different interpretations of an image region. Finally we will discuss the
implementation of the image view mechanisms on the existing object models.

Keywords: Image Database; Image Semantics; Views on Objects; Views on Images.

1. Introduction

Views are used in relational database management systems to extend modeling
capabilities and to provide data independence. Relational views can be seen as
formulae defining virtual relations that are not produced until the formulae are
applied to real relations (view materialization is an implementation/optimization
technique). View mechanisms are useful in other newly emerging application areas
of database technology. In this paper, we will discuss a view mechanism for one
of those areas, image databases. This work is conducted within the context of the
DISIMA (DIStributed Image database MAnagement system).1 Since DISIMA uses
object-oriented technology, we will deal with object-oriented views.

1
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Due to the volume and the complexity of the image data, image databases
are commonly built on top of object or object-relational database systems. Image
databases, in particular, can benefit from a view mechanism. Specifically, an image
can have several interpretations that a view mechanism can model. The DISIMA
system2 defines a model that is capable of handling an image and all the meta-data
associated with it, including syntactic characterization (shape, color and texture)
of salient objects (region of interest) contained in the image. The level at which
the syntactic features are organized and stored is called the physical salient object
level. Each physical salient object can then be given a meaning at the logical salient
object level. In general, salient object detection and annotation is a semi-automatic
or a manual process.

Given the fact that we can manually or automatically extract meta-data infor-
mation from images, how do we organize this information so that an image can be
interpreted with regard to a context? That is, if the context of an image changes,
the understanding of the image may change as well. Let us take a picture of the
Smith family as an example. The family has four members: Mr. and Mrs. Smith,
their young son John, and their daughter Jane. If John is describing this picture to
his friends, he will say: “This is me, these are my mother and father and over there
is my sister.” The description of Mrs. Smith for the same picture will be: “This
is me, my husband, my young son John, and my daughter Jane.” The example
illustrates different descriptions of the same image. They are all valid within the
right context. As another example, consider an electronic commerce system with a
catalog containing photographs of people modeling clothes and shoes. From the cus-
tomer’s point of view, interesting objects in this catalog are shirts, shorts, dresses,
etc. But the company may want to keep track of the models as well as clothes and
shoes. Assume that the models come from different modeling agencies. Each of the
agencies may be interested in finding only pictures in which their models appear.
All these users of the same database (i.e. the catalog) have different interpretations
of the content of the same set of images. In the first example, the same regions
of interest in the image are given different semantics depending on the interpreta-
tion context and the second example the objects of interest are different from one
context to another.

Defining an image content with regard to a context helps capture more seman-
tics, enhances image modeling capabilities, and allows the sharing of images among
several user groups with different points of view on the image. Hence, the user
should not notice any difference in the way derived images and base images are
handled. However, in existing object view mechanisms,3–6 derived objects are not
first class citizens. To that end, we first defined an object view mechanism on top
of which we built the image views.

An earlier version7 of this work was published in the IFIP DS-8 proceedings.
Section 2 discusses the existing image metadata and models. Section 3 describes
the image view mechanism and the object view on top of which it is built, Sec. 4
presents the image view definition language and discusses the implementation is-
sues. Section 5 discusses object and image view issues, and Sec. 6 concludes.
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2. Image, Annotation, Metadata and Semantics

A common problem in multimedia data is their interpretation and understanding.
Raw multimedia data are sequences of bytes that cannot be directly used to answer
queries; they have to be preprocessed. The preprocessing represents the multimedia
data in a more digest form for a computer. The data obtained from the preprocessing
are metadata (data about data) for the raw multimedia data. We are more interested
in the content metadata that can be divided into two categories: syntactic metadata
and semantic metadata. For an image, the syntactic metadata can be feature vectors
representing visual features such as color, texture, and geometric shapes found in
the image. The semantic metadata describes the image content in terms of real-
world objects, actions and feelings.

Hence an image database can be seen as composed of two distinct parts (Fig. 1):
The database component in charge of data organization and querying, and the
image preprocessing component that extracts features from the images, detects
and, sometimes, recognizes objects in the images. The preprocessing is, most of the
time, semi-automatic as automatic recognition of objects in an image of arbitrary
scene is still a research problem in Computer Vision.8

2.1. Annotation

Well-known image processing techniques9 can be used to segment an image into
homogeneous regions (syntactic objects) and extract visual features (color, texture
and shape). Identifying the objects and interpreting the image is more challeng-
ing and, in most cases, requires human intervention. Annotation is the process
that provides interpretations (semantics metadata) to an image. In the IKONA
system10 a relatively small database is manually annotated by associated keywords

Fig. 1. Image preprocessing and database.
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to the images. The system then finds correlations between the keywords and the
image visual features in order to propagate the keywords and annotate a larger im-
age database. The same approach can be used to associate keywords with regions of
an image. Semi-automatic annotation techniques based on the WorldNet electronic
dictionary11 have also been proposed.12 Semantic classes defined as semantic labels
and visual descriptors are used to annotate the images. In the DISIMA system,1 the
link between physical salient objects (regions of an image) and the corresponding
logical salient objects (meanings) are done manually.

