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Abstract—Previous work has made use of a parameter-
ized plane curve polynomial representation for mathemat-
ical handwriting, with the polynomials represented in a
Legendre or Legendre–Sobolev graded basis. This provides
a compact geometric representation for the digital ink.
Preliminary results have also been shown for Chebyshev
and Chebyshev–Sobolev bases. This article explores the
trade-offs between basis choice and polynomial degree
to achieve accurate modeling with a low computational
cost. To do this, we consider the condition number for
polynomial evaluation in these bases and bound how
the various inner products give norms for the variations
between symbols.

Index Terms—Digital ink, Functional approximation,
Orthogonal polynomials, Chebyshev polynomials, Sobolev
polynomials

I. INTRODUCTION

Digital ink refers to the representation and manipula-
tion of ink strokes on a digital surface, allowing users to
write, draw, and create content digitally. These traces are
often captured as a sequence of (x, y) coordinates over
time and are used in applications such as note-taking,
signature verification to handwriting, and mathematical
expression recognition. To make effective use of digital
ink, it is important to represent these traces in a form
that is both compact and suitable for analysis or recog-
nition [1].

One approach is to approximate the traces using
parameterized plane curves defined by polynomials [2]–
[4]. The x coordinates and y coordinates are each written
as functions of arc length, and these functions are ap-
proximated by polynomials. Choosing how to represent
these polynomials has a significant impact on both the
accuracy of the model and the cost of computation.

The most familiar representation of polynomials uses
the monomial basis: (1, s, s2, . . . ). However, this ba-
sis can be ill-conditioned, especially when working
with higher-degree polynomials. The use of orthogonal
polynomials such as Legendre, Laguerre, Chebyshev or
other polynomials provides a powerful framework for
approximating functions, which can frequently be better-
conditioned than the monomial basis.

Questions on conditioning of polynomial bases can be
subtle. See [5] for a coherent mathematical framework
and [6] for a proof that the Bernstein polynomial basis
used in Computer-Aided Geometric Design is optimal
over all bases nonnegative on an interval. See [7] for a
proof that Lagrange bases are similarly optimal over all
bases nonnegative on a finite set of points. Another view
of that same fact can be found in [8].

The key point of these analyses is that different bases
have different condition numbers for the same poly-
nomial, and that difference can be exponentially large.
Another important point is that condition numbers reflect
sensitivity not just to errors in computation, but errors
in the original data: an ill-conditioned representation
will result in large changes in the coefficients when
small changes in the data are seen. This directly impacts
character recognition rates.

It is important to choose a suitable basis at the
start of computation, because changing bases during the
computation also carries a risk of numerical instability
because the change-of-basis matrices are frequently ill-
conditioned, with (ordinary) condition numbers that are
exponential in the degree. Working with such matrices
requires special care in floating-point arithmetic.

Ill-conditioned polynomials are also sensitive to
rounding errors in floating-point arithmetic, but recent
work using bidiagonal factoring of the totally nonnega-
tive matrices involved, e.g. [9], can mitigate that greatly.
Use of bidiagonal factoring can also reduce numerical
instability if the polynomial basis is changed during
the computation. The sensitivity to data errors remains,
however.

The Legendre basis consists of polynomials that are
orthogonal with respect to the standard inner prod-
uct in the interval [−1, 1]. This orthogonality makes
the Legendre basis a good choice for approximating
smooth functions and for minimizing the overall error in
representation. The Legendre–Sobolev basis also takes
into account not only the function values but also the
derivatives, leading to a basis that better reflects the



geometric features of a curve such as curvature and slope
changes. This series has gained attention for its improved
recognition rates [10].

Some recent work has explored the use of Cheby-
shev [4] and Chebyshev–Sobolev bases [11]. Chebyshev
polynomials are orthogonal and provide good numerical
stability [12], but their weight function differs from
the Legendre basis, giving them different approximation
characteristics [13]. The Chebyshev–Sobolev basis also
incorporates derivative terms and further enhances mod-
eling accuracy for certain applications. In [11], the suit-
ability of the Chebyshev–Sobolev series for handwritten
text and symbol recognition was first explored. The
present work is an extension of this line of research with
a comparison of Chebyshev-Sobolev bases to Legendre,
Legendre-Sobolev and Chebyshev bases, with the aim of
identifying the effective trade-offs between accuracy and
computational cost.

Although various polynomial basis exist, it is not
always clear to make the optimal choice. Each basis has
different trade-offs between accuracy, and computational
cost. A highly accurate basis might be computationally
expensive whereas, a simpler basis may be easier but not
accurate. In this work we compare different polynomial
basis to make optimal selection considering accuracy and
computational time.

A key tool in our analysis is the condition number
associated with polynomial evaluation in a given basis.
The condition number measures the sensitivity of the
output of a function to changes in its input [14]. In
the context of polynomial evaluation, a high condition
number implies that small changes in inputs can result
in large changes in output — which is undesirable
for handwriting applications that require precision and
robustness.

