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Abstract

Content-based classification of audio data is an important problem
for the overall analysis of audio-visual streams. Tho- ugh the classifi-
cation of audio into pure classes, such as music, speech, environmental
sound and silence, is well studied, classification of mixed audio data,
such as clips having speech with music, is still considered a difficult
problem. We present MADClassifier (Mixed Audio Data Classifier),
a system for the classification of audio onto a continuous scale. We
introduce the notion of continuity of audio features, which makes the
feature vary with the type of audio in a manner that is representa-
tive of its composition. We use these features to build two versions
of our classifier, one is based on the simple k-nearest neighbor classi-
fier and the other is a neural network classifier. Unlike the previous
research that has gone into mixed audio classification, we do not gen-
erate classification-time thresholds empirically. This ensures that the
classifier can be specifically trained for a focussed domain where it
is intended to be used. The performance of the proposed system is
validated against representative real and synthetic data.

1 Introduction

In general, simple classification with just the “speech and music” category
may not be satisfactory to determine whether an audio clip is speech with
background music or predominantly music with some speech. For example,
in many speech processing applications, only clips having a relatively high
speech content should percolate through the data cleaning step while mu-
sic processing applications will consider too much of speech in the input as
noise. Therefore, in this paper, we address the problem of mixed audio type
classification. Unlike all other previous approaches [10, 12], we classify an
input clip having music and speech content on a continuous scale, based on
the relative significance of the speech and music components. Our classifier
can label an input clip as, say “10% speech and 90% music”. This kind of
information may provide additional help in the overall analysis of an audio-
visual stream, of say a movie. A typical application can be the validation
of the quality of a musical concert recording based on the amount of speech
distortion caused by voices from the audience.

Another issue that we address is that of reliability of the classifier. The
previous approaches ([10, 12]) to classify mixed audio type have reported
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empirically derived values for the threshold parameters used in their rule-
based models. Our model presents a classifier which can be trained with
training data that is, possibly, restricted to a focussed domain. For example,
if a movie’s audio stream predominantly contains music only from the violin,
then the classifier can be better trained with training data that focuses on
violin pieces.

The rest of the paper is organized as follows: Section 2 presents some
related works on audio classifications. Section 3 explains the audio features
that we use for continuous classification of mixed audio. The idea behind the
classifier is discussed in Section 4. Section 5 reports the results of experiments
done on extensive data sets. We conclude and point out some future work
directions in Section 6.

2 Related Work

Saunders [8] addressed the issue of pure type audio classification for FM
radio. The idea was to allow automatic switching of channels when music
is interrupted by advertisements. Zero crossing rate (ZCR) and short time
energy were used to classify input audio into two classes: speech and music.
Scheirer and Slaney [9] used thirteen features in time, frequency, spectrum
and cepstrum domains and achieved better classification, they got the con-
clusion that not all the audio features are necessary to perform an accurate
classification. Besides that, they claimed that they improved the error rate
to 1.4 % for a 2.4s window compared to 2.8% of Saunders’ approach. Based
on Scheirer’s conclusion, Carey et al. [1] made a comparison study on audio
features for speech and music discrimination. They figured out that sim-
ple audio features, such as pitch and amplitude, have significant differences
between music and speech. Since then, many approaches have been pro-
posed to classify pure type audio using different audio features and classifiers
[1, 2, 5, 11, 4, 6].

Mixed type audio consists of more than one pure types, like speech with
music background, and music with noise. The simple audio features, such as
ZCR, which are used to classify pure types, have been proved insufficient in
classifying mixed type audio [10]. Srinivasan et al [10] proposed a method to
classify mixed audio into discrete classes. They used a rule based model with
empirically determined thresholds. Zhang and Kuo [12] proposed a method
for classification into speech, music, song, environmental sound, speech with
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background music, silence, etc. Again, empirically determined values for
classification thresholds have been proposed.