2.2. Metadata for images

Since it is difficult to directly use raw image data in queries, the acquisition, orga-
nization and maintenance of the metadata for images are becoming key issues in
image archiving. Several organizations are defining standard metadata structures
for images. Among these standards are the Dublin Core metadata, MPEG-7 and
RDF.

2.2.1. The Dublin Core metadata initiative

The Dublin Core (DC) is an international initiative whose goal is to define meta-
data for digital resources. The initial metadata format published in 199513 was
extended in 1996 to support images. The extension consisted the addition of two
more elements to the thirteen originally defined and the adaptation of the descrip-
tions of some existing elements. The resulting simple Dublin Core14 is composed
of the following 15 elements: Title [Name given to the resource by the “Creator”
or Publisher], Author or Creator [person(s) or organization(s) primarily responsi-
ble for the intellectual content of the resource], Subject and Keywords [the topic
of the resource (keywords, index terms or subject classification)], Description [tex-
tual description of the resource], Publisher [the entity responsible for making the
resource available], Other Contributor [person(s) or organization(s)not included un-
der “Creator” who have made significant (but secondary)intellectual contribution
to the resource], Date [date the resource was made available in its present form],
Resource type [The category of the resource, e.g. “image”], Format [the data rep-
resentation of the resource, e.g. “text/html”, “JPEG”], Resource Identifier [string
or number used to uniquely identify the resource, e.g. “URI”, “URL”], Source [In-
formation on the work from which the resource is derived], Language [languages of
the intellectual content of the resource], Relation [relationship of the resource with
other resources], Coverage [spatial locations or temporal duration characteristic of
the resource], Rights Management [a link to a rights management statement].

2.2.2. The MPEG-7 metadata initiative

MPEG-7, formally known as Multimedia Content Description Interface mainly con-
centrates on the description of multimedia content. The objective of MPEG-7 is to
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provide a rich set of organized tools to describe multimedia content and represent
information about the content at different levels. MPEG-7 is an ISO standard and
addresses image, text, video, audio, speech, and graphics individually along with
their combinations.

The core elements of MPEG-7 standards are the Descriptors (D) to define the
syntax and semantics of each multimedia feature, Description schemes (DS) to
specify the structure and semantics of the relationships between their components.
The Description Definition Language (DDL) is used to define the syntax of MPEG-
7 and structure of descriptors. It allows the creation of new description schemes
and descriptors. The DDL15 consists of (1) XML Schema structural components,
(2) XML Scheme data types, and (3) MPEG-7 specific extensions.

2.2.3. The resource description framework (RDF)

RDF16 is defined by the World Wide Web Consortium (W3C) in order to provide
meaning to resources available on the Web (among which images). Meaning is
represented in RDF by sets of triples, each triple containing a subject, a verb
and an object of an elementary sentence. In RDF, a document makes assertions
that particular objects have properties, with certain values. This structure turns
out to be a natural way to describe the cast majority of the data processed by
machines. Subject and Object are each identified by a Universal Resource Identifier
(URI). The simplest form of a URI is the URL. The verbs are also defined by the
URIs. A property is a specific aspect, attribute or relationship, used to describe a
resource. Each property has a specific meaning, defines its possible values, the types
of resources it can describe, and the relationships with other properties.

2.3. Image database models

The main objective of the standards or proprietary metadata structures is to pro-
vide audio-visual and textual content descriptors for individual images. In the pres-
ence of a large number of images, it is crucial to find a suitable representation
for images, their metadata and the operations to be applied to them in order to
answer users queries. This level corresponds to the conceptual level in the ANSI
relational database architecture17 where algebraic optimizations and algorithm se-
lections are performed. Physical optimizations at the physical level (data files and
indexes) consist of selecting the indexes and access methods to be used in the query
processing. The image models are built on top of existing database models, mainly
object-relational and object-oriented.

2.3.1. An example of object-relational image data model

In Ref. 18, an image is stored in a table, T (h : Integer , x1 : X1, . . . , xn : Xn), where
h is the image identifier and xi is an image feature attribute of domain (or type)
Xi (note that classical attributes can be added to this minimal schema). The tuple
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corresponding the image k is indicated by T [k]. Each tuple is assigned a score (ζ)
which is a real such that T [k] · ζ is a distance between the image k and the current
query image. The value of ζ is assigned by a scoring operator ΣT (s) given a scoring
function s : (ΣT (s))[k] · ζ = s(T [k] · x1, . . . , T [k] · xn).

Since many image queries are based on distance measures, a set of distance
functions (d : X → X → [0, 1]) are defined for each feature type X . Given an
element x : X and a distance function d defined on X , the scoring function s

assigns d(x), a distance from x to every element of X . In addition, a set of score
combination operators ♦ : [0, 1]× [0, 1]→ [0, 1] are defined.

New selection and join operators on the image table augmented with the scores
are defined to allow selection of the n images with the lowest scores, which are the
images whose scores are less then a given score value ρ and the images from a table
T1 that match images from a Table T2 based on score combination functions.

