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“Graph” Datasets and Workloads (1)

» “Relational” vs “graph” distinction is blurry:
» most datasets can be modeled as relations or graph

» Classic “graph” datasets: social, encylopedic knowledge, or biological
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Social Networks Knowledge Graphs Biological Networks

» Classic “graph workloads”: finding cliques, long paths, reachability
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“Graph” Datasets and Workloads

» Colloquial term for datasets and workloads w/ several properties:

1.

Datasets contain many-to-many (n-m) relationships

» Ex: Knows, Contacts, Calls, Transfers, etc.

2. Queries contain many joins over n-m relationships

3. Join queries can be cyclic or recursive
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ABSTRACT

h processing is becoming increasingly provalent across many

spplication domains. In spite of this prevalence, there is lite fe-

52,55], and distributed graph processing systems [17,21,27]. In
e academic lieraur, a arge number of publications thatstdy
numeroustopics et o gaph procesin ety sppearsross

‘We conducted
an online survey simed at understanding: (1) the types of graphs.
users have; (i) the graph computations users run: (i) the types.
of graph software users use; and (v) the major challenges users
face when procesing their graphs. W descibe he participinis”

Iengen, We fater revienedusr fcdback e mling e
reports, and feature requests in 4 of a large

* Despii tei prevelonce, thereis e research on how graph data
is actually used in practice and the major challenges facing users
Braph data, both in industry and research. In Aprl 2017, we

roducts, with the goal of answering 4 high-level questions:
@) What types of graph data do users have?
heir

ik ofsoftware products fo vnxe»mg eraphs. Through our re

i ‘heir graphs?
(i) Which software do users use (o perform their computations?
)

view, we were able to
by o esponses ind ety Specific challenges that users
Jwhen usin difernt classes of graph software Tho prtc-
o espos a0 s we. ooaine veales merpim
Tmoun sraph procesting i pracice In paricalar el world graph
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing

future research.
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1. INTRODUCTION

graph data?
Our major findings are s follows

‘ Variery: Graphs in practice represent a very wide varicty of cn-

ties, many of which are not naturally thought of as vertices and

fges. Most surprisingly. traditional enterprise data comprised

of products, orders, and transactions, which ae typically seen as

form of data represented in partcipants® graphs,

 Ubiquity of Very Large Graphs: Many graphs in practice arc
very Targe, often containing over a billion edges. These large.
eraphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to ve
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter

 Challenge of Scalabiliy: Scalabiliy is unequivocally the most

parcicipants. The ability to process
be the biggest |

abas
), e e
ery languages 28,

oy large

of existing software.
 Visualizaion: Visualization is a very popular and central task
in paicipants’ graph processing pipelines. Afier scalabilty,

Challenge, tied with challenges in graph query languages.

» Prevalnce of KDBMSe. Reltons duabuss il play an
important role in managing and processing grapt

Qursuey lso gnlgs other neresungfcs. v e peva

e forher reviewcd e foedback in the mlling lss, g re-
and feature requests n the source code repositories of 22
Software products between January and September of 2007 witn
wo goals: (7 to answer several new questions chat the part
responses ased: and (i 1 dentity more specific chalenges in
different classes of graph technologies than the ones we could iden

VLDBj 2020

» Ex: Cliques of contacts, indirect money transfers, etc.

» Q1: Graph Data?

» Q2: Graph Computations?
» Q3: Graph Software?

» Q4: Main Challenges?

> Q5: Applications?



Volumes of Work on Graph Query Processing

QD aoh GRainDB
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Goal of Tutorial: Present common techniques that have emerged and
is likely to lead to wide adoption in near future.