3 Continuous Nature of some Audio Features

A number of audio features provide separability between the different classes
involved in pure audio classification, for eg., the variance of ZCR is relatively
higher for speech than for music. This is because of the considerable differ-
ence between the ZCR values of voiced and unvoiced speech. Intuitively, we
expect that the ZCR variance for an audio clip having both the components
in a particular composition, will be between the variance values for the pure
components. This, as our experiments have shown, is true to a large extent.
Informally, We say that an audio feature is continuous if, for mixed audio, it
takes values intermediate to the ones it takes for its pure audio components.
In the following subsections, we discuss the continuous nature of the audio
features that we will later use to build our classifier.

3.1 Variance of Zero Crossing Rate

Due to the sharp difference between the ZCR values for voiced and unvoiced
components, speech tends to have a high variance in its ZCR values. Because
of the absence of any such phenomenon, music tends to have a lower variance.
We calculate a measure of the ZCR variance for a window of N frames, as
the ratio of frames having ZCR value more than 1.5 times the average ZCR
of the window (high zero-crossing rate ratio of [6]):

HZCRR =
1

2N

N−1∑

n=0

[sgn(ZCR(n)− 1.5avZCR) + 1]

avZCR =
1

N

N−1∑

n=0

ZCR(n)

Where sgn is the sign function and ZCR(n) is the ZCR value at the nth

frame. In our experiments, we divide the 1-second window into 100 frames.
Figure 1 shows the variation of average HZCRR with the composition of

audio when a particular speech and music clip pair is combined in different
ratios. Roughly, the y-axis readings increase continuously as the composition
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goes from 0% speech to 100% speech. This trait of HZCRR makes it a good
choice for use in a composition predictor, like ours.
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Figure 1: Variation of average HZCRR with the percentage of speech in audio
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Figure 2: Variation of average LSTER with the percentage of speech in audio
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3.2 Low Short Time Energy Ratio

This is a measure of the number of frames in a window that have their short-
time energies lower than a particular fraction of the average energy of the
whole window. Speech tends to have higher values for this feature as it has
more silence frames than music.

We calculate the feature as done in [6]:

LSTER =
1

2N

N−1∑

n=0

[sgn(0.5avSTE − STE(n)) + 1]

avSTE =
1

N

N−1∑

n=0

STE(n)

Figure 2 shows the variation of average LSTER with the composition of
audio when a particular speech and music clip pair is combined in different
ratios. Again, LSTER is a non-decreasing function of the speech fraction in
the mixed clip.

3.3 Fundamental Frequency

As stated in [7], spectrum analysis shows that pure music is more harmonic
than speech, since pure speech contains a sequence of tonal (vowels) and
noise (consonants). Harmonic sound is defined as one which contains a series
of frequencies which are derived from the fundamental or original frequency
as a multiple of that. We compute fundamental frequencies of the audio clips
using the algorithm in [7].

For each audio clip, we take the ratio of 1-second windows having a dom-
inant frequency to the total number of windows as a measure of the harmony
in the clip. Figure 3 shows the variation of this quantity with the compo-
sition of audio when a particular speech and music clip pair is combined in
different ratios. We observe that as the music component decreases and the
audio tends to become predominantly speech, our measure of harmony de-
ceases in a representative fashion. It should be noted that this measure of
harmony can take only discrete values depending on the choice of window
size and clip length.
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Figure 3: Variation of our FuF measure with the percentage of speech in
audio

4 The Classifier

We experimented with two versions of the continuous classifier. The first one
is based on the simple k-nearest neighbor concept while the second one is
based on neural networks.

In a k-nearest neighbor classifier [3], each training sample is a point in
an n-dimensional space (based on its n numeric attributes). When given an
unknown sample, such a classifier finds the appropriate class by searching
the pattern space for the k training samples that are closest to the unknown
sample. We apply such a classifier for mixed type audio classification. The
proposed classifier return the average value of the real-valued labels associ-
ated with the k nearest points of the unknown sample. In our case, the space
is 3-dimensional, with a dimension each to the three audio features described
in Section 3.