2.3.2. The DISIMA model: an object-oriented approach

The DISIMA model is presented in more detail as it is the base of the view mecha-
nism. In the DISIMA model, as shown in Fig. 2, an image is composed of physical
salient objects (regions of the image) whose semantics are given by logical salient
objects that represent real world objects. The DISIMA model introduces three new
types: Image, Physical Salient Objects, Logical Salient Objects and operators to
manipulate them.

From the Image type, the user can define new types to classify the images.
Fig. 3 depicts a type hierarchy for an electronic commerce application that repre-
sents the catalogs as classes. The general T Catalog type is derived from the root
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Fig. 2. The DISIMA model overview.
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T_Image

T_Catalog

T_ClothingCatalog T_ShoesCatalog

Fig. 3. An example of an image hierarchy.

T_Person

T_Politician T_Model T_AthleteT_ClothingT_Shoes

T_Item

T_Salient_object

Fig. 4. An example of logical salient object hierarchy.

type T Image, the root image type provided by DISIMA. The type T Catalog is
specialized by two types: T ClothingCatalog, and T ShoesCatalog.

An example of salient object hierarchy, corresponding to the image hierarchy
defined in Fig. 3, is given in Fig. 4.

A physical salient object (PSO) is a region of an image, a geometric object
(without any semantics) in a space (defined by an image) with properties like shape,
color, and texture. A logical salient object (LSO) is the interpretation of a region.
It is a meaningful object that is used to give semantics to a physical salient object.

If we denote by L the set of all logical salient objects and P the set of all physical
salient objects, the content of an image i is defined by a pair Cont(i) = 〈P i, s〉
where:

— P i ⊆ P is a set of physical salient objects,
— s : P i −→ L maps each physical salient object to a logical salient object.

An image i is defined by a triple 〈Rep(i),Cont(i),Desc(i)〉 where:

— Rep(i) is a set of representations of the raw image in a format such as GIF,
JPEG, etc;

— Cont(i) is the content of the image i;
— Desc(i) is a set of descriptive alpha-numeric data associated with i.

Color and texture characterizing the whole image are part of Desc(i).
The new operators introduced for objects of the new types are: contains or

semantic join (to check wether a salient object is found in an image), and the
similarity join that is used to match two images or two salient objects with respect



December 30, 2002 18:43 WSPC/164-IJIG 00091

8 V. Oria & M. T. Özsu

to a predefined similarity metric on some low-level features (color, texture, shape,
etc.). In addition, DISIMA supports the spatial join19 on physical salient objects.

3. Defining Image Views in DISIMA

The mechanism of image views in DISIMA exploits the distinction between an image
and its content represented as physical salient objects, and the distinction between
a physical salient object and its meaning represented as a logical salient object. The
idea is (1) to be able to define different sets of regions of interest (physical salient
objects) from the same image and (2) to be able to assign different logical salient
objects to a physical salient object depending on the context.

In the initial DISIMA model, a physical salient object is associated with one
and only one logical salient object but to a logical salient object can correspond
several physical salient objects. This allows only one context of interpretation for
an image.

Definition 1. An image interpretation context is defined by the minimal logical
salient object sub-schema and the logical salient object instances that give meanings
to the physical salient objects contained in the image.

The first extension to the model is to change the relationships between the
PSOs and LSOs into a many-to-many relationships. This means that a physical
salient object can have different logical salient objects each of which can belong
to a different interpretation context. A new interpretation can be derived from
an existing one by selecting, aggregating or redefining descriptor elements. These
derived interpretation are based on object view mechanism. The second extension is
to allow an image to have different contents in terms of the physical salient objects.
These two extensions form the image view mechanism based on an object view
mechanism that was built on an object model20 we defined earlier.

3.1. The object model

We separate the definition of object characteristics (a type) from the mechanism for
maintaining instances of a particular type (a class) for several well known reasons.20

A type defines behaviors (or properties) and encapsulates hidden behavioral imple-
mentations (including state) for objects created using the type as template. We
use the term behaviors (or properties) to include both public interface functions
(methods) and public state (public instance variables). The behaviors defined by
a type describe the interface for the objects of that class. A class ties together
the notion of type and object instances. The entire group of objects of a particular
type, including its subtypes is known as the extent of the type and is managed by
its class. We refer to this as deep extent and introduce shallow extent to refer only
to those objects created directly from the given type without consideration of its
subtypes. For consistency reasons all the type names used in this paper start with
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T . The object model that we use in this study differentiates types from classes.
Let C be the set of class names. If C is a class name, T (C) gives the type of C and
Γ(C) denotes the extent of the class C. We denote by T , the graph representing
the type hierarchy. The main concepts for the model can be summarized as follows:

• The set of types T with a partial order ≤t (subtyping). A type T X can define a
set of behaviors ({B alphai}). It can also bind behaviors to functions.
• The set of classes C. Each class X has an associated type T (X) = T X (type of the

objects in the class) and manages a set of objects of type T X : [Γ(X)].
• The set of behaviors B.
• The set of functions F . A function is defined by a signature and a body.
• The set of objects O. Each object o belongs to a single class [X = C(o)] and each

object knows its type [T X = T (o)].