Tutorial Motivation and Goals

» Cover a suite of modern join techniques for graph workloads

» For each: (i) foundation; (ii) integration approaches; (iii) open problems

Ubiquitous in
native GDBMSs Techniques

1. Predefined/Pointer-based Joins w/ Join Indices

2. Worst-case optimal join algorithms

3. Factorization

\
» Emerged in PODS/ICDT work
» Addresses “intermediate data growth” of m-n joins

» Finds best application in graph workloads and GDBMSs

Our opinion: Any system in the GDBMS market will need to integrate
these techniques to remain competitive (among others)



Systems and Integration Approaches Overview

DBMS Join Type | Core Join Alg | WCOJ Algo | Data Representation Scheme
Umbra [17] Value-based H]J Hash-based Flat
GrainDB [10] Value- and Pointer-based H]J Hash-based Flat
EmptyHeaded [1] Value-based INLJ Sorted indexes Flat
GQ-Fast [13] Value- and Pointer-based INLJ X Flat
GR-Fusion [8] Value- and Pointer-based INLJ X Flat
GraphflowDB [11] Pointer-based HJ & INL] Sorted indexes | F-representations (restricted)
AvantGraph Pointer-based N/A Sorted indexes N/A
FDB [5] Value-based INLJ Sorted indexes F-representations
Neo4j Pointer-based HJ & INLJ X Flat
RDF-3X [18] Value-based M]J X Flat
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A Note on Query Notation

Query

)

a

MATCH (a)->(b)->(c), (a)->(c)

Input Graph
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Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c)
Open challenges.

1. Predefined Joins

2. Worst-case Optimal Joins (WCOJs)

3. Factorized Query Processing
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Outline of Query Processing Techniques to Cover

1. Predefined Joins



Outline of Query Processing Techniques to Cover




Outline of Query Processing Techniques to Cover

1.1. Foundations: Predefined vs Value-based Joins

1.2. System Integration Approaches: GQ-Fast, GR-Fusion, GrainDB




Predefined/Pointer-based vs Value-based Joins

» A short history of the term "pre-defined joins/access paths”

Network Model (1960s)

IDS: First DBMS in history

\
Charles Bachman

Relational Model (1970s)

AT
Ted Codd

Much of the derivability power of the relational
algebra 1s obtained from the SELECT, PROJECT, and
JOIN operators alone, provided the JOIN is not subject
implementation restrictions havineg to do with
predefinition of supporting physical access pathsJA sys-
tem has an unrestricted join capability if it allows joins to
be taken wherein any pair of attributes may be matched,
providing only that they are defined on the same domain

... but also the reason GDBMSs can be very fast at those joins.



A 1962 Drawing of IDS’s Data Model
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Figure 2. This drawing, from the 1962 presentation “IDS: The Information Processing
Machine We Need,” shows the use of chains to connect records. The programmer looped
through GET NEXT commands to navigate between related records until an end-of-set
condition is detected.

» Turing Award Lecture: Programmer As a Navigator

» Bachman’s Talk at Computer History Museum
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https://amturing.acm.org/award_winners/bachman_9385610.cfm
https://www.youtube.com/watch?v=iDVsNqFEkB0

Common GDBMS Approach to Joins

1. Adjacency lists Join Index
2. Index Nested Loop Join-like Algorithms
3. Dense ID-based access (vs a hash function or B+ tree based)

MATCH a-[:Trn]->b-[:Trn]->c Scan Node
CEnT s s Extend Extend
WHERE b.owner = “Alice Property .
. (a)-[:Trnsfr]->(b) (a)<-[:Trnsfr]-(c)
RETURN a.owner, c.owner a.owner=Alice

vV v i v
2 4 |5 3
2 >3 2—>1
m
3 ™1 3 =12 |1 Bob 23 800 |
3 Carol
3 1 3
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Outline of Query Processing Techniques to Cover

1. Predefined Joins
1.1. Foundations: Predeflned VS Value based Joins




Integration Approaches

» GDBMS: Already ubiquitous
» RDBMSs: Several proposals for join indices + dense ID-based joins
» All provide DDL statements to define “graph views”

» All use system-level row identifiers (RIDs) as pointers

System Approach

GQ-Fast [Lin et al. VLDB 16, ICDE ‘17]| Decoupled Processor, INLJ

GR-Fusion [Hassan et al., EDBT '18, Decoupled Processor, INLJ
SIGMOD ‘18]