Nearest neighbor classifiers are also called lazy learners [3] since they
store all of the training samples and do not build a classifier until a new (un-
labeled) sample needs to be classified. This increases the classification-time
computational costs. We also implemented an eager version MADClassifier
based on a neural network [13] which approximates a linear function. Ea-
ger learners construct a generalization model before receiving new samples
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to classify, which becomes indispensable for real-time applications like auto-
matically switching channels by audio-content analysis.

5 Experimental Evaluation

In this section, we evaluate the efficiency of our proposed classifier through
extensive experiments with data synthesized from real world audio. We se-
lected pure music and pure speech audio clips from different movies 1 and
some music resources on the web, which were transformed into 16 bit, 44kHz,
single channel raw audio clips of 5 second duration. With these pure clips,
we generated a database with a size of around 1200 clips, as follows: We used
a random number generator operating on uniform distribution to generate
the ratios in which the pure clips were combined (a (90, 10) mixed clip refers
to a clip synthesized from a pure speech and music clip in such a way that
is has them in a relative ratio of 9:1 by energy (volume)).

We partitioned the above data set to get training and test data, with sizes
in an approximate ratio of 70:30. Its important to make sure that the sets
of pure speech (and pure music) clips used in the training and test data are
disjoint. This ensures that the test data points are not illegitimately cognate
with the training data.

5.1 MADClassifier-Lazy

We run our lazy version MADClassifier with the parameter k (representing
the number of nearest neighbors to be used for prediction) set to 40. Table 1
reports the average composition errors (δ) resulting from the use of classifier
with different audio features in action (if a clip having a (30, 70) composition
is predicted to be (35, 65), then we say that the error is 5%). As we expected,
the error increases when one or more features are “turned off”.

Figure 4 shows the variation of average error when different values of k are
used along with all the three audio features activated. From the figure, we
can see that the value of k does not affect the performance to a large extent.
Based on the experiment data, we conclude that lazy version MADClassifer
can place audio clips on the percentage composition scale with an average
error of around 11%.

11. ”Crouching Tiger Hidden Dragon”, 2000; 2. ”Gladiator”, 2000; 3. ”Patch Adams”
1998.
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HZCRR LSTER FuF δ√ √ √
11.00%√ √
12.08%√ √
13.16%√ √
12.75%√
16.49%√
16.74%√
14.37%

Table 1: Average composition errors resulting with different combinations of
audio features

5.2 MADClassifier-Eager

We used a neural network implementation provided by the YALE project
[13] to build our eager version MADClassifier. With the eager version MAD-
Classifier, we were able to obtain a similar average error of around 11-12%
as what we got by using lazy version MADClassifier.

5.3 Performance with Real World Audio

Besides using synthesized data, we also tested our classifier using the real
mixed type audio clips which extracted from movies. With those clips, the
predictions of the classifier are in tune with human intuition. The set of real
mixed type audio clips along with their predicted compositions are available
at: http://db.uwaterloo.ca/∼l6chen/MADClassifier/

6 Conclusions and Future Work

A lot of research has gone into audio classification. However, none of the
approaches classifies audio data onto a continuous scale, which is quite im-
portant for audio-visual analysis and audio editing. In this paper, we pre-
sented MADClassifier, a system for discriminating audio data on the basis
of its speech-music composition. Using three audio features - ZCR Variance,
Low Short Time Energy Ratio and Fundamental Frequency, we were able
to achieve a considerably low error mark of 11% in composition on data
synthesized from real-world audio. With real audio data from movies, the
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Figure 4: Variation of average composition error with k

composition predicted by our classifier was quite compatible with human in-
tuition. The proposed classifier can be easily modified to work as a discrete
type classifier by giving the range of composition scale that each class locates.
In future, we plan to extend the number of features used by MADClassifier
and experiment with other classification models, such as multi-layered neural
networks, especially more eager learners for real-time applications. We also
plan to extend our data set to include more audio phenomena like noise and
study its effect on the variation of audio features.
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