3.1.1. Derived classes

We consider two types of derived classes: simple derived classes (derived from a
single class called the parent class) and composed derived classes (derived from
two or more parent classes). We will use the term base class to refer to a non-
derived class. In the same way, a base object refers to an object of a base class. The
derivation relationship is different from the specialization/generalization one in the
sense that the objects and properties introduced are obtained from data previously
stored in the database.

Simple Derived Class: A simple derived class is a virtual class derived from
a single parent class.

Definition 2. A derived class Cd is defined by (C,Φ,Ψ) where:

• C is the parent class.
• Φ, the filter, is a formula that selects the valid objects from C for the extent

of Cd.
• Ψ, the interface function, defines the type of Cd by combining the functions A:

Augment and H : Hide such that Ψ = A ◦H , where A maps a set of objects of a
particular type to a set of corresponding objects in a type with some additional
properties. Similarly H hides some properties.
• Γ(Cd) = Ψ(Φ(Γ(C))).

As defined, Ψ, A and H have to be applied to sets of objects of a certain type
to return sets of objects of another type. To avoid introducing news terms, we will
extend their applications to types.

If α, β, γ, δ are properties defined in T C, H(T C, {α, β}) will create a new type
(let us call it T Restricted C) in which only the properties γ, δ are defined. Hence
T Restricted C is a supertype of T C.
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Fig. 5. Image views in DISIMA.

A(T C, {(µ : f1), (ν : f2)}) will create a type (T Augmented C) with the addi-
tional properties µ and ν, where f1 and f2 are functions that implement them.
T Augmented C is a subtype of T C.

A(H(T C, {α, β}), {(µ : f1), (ν : f2)}) defines the type T Cd for a class Cd derived
from a class C with the properties α, β of T C hidden and µ, ν as new properties.

In general, the type T Cd of a class Cd derived from the class C, is a sibling
of T (C). However, if no properties are hidden, T (Cd) ≤t T (C) (≤t stands for the
subtyping relationship). Alternatively, if no properties are added, T (Cd) ≥t T (C)
(≥t stands for the supertyping relationship). The notion of sibling generalizes the
notion of subtyping and supertyping. The most general case where some properties
are removed and new ones are added is illustrated by Fig. 6. In this example, we
assume that the following properties are defined for the different types:

• T Person (SIN: int, LastName: string, FirstName: string, Sex: char, DateOfBirth:
date).
• T Restricted Person (SIN: int, LastName: string, FirstName: string, Sex: char).
• T Augmented Restricted Person (SIN: int, LastName: string, FirstName:

string, Sex: char, Age: int).

In Fig. 6, the extent of Augmented Restricted Person is a subset of the
extent of Person with a different interface defined by the type T Augmented

Restricted Person.

Composed Derived Class: Assume that the type T Person has two sub-
types T Student and T Faculty. Some of the students teach and some faculty do
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type

T_Augmented_Restricted_Person T_Person

(has_type)

Augmented_Restricted_Person Person

T_Restricted_Person

(subtype_of)

class

Fig. 6. Example of a derived class and its type.

only research. The Type T Student has the properties (Year : int) and (Teach:
boolean) while the properties (HiringDate: date) and (Teach: boolean) are defined
for Faculty. We would like to derive a class Teacher of all the persons who teach
with the property (TimeServed : int) obtained either from HiringDate or from Year
depending on the type of the base object. The class Teacher cannot be directly de-
rived from the class Person since the useful properties are not defined in T Person.
In the following, we propose a way (composed derived class) to solve this problem.

Definition 3. Let (C1, C2) ∈ C2 be a pair of classes. Then:

• Cd = C1 ∗C2 with a filter Φ and an interface Ψ is a composed derived class with
Γ(Cd) = Ψ(Φ(Γ(C1) ∩ Γ(C2))),
• Cd = C1 +C2 with a filter Φ and an interface Ψ is a composed derived class with

Γ(Cd) = Ψ(Φ(Γ(C1) ∪ Γ(C2))),
• Cd = C1−C2 with a filter Φ and an interface Ψ is a composed derived class with

Γ(Cd) = Ψ(Φ(Γ(C1)− Γ(C2))),

with T (Cd) as a sibling of Anc(T (C1), T (C2)) where Anc(X,Y ) is a function that
returns the first common ancestor of (X,Y ) in the type hierarchy T .

The semantics of the constructive operations {∗,+,−} are respectively based
on the basic set operations ∩, ∪ and −. As defined, {∗,+,−} are binary operations
but the formulae obtained can be seen as terms and be combined for more complex
ones. Note that C1 and C2 can be derived classes as previously defined. The ancestor
function Anc works fine when T is rooted. When this is not the case, a common
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Student_Teacher Faculty_Teacher

TeacherStudent Faculty

T_Person

T_Student T_FacultyT_Teacher

+

type

class

derived_from

subtype_of

has_type

Fig. 7. An example of a composed derived class and its type.

supertype T C is created for T (C1), T (C2). In the worst case, T C will not have any
properties in it.