GRainDB [Jin et al. VLDB 22] Single Processor, Hash Joins
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GR-Fusion (1): Graph Views & Join Index Creation

Alice 1K
Bob 5K
Carol 7K

Alice Bob 700
Bob Carol 800
Carol Alice 900

Alice Doctor
Bob Student
Carol Lawyer
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CREATE GRAPH VIEW FinancialGraph
VERTEXES (ID=owner, balance=balance) FROM Accounts
EDGES (FROM=src, TO=dst, amount=amount) FROM Transfers

\

1 2 |4 |5 1 —3
2 > 3 2 ™1
3 1 3 ™2 |1

» Only the “topology”=join index is materialized

» Properties are in the system’s default storage



GR-Fusion (2): Decoupled Query Processor

Decoupled Query Processor

SELECT PS.EndVertex.balance
FROM Customers C, FinGraph.Paths PS SQL clause Graph clauses

WHERE C.job = 'Lawyer’

AND PS.StartVertex.ID=C.owner Graph Processor
AND PS.Length = 2 DeEult RDBMS |, J VertexScan, EdgeScan,
rocessor PathScan
» PathScan: ( I \
» Appears simply as another table scan operator | endVertex.balance
» But implicitly does INLJ (DFSScan or BFSScan) r qu )
> Last projection: does lookups in the default storage L owner=ID )
— P.athSc.an Table Scan
GView: FinancialNetwork Customer
PathLen=2 job=Lawyer
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Pros and Cons of Decoupled Approaches

Pros

Cons

Easier to integrate

Only “graph” queries benefit

Can do very advanced processing:
e.g., GR-Fusion has ShortestPathScan

Use of INLJ ops have performance
disadvantages (next slides)
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GRainDB Motivation: INLJ vs Hash Joins (1)

MATCH (a:P)-[e:Knows]->(b:P) WHERE a.ID < X RETURN count(*)

Standard GDBMS Plan: INLJ ops Standard RDBMS Plan: Hash Join
Scan Node Extend [ Hash Join ]
a.lD < x (a)-[:Knows]->(b) e.erID =_a.|D
] Scan-Person (a)
[Scan Knows (e)] [ 21D < X ]
v benefits from predicate X no benefits from predicate
M —e— DuckDB /.ﬁ,_,«r"/".
© 103, GraphflowDB ,’//"'"’
g —=— Neo4j ‘//
< e
§102_ M
£ ]
P
.§ 1014
S S S S S S S S S S

selectivity of Person
20



GRainDB Motivation: INLJ vs Hash Joins (2)

MATCH (a:P)-[e:Knows]->(b:P) WHERE e.date < X RETURN count(*)

Standard GDBMS Plan: INLJ ops Standard RDBMS Plan: Hash Join
Scan Node Extend Filter [ Hash Join ]
a.lD (a)-[e:Knows]->(b) e.Date < x e.srclD =a.lD
Scan Knov-vs (e) Scan Person (a)
e.date < x a.lD
X no benefits from predicate v benefits from predicate

(even replace probe/build)

.

——, e " -

103_

—e— DuckDB
GraphflowDB

—=— Neo4j
102 A

‘\c’,\o 00\0 Qo\o 00\0 00\0 Q0\0 0o\o 00\0 Q°\° Qo\o 0o\o
SP.L PSP PP F S

m b selectivity of Knows 21
Group

runtime in msec (log scale)




GRainDB Motivation: INLJ vs Hash Joins (3)

» Further problem with INLJs: Worse When Reading Node Properties

MATCH (a:P)-[e:Knows]->(b:P) WHERE a.ID < X RETURN b.name

Standard GDBMS Plan: INLJ ops

Scan Node Extend Scan
a.lD < x (a)-[e:Knows]->(b) b.name

7/
4
/
7/
7/
7/

L

Effectively another INLJ operator:
joins (a.lD, e.ID, b.ID) tuple with (b.ID, b.name)

But leads to non-sequential/random reads b/c neighbors have no locality

Dat;
m Svaslaems 2 2
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Predefined/Pointer-based Joins in GRainDB: Goals