The problem of deriving a class Teacher can be solved by defining a simple
derived class Student Teacher whose extent is a subset of all the students. In the
same way, we derive the class Faculty Teacher from Faculty. Teacher is then
defined as Teacher = Student T eacher + Faculty T eacher. The type T Teacher

is a subtype of T Person which is the common ancestor (Fig. 7).

3.1.2. Identifying and updating a derived object

A derived object is always derived from one and only one base object although
its properties can be totally different from the properties of the base object. This
happens when all the properties of the base class are hidden and new ones are
defined for the derived class. Hence, a derived object can be seen as a base ob-
ject viewed from another angle (the interface function of the derived class). Both
the derived object and its corresponding base object can be identified by the
OID of the base object (BASE OID). If we redefine the notion of OID as follows:
OID = 〈class name,BASE OID〉 then the base object can be differentiated from
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the derived one. This OID defines a logical idenfier for any object including the
derived ones independently from any view implementation technique. In the case of
view materialization with incremental maintenance, an active research area,21–24

the derived object OID is a key candidate and can be directly used as identifier.
A derived object knows its base object. Therefore, updating a property inherited

from the base type can easily be propagated to the base object. Creating new objects
for a derived class should first create the objects in the base class with some possible
unknown property values.

3.1.3. Inserting the type of a derived class into the type system

The type of a derived class has to be inserted at the right place in the type system.
The insertion is simple when the associated type of a derived class is a subtype of
the type of the parent class (or an ancestor of the parent classes). This happens
when the definition of a derived class uses only the function augment. In this case,
the new type is simply inserted as a subtype of the type of the parent class. The
problem of inserting the new type into the type system is more complex when
the function hide is used in the definition of a derived class, especially when the
type associated to the parent class inherits some properties from another type.
For example, all the behaviors inherited by T RestrictedPerson in Fig. 6 and
Fig. 7 are defined in T Person. Therefore T RestrictedPerson should be defined
as a supertype of T Person, and T Person should have locally defined only the
behaviors not in T RestrictedPerson. The type system is automatically updated
when classes are derived.

3.1.4. Derived classes and subclassing

As indicated earlier, the class derivation relationship is different from the sub-
class/superclass relationship. However Xd derived from a class X can be defined as
a subclass of X (Xd ≤c X), if the following two conditions are satisfied:

• T Xd ≤t T X.
• Γ(Xd) ⊆ Γ(X).

These two constraints ensure that we keep the same semantics of subclass/
superclass relationships as traditional object models. That is, an object of a sub-
class is also an object of the superclass, and any behavior defined for objects of the
superclass can be applied to objects of the subclass.

3.2. Derived image classes and derived salient object classes

3.2.1. Derived image classes

A derived image class, in addition to defining a new type, selects the needed physical
salient objects from the base image possibly with new semantics.
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Definition 4. A derived image class is a class derived from an image class that
specifies the valid logical salient objects for images in its extent. If id is an image
derived from an image i, then the set of physical salient objects contained in id is
a subset of the set contained in i. The physical salient objects in id are those for
which the corresponding logical salient objects belong to one of the valid logical
salient objects.

In addition to redefining the type, a derived image class redefines the content of
the images it contains. For example, from the ClothingCatalog class defined in Fig. 3,
we can derive two different catalogs giving different interpretations of the images
in the ClothingCatalog image class: the customer catalog class (CustomerCatalog)
and the clothing company catalog (CompanyCatalog). The customers are interested
in finding clothing from the catalog. Therefore, the valid logical salient object class
is Clothing. In addition to the clothing, the company may be interested in keeping
some information about the models.

A composed derived image class can also be created. For example, from
ClothingCatalog we can derive the class FemaleClothingCatalog. We can also derive
FemaleShoesCatalog from ShoesCatalog. FemaleClothingCatalog and FemaleShoes-
Catalog can be combined using the + operator to derive a class FemaleApparel-
Catalog. The common ancestor of FemaleClothingCatalog, and FemaleShoesCatalog

type

class

FemaleApparelCatalog

+

T_Catalog

FemaleClothingCatalogFemaleShoesCatalog

ShoesCatalog

T_ClothingCatalogT_ShoesCatalog

ClothingCatalog

Studenthas_type

derived_from

subtype_of

Fig. 8. An example of a composed derived image class.
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is Catalog. Therefore the type of FemaleApparelCatalog has to be a sibling of the
type of Catalog (Fig. 8).

3.2.2. Derived logical salient object classes

Definition 5 defines the content of an image i as a pair Cont(i) = 〈Pi, s〉 where
P i represents the physical salient objects and the function s maps each physical
salient object to a logical salient object. An image id can be derived from i and
Cont(id) = 〈P i, sd〉. Assume we derived a logical salient object class L1 from the
logical salient object class L and that all the physical salient objects in P i are
mapped to objects of L. If we note by f the interface function that transforms an
object of L to an object of L1, and we define sd = s ◦ f , then id is a derived image
that contains L1 objects.

For example, the classes FemaleClothing and FemaleShoes can be respectively
derived from Clothing and Shoes (Fig. 4). A composed derived class FemaleApparel
can be derived from the two previously derived classes and the derived image class
FemaleApparelCatalog can be defined as images containing female apparels. Of
course, T FemaleClothing and T FemaleShoes can respectively be different from
T Clothing and T Shoes. T FemaleApparel is then, a sibling of T Apparel.

Definition 5. An image view is defined by:

• a derived image class.
• an interpretation context defined as a set of selected logical salient object classes

(base or derived).

4. The Image View Definition Language

The view definition language allows the definition of derived image and logical
salient classes. Queries in the view definition are expressed in MOQL (Multime-
dia Object Query Language),25 the query language defined for DISIMA. MOQL
extends the standard object query language, OQL26 with predicates and functions
to capture temporal and spatial relationships. Most of the extensions have been
introduced in the where clause in the form of new predicates as the new operators
introduced by the DISIMA model are joins. The convention used in the language
definition is: [ ] for optional, { } (different from { } which are part of the language)
for 0 to n times, and | for one and only one among different possibilities.

• Create a derived class

derive { 〈derived class name〉 from 〈class definition〉
[augment {〈virtual behavior name〉 as 〈query〉|

〈function name〉 ;}]
[hide 〈behavior list〉]
{cast 〈behavior — type〉 into 〈 new type〉}
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[content 〈interpretation context〉]
extent 〈extent name〉 [as 〈query〉]

};
〈class definition〉 := 〈class name〉|
(〈class definition〉 union | intersect | minus 〈class definition〉).

• Delete a derived class

delete 〈derived class name〉.

• Create an Image View

create image view 〈image view name〉 as
{ {〈derived image class definitions〉};
{〈derived logical salient object class definitions〉}
}

• Select an Image View

set image view to 〈image view class name〉

The derive command is used to define a derived logical salient object class,
as well as derived image classes. The classes that the derived classes are derived
from one or more base or derived classes. The query in the extent clause defines
the derived class extent and must return a unique subset of the combination of the
parent class extents. The augment clause is used to define new properties. A query
can invoke an existing property. In this case, the keyword this is used to refer to the
current object. If (α : T (C)) is a property and Cd is a class derived from C, then
the clause cast can be used to cast the type of α into T (Cd). The content clause
allows to define the logical salient object classes that will form the interpretation
context. This clause is used only for derived image classes and is used to select the
interpretation context. It is complemented by the cast clause. If a logical salient
object class mentioned in the view is a derived class, then the salient objects from
parent image should be casted to the derived type. Assume a salient object class
Sd is derived from class S and an image i (element of the image class I) contains
a salient object of type T (S). If we derive an image class Id from I with the clause
content Sd, image id derived from i will contain a salient object of type T (Sd)
instead of T (S). For example, in the image view CustomerClothing that follows,
an image of CustomerCatalog contains elements of CustomerClothing, rather than
Clothing as salient objects. Derived classes can dynamically be deleted.

An image view defines the interpretation context for one or more image classes.
An image view is created using the command create image view and contains de-
rived image and salient object classes. The salient objects classes do not have to
be derived. They can be base classes introduced to provide complementary inter-
pretations. In this case the image view just selects the the logical salient objects
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to form the interpretation context. The Set Image View to command is used to set
the current image interpretation for querying purpose.

4.1. Examples of Image Views

In the following, we give some examples of image views derived from the catalog
database. The corresponding schema expressed in the ODMG object model26 is
given in the Appendix. The schema given in the Appendix can be seen as the most
general view, the view of the company owner of the catalog: each image contains
models and clothes. The example views correspond to the Customer View, the
Female Clothing Catalog View, and the Female Apparel Catalog view.

Create Image View CustomerCatalog
{

derive {CustomerClothing from Clothing
augment inStock as this.inStock();

avgPriceForType as
avg(Select c.price
From Clothes c
Where c.type = this.type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
extent CustomerClothes};
derive {CustomerCatalog from ClothingCatalog
hide photographer, date, time, place
cast accessories into Set〈Ref〈CustomerCatalogs〉〉
cast Clothing into CustomerClothing
extent CustomerCatalogs
content CustomerClothing}

}

The derived class CustomerClothes redefined Clothes for the customers’ use.
Attributes stock, lastOrderDate, lastArrivalDate, nextArrivalDate are hidden and
the virtual attribute avgPriceForType returns the average price for this type of
clothing.

The image view CustomerCatalog uses the image class Catalog renamed as
CustomerCatalog with CustomerCatalogs as its extent name. All the images are
available but their content will be limited to objects of CustomerClothes which
redefines Clothing. Attributes photographer, date, time, place are hidden. The at-
tribute accessories was defined as a set of images from Catalog. Its type has to be
changed to set of CustomerCatalogs to ensure consistency.