1. Always perform sequential reads

2. But benefit from both node/edge predicates
» Achieved through sideways information passing

3. Do not develop a second “graph” processor:
» Speed up existing primary-foreign key joins with a join index
» In the spirit of old-fashioned join index of Valduriez but using

modern data structures and join algorithms
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Predefined Pointer-based Joins in GRainDB

Alice Alice Bob 700
Bob Bob Carol 800
Carol Carol Alice 900

Alice Dan 500
Alice Liz 400

» Step 1: Predefine a Primary Key-Foreign Key Join E.g.:
FROM: Accounts, Transfers

WHERE Accounts.owner = Transfers.From

Accounts Transfer
RIDs RIDs

1 —1 |4 |5

2 —>2

3 3

m S RID Index
roup




Step 2: Rule-based Query Planning

SELECT a.owner, c.owner
13 ”
Examp|e 2_h0p query FROM Acc a, b, c, '!'r‘n t1, t2
WHERE b.owner = Alice AND
a.owner=tl.From AND tl1.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

HashJoin
owner=from

[ HashdJoin } [ HashdJoin }

/\ /\

Scan Scan Scan HashdJoin
Acc Trn Acc owner=from

_—

Scan
Scan
Acc
Trn A
owner=Alice

1. Replace some HashdJoins -> SIPJoin or SIPJoinldx

2. Replace some Scans -> ScanSemidJoins (ScanSJ)
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Step 2: Rule-based Query Planning

Example “2-hop query”

[IﬂashJon1}

SELECT a.owner, c.owner

FROM Acc a, b, ¢, Trn t1, t2

WHERE b.owner = Alice AND
a.owner=tl.From AND tl.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

£

ScanSJ
Acc

,,f*”//////k\\\\\\\*‘-t\

[IﬂashJon1}

J

Scan
Acc

ScanSJ
Trn
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\_

//////////A\\\\\\\\\

ScanSJ
Trn

~N

SIPJoinldx

Scan
Acc
owner=Alice
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Step 3: Sideways Information Passing & Semijoins

SELECT a.owner, c.owner
FROM Acc a, b, ¢, Trn t1, t2
WHERE b.owner = Alice AND

Alice
a.owner=tl.From AND tl1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner Bob

Carol

Accounts Transfer
RIDs RIDs
T]]—> 1 (4|5 |
2 —> 2
3 3
RID Index

1 Alice
2 Bob
3 Carol
1 Alice
1 Alice
SIPJoinldx

" 1 Aice Bob 700 /
» Use RIDs as pojnters ; Aice  Dan 506

» All scans are seguential unlikiee  Liz 400
ScanSJ
pested loop joins of GDBMSs Trn
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Bob 700
Carol 800
Alice 900
Dan 500
Liz 400

Hash Table

key values
1 {1, Alice}

1 \ Alice
AN

Scan
Acc
owner=Alice



GRainDB Microbenchmark Behavior (1)

MATCH (a:P)-[e:Knows]->(b:P)
WHERE a.ID < X

SJoinldx
Micro-P e.srcID =a.lD
< | —*— DuckDB ScanS)J Scan Person (a)
S 1034 GRainDB Knows (e) a.ID <X
g 1 —— GrahflowDB
ke) ] —=— Neo4j
O
3 102;
E ]
=
£
s 101';
[ ]
o
oo oo oo o oo oo o o o o oo
S MPSIIRSI SISO S NI
00‘»%6\9,1/0&@%0\99

selectivity of Person
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GRainDB Microbenchmark Behavior (2)

MATCH (a:P)-[e:Knows]->(b:P)

WHERE e.date < X [ Hash Join ]
. e.srcID =a.lID
Micro-K -
= Scan Knows (e) Scan Person (a)
o ] ./.—H-I—""—_.’_.—./.___./. e.date<x a.lD
O
" 103
(@) 1
o ]
= 1 —¢— DuckDB
o ] GRainDB
€ | —— GrahflowDB
£ 102, —=— Neo4j
Q ]
£
1=
2
do g oo g S o b Jo o Jo o
O" B O H & O O O L O
¥ oY Y 4P P \9.0 ,199 @9 cOQ‘Q %Q.Q \909

selectivity of Knows
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Summary