Create Image View FemaleClothingCatalog
{

derive {FemaleClothing from CustomerClothing
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extent FemaleClothes as
Select c
From CustomerClothes c
Where c.sex = “female” or c.sex = “unisex”};

derive {FemaleClothingCatalog from ClothingCatalog
hide photographer, date, time, place
cast accessories into Set〈Ref〈CustomerCatalogs〉〉
cast CustomerClothing into FemaleClothing
extent FemaleClothingCatalogs
content FemaleClothing};

}

Only images containing female items are selected from the clothing catalog. The
salient objects are restricted to female clothing.

Create Image View FemaleApparelCatalog
{

derive {FemaleShoes from Shoes;
augment inStock as this.inStock();

avgPriceForType as
avg(Select s.price
From Shoes s
Where s.type = this.type);

hide stock, lastOrderDate, lastArrivalDate, nextArrivalDate
extent FemaleShoesExtent as

Select s
From ShoesExtent c
Where c.sex = “female” };

derive {FemaleShoesCatalog from ShoesCatalog
hide photographer, date, time, place
extent FemaleShoesCatalogs
content FemaleShoes};
derive {FemaleApparelCatalog from FemaleClothingCatalog union

FemaleShoesCatalog
extent FemaleApparelCatalogs};

}

The FemaleApparelCatalog combines the FemaleClothingCatalog and the Fe-
maleShoesCatalog into a new derived catalog.

4.2. Implementing Derived Classes in DISIMA

The distinction between types and classes is not supported by most object-oriented
languages in current use. DISIMA is being implemented on top of Object-Store27
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using C++. DISIMA provides types for image and logical salient objects that can
be subtyped by the user. The implementation we describe in this section simulates
the idea using C++. We implement all our types as C++ classes. We call these
C++ classes type classes and their names start with T . For example T Person

will be a type class for the class Person. Our classes are objects of the C++ class
C Class. C Class has a subclass D Class for derived classes. The properties defined
for C Class are:

• Name: name of the class.
• Type: type class name.
• SuperclassList: list of the superclasses.
• SubClassList: list of the subclasses.
• ShallowExtent (virtual function): The shallow extent of the class.
• DependentList: list of classes derived depending on this one.

The properties defined for D Class are:

• Base ClassList: list of the classes it is derived from.
• Filter: filter function.
• ShallowExtent: redefined.
• MaterializationFlag: set when the ShallowExtent is up-to-date.
• Change: function used to unset the MaterializationFlag.

The DependentList in the class C Class contains all the classes derived from that
class and also all the derived classes for which an augmented property is computed
using objects of that class. Since the type of a derived class can be different from
the type of its base class we choose to materialize the derived class extent. An
object of C Class represents a user’s class and the extent (ShallowExtent) property
returns objects of the type class (Type). The SubClassList can be used to recursively
compute the deep extent. To simplify the materialization process, we only store one
level of base class. That is, the Base ClassList of a derived class contains only non-
derived classes. A derived class extent is materialized the first time the class is
referred to and the materialization flag is set. Each time new objects are created,
modified or deleted in a base class, a change message is sent to each of the classes
in the DependentList to unset the materialization flag. If the materialization flag is
unset when a derived class is accessed, the derived class extent is recomputed and
the materialization flag is reset.

When the augmented properties of a derived object are computed from the single
base object without any aggregate, the management algorithm for incremental view
maintenance can easily be implemented as follows. An object of a derived class
contains the OID of the base object it is derived from. The Change method passes
the OID of the changed base object (new, deleted or updated) to the derived class
object where it is kept in the ChangeList of the derived class object. The ChangeList
can then be visited to update or create the derived objects for modified or new base
objects and to delete derived objects corresponding to deleted base objects.
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5. Object Models and Views

5.1. Object models

In most object systems, as indicated earlier, the terms type and class are used
interchangeably to refer to one or more of the following notions: (1) real-world en-
tity, (2) programmatic interface, (3) implementation of the programmatic interface,
(4) internal machine representation, (5) factory for creation of instances, (6) main-
tainer of the extent (the set of all the instances of a class). For example, in
GemStone,28 class refers to all of the above notions. In ObjectStore,27 type refers
to (2) and (4), while class refers to (1), (3), and (5). Alternately, the type of an
object of a particular class is implicitly defined by that class, so it may also be
argued that class in ObjectStore actually refers to all notions except (6). In O2,29

type refers to (2) and (4), while class is a special kind of type that refers to (1)
through (6). In Iris,30 type refers to (1), (4), (5), and (6); (2) and (3) are defined
with respect to the type but are not a part of the type. In VODAK31 (which is
built on top of ObjectStore but has a different data model), type refers to (2), (3),
and (4), while class refers to (1) and (5). Type in VODAK has two components:
the interface, referring to (2), and the implementation, referring to (3). Both parts
of the VODAK type can define the representation. In relational database systems,
type refers to (2) and (4). XML32 and DAML + OIL,33 through XML Schema, offer
a variety of types that refer to (2) and (4) But XML has no explicit constructs to
define classes. RDF,16 has only literal (strings) as type (2) and (4) and uses the
〈rdfs : class〉 to define classes (5).

5.2. Views and objects

Several object view mechanisms have been proposed since the early 1990s.3–6,34 In
general, the main problems with these views6 are (i) expressive power (restrictions
on queries defining views); (ii) reusability and modeling accuracy (insertion of the
views into the generalization hierarchy); and (iii) consistency (stability in OID
generation).

Problems (i) and (ii) are somewhat related. For example, using the view mech-
anism in Ref. 5, if the user wants the view class to be linked to the generalization
hierarchy, the query that generates the view class has to be restricted. In addition,
problem (ii) raises a typing problem (how is the type of the virtual class related
to the type hierarchy?) and a classification problem (how is the extent of a virtual
class related to the existing ones?). Finding an answer to these two questions in an
environment where the only relationship is the is-a relationship can lead to contra-
dictions. The distinction between the derivation hierarchy and the generalization
hierarchy in our proposal, based on the distinction between type and class, provides
an elegant solution to problems (i) and (ii). For example, the fact that the associ-
ated type of a class is not tied to the class allows a view based on a projection of its
parent type behaviors to be created with an associated type defined as a supertype
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of the parent type, while the extent is a subset of the extent of the parent class ex-
tent. The type of a derived class is computed from the view definition and inserted
into the type system. The insertion of the new type can lead to local reorganization
of the type hierarchy without any effect on existing classes.

In addition, the object view mechanism proposed in this paper allows us to
derive classes from several existing ones. Problem (iii) is solved by the fact that a
derived object is seen as a base object with a different interface function. A derived
object and its base class share the same OID but are uniquely identified by the pair
〈class name,OID〉, which is invariant even if the derived object is recomputed.
These problems needed to be solved in order to provide clean image views as for
the user there should not be any difference between an image view (a derived
context) and a base context. The two levels of salient objects ensure the semantic
independence and multi-representation of salient objects.

6. Conclusion

Because of their nature, images are often represented using object or object-
relational models. Hence, an image view mechanism should be an extension of
object models. The aim of an image view mechanism is to provide a way to define
different context of interpretations for the same image without having to duplicate
the image data.

The image view is based on an object model. The distinction between type
and class in the model used in our view mechanism allows the manipulation of
both the type and the extent in a view definition. The distinction also facilitates
the integration of the type of a virtual class into the type hierarchy. A virtual
class can be derived from one or several classes without any constraint on the
query defining it. The DISIMA model separates the objects contained in an image
(physical salient objects) from their semantics (logical salient objects). Using our
object view mechanism, we proposed an image view mechanism that allows us to
give different semantics to the same image. For example, a derived image class can
be defined by deriving new logical salient object classes that give new semantics to
the objects contained in an image or by hiding some of the objects using a derived
image class.

The main contributions of this paper are the proposal of a powerful object-
oriented view mechanism based on the distinction between class and type, a pro-
posal of an image view mechanism based on image semantics and the image view
implementation using a language that does not intrinsically support the distinction
between class and type.
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Appendix A

class Image{
Set〈Ref〈Representation〉〉 representations;
Set〈Ref〈PhysicalSalientObject〉〉 physicalSalientObjects

inverse image;
// Methods
display( );}

class Catalog: Image{
Person photographer; Date date; Time time; String place;}

class LogicalSalientObject{
Set〈Ref〈PhysicalSalientObject〉〉 physicalSalientObjects

inverse logicalSalientObject;
//Methods
Region region(Image m); // salient object’s region in image m
Color color(Image m); // salient object’s color in image m
Texture texture(Image m); // salient object’s texture in image m}

class Person: LogicalSalientObject{
String name; String occupation; Address address;}

class Model: Person{
String : agency;}

class Apparel: LogicalSalientObject{
String name; String type; Real price; Set〈Real〉 size;
Manufacturer manufacturer; Integer stock; String colors;
Date lastOrderDate; Date lastArrivalDate; Date nextArrivalDate;
//Methods
Boolean inStock( ); // true if the the clothing is in stock}

class Clothing: Apparel {
Set〈Ref〈Catalog〉 accessories;// images of items that match with the cloth}

class Shoes: Apparel {
String sole;String upper;}

class PhysicalSalientObject{
Ref〈LogicalSalientObject〉 logicalSalientObject

inverse physicalSalientObjects;
Ref〈Image〉 image

inverse physicalSalientObjects;
Region region; Color color; Texture texture}



December 30, 2002 18:43 WSPC/164-IJIG 00091

Views or Points of View on Images 23

Set〈Ref〈LogicalSalientObject〉〉 LogicalSalientObjects; //all salient objects
Set〈Ref〈Person〉〉 Persons; //salient objects of type Person
Set〈Ref〈Model〉〉 Models; //salient objects of type Model
Set〈Ref〈Clothing〉〉 Clothes; //salient objects of type Clothing
Set〈Ref〈Shoes〉〉 ShoesExtent; //salient objects of type shoes
Set〈Ref〈Image〉〉 Images; //all images
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Dr. Özsu is a member of the Association for Computing Machinery and IEEE
Computer Society.