» Existing Approaches use RIDs and create join indices
» GR-Fusion & GQ-Fast use decoupled processors with INLJ ops:
» Easier to integrate
» Can provide more advanced query processing features
» But INLJs can degrade in particular due to non-sequential reads

» GRainDB use a single integrated processor with HashJoins
» Any PK-FK can benefit

» Keeps all scans sequential

» Unclear how to integrate more advanced processing (e.g.,

shortest path computations)
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Open Challenges

» How about merge-joins: RDF-3X was based on MJs?
» Little work on optimizing queries

» Each optimizer is rule-based

» General wisdom: rule-based optimizers are rigid

» How much of join index-based operators can be implemented w/ UDFs?
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Outline of Query Processing Techniques to Cover

2. Worst-case Optimal Joins (WCOJs)
Handling Intermediate Size Growth for Cyclic Joins



Outline of Query Processing Techniques to Cover

2. Worst-case Optimal Joins (WCOJs)

Handling Intermediate Size Growth for Cyclic Joins
2.1. Foundations

2.2. System Integration Approaches



Worst-case Optimal Join Sizes

Given Q: R1 <1 R2 < ... <1 Rn, what’s the max |OUT|?

Theorem 1 (AGM, FOCS 2008):

Assume |Rj| are equal. Let ¢=(e,...e ) be a fractional edge cover:

Then:|QUT |< IN“ (IN is total input size)

= 3/2
'\ j |OUT <IN

p” : weight of minimum fractional edge cover
IOUT |< IN”
DS o "




Traditionally: Binary Join (BJ) Plans

Table(s)/Q-Edge(s)-at-a-time Joins

1 2
1 3
1 4

1 2 2

1 2 3

1 2 4

1 3 2
1 2 1 3 4
1 3 .se 1 4
1 4 1 3 4

BJ Plans are provably suboptimal!

1 2 / E.g: can generate m? intermediate tuples on a

[EEY
w

1 * graph with m edges (AGM bound is m')




Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time @

1 2
1 3
1 4
2 4
2 5
2 6
3 4

Order g-vertices: say: a,b,c @
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Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time @ > b |
Order g-vertices: say: a,b,c Qs -~

WNNNRRPRP WNNNRRPR
Aouvbd b wWN AouvbdbDwWN

WINININ PRI
oo bAbWN
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Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time @ > b |
o Q=
Order g-vertices: say: a,b,c @

WINININ R R
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Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time (@ > b
o Q
Order g-vertices: say: a,b,c :L @

WININN PRI
oo Ab_WN

i

WNNNR R e
W NN NN DN -
B~ OB WN

WINININN R

39
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Generic Join: A WCO Algorithm (NPRR, 2013)

1 2 Column/Q-Vertex-at-a-time @ > b
1 3
; j Order g-vertices: say: a,b,c
2 5
2 6
3 4
1 2
B 1 12 1 2 4
> 2 13 1 3 4
S 2 2 4
2 6 p) 5
3 4
2 6
3 4

Theorem: GJ is WCO for any query (under any ordering)

E.g. will generate < m'-° intermediate tuples

WINININ PRI
oo bAbWN




Summary of Two Theorems

Theorem 1 (AGM Bound):
Assume |R|| are equal. Let ¢*=(e,..e ) be min frac. edge cover:

Then: |OQUT |< INPFI(IN is total input size)

Theorem 2 (GJ is WCO): Runtime of GJ < AGM
(for any query & any g-vertex ordering (QVO))

Message: To be WCO:

do g-vertex-at-a-time matching w/ multiway intersections.
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Outline of Query Processing Techniques to Cover

2. Worst-case Optimal Joins (WCOJs)
Handling Intermediate Size Growth for Cyclic Joins
2.1. Foundations

2.2. System Integration Approaches