In this work, we have also derived a bound on the
Sobolev norm of the difference between two polynomi-
als, showing that it can be controlled by the infinity norm
of the difference in their coefficient vectors. Specifically,
we bound the expression ||f(x) − g(x)||s in terms of
||f−g||∞, scaled by factors involving the differentiation
matrix and the basis norm. This provides a practical
measure of stability, ensuring that small changes in coef-
ficients lead to proportionally small changes in both the
function shape and its derivative, an essential property
for accurate and robust handwriting modeling.

In summary, our goal is to provide clear guidance on
selecting the most suitable basis and polynomial degree
for practical handwriting modeling. We do this through
both theoretical analysis and evaluation on a real dataset
of mathematical symbols. Our results aim to improve
the efficiency and reliability of digital ink analysis, with
potential applications in education, accessibility, and
user-friendly digital interfaces.

II. PARAMETRIC CURVE REPRESENTATION

Representing digital ink as a parametric curve is a new
direction compared to older methods that used pixels
or tracked points over time. Those earlier methods are
highly dependent on resolution - in space or time - which
can create problems with precision [10] and make the
results less reliable.

In Parametric Curve Representation, both the x and y
positions of the writing tip are expressed as functions of
a single parameter, typically denoted as s. This parameter
is arc length s, a normalized value in the range [−1, 1]
indicating progression along the stroke, where

ds2 = dx2 + dy2. (1)

We define a handwriting stroke using two functions:

x(s), y(s), s ∈ [−1, 1].

These functions specify the horizontal and vertical posi-
tions of the pen w.r.t normalized arc length. This creates
a smooth 2D path that models the stroke as a continuous
curve.

Parametric curves are effective because handwriting
involves smooth and continuous motion. Rather than
handling a large sequence of discrete points, we rep-
resent the entire stroke using functions.

Given a functional inner product, a graded basis of
orthogonal polynomials {Bi(s)}i=0,....d may be obtained
using Gram-Schmidt orthogonalization of the set of
monomials {si}i∈[0..d]. Now, using {Bi(s)}i=0,....d for
approximating (x(s), y(s)), a trace can be represented
as

x(s) ≈
d∑

i=0

xiBi(s) (2)

y(s) ≈
d∑

i=0

yiBi(s) (3)

where, xi and yi are the coefficients and d is the degree
of the truncated series. The coefficients xi and yi deter-
mine the shape and direction of the curve. By choosing
appropriate values for these coefficients, we can match
the curve very close to the actual pen trajectory.

In this method, we store only the function’s coeffi-
cients instead of all the stroke points. This makes the
representation more compact and flexible. The quality
of the result depends on two things: the degree of the
polynomial and the type of basis used. We will show
that some bases give better accuracy even at low degrees,
while others may perform worse as the degree increases.
In this work, we use parametric polynomial curves to
model handwriting strokes. In later sections, we look
at how different bases affect the accuracy, stability, and
efficiency of this approach.



III. CHOICE OF BASIS

When we represent handwritten symbols using param-
eterized polynomial curves, the choice of basis for these
polynomials greatly impacts how well the representation
performs. A basis is a set of building blocks from which
we construct the polynomial. Standard bases include
monomials, Legendre polynomials, Chebyshev polyno-
mials, and their Sobolev variants. Each basis has its
mathematical properties, and some are better suited than
others for modeling handwriting stably and efficiently.

Functional Inner Product and Orthogonality

Understanding why some bases work better than oth-
ers helps to look at the idea of a functional inner product.
Given two functions f(s) and g(s), the standard inner
product over the interval [−1, 1] is defined as

⟨f, g⟩ =
∫ 1

−1

f(s)g(s) ds. (4)

Using the Gram-Schmidt process, one can generate the
basis polynomials. This property ensures that each func-
tion captures independent information, which reduces re-
dundancy and improves numerical stability when fitting
curves to data.

Orthogonal bases like the Legendre and Chebyshev
polynomials are defined using functional inner product
with weights 1 and 1√

1−x2
respectively. Because of

orthogonality, there is no interfence in the calculation
of coefficients. They also help avoid problems like
overfitting or numerical instability when using higher-
degree polynomials [15].

Sobolev Norms: Incorporating Derivatives

The standard inner product only considers the values
of functions, sometimes it is essential to include their
derivatives. In handwriting, the slope and curvature of a
stroke can be just as important as its position. To account
for this, we use a Sobolev inner product, which includes
derivatives in the definition:

⟨f, g⟩S =

∫ b

a

f(s)g(s) ds+ µ

∫ b

a

f ′(s)g′(s) ds, (5)

where µ is a real parameter that controls how much
emphasis is placed on the derivative terms and we
assume its fixed. This inner product leads to what we
call Sobolev orthogonal polynomials.

Using a Sobolev norm leads to smoother polynomial
curves that not only match the position of the hand-
writing but also its velocity and shape characteristics.
This approach can lead to better modeling of subtle
differences between symbols, which is valuable for
recognition and classification tasks [3].

Why Does This Matter?

The selection between a standard orthogonal basis and
a Sobolev basis has a significant affect on representing
handwriting strokes. A standard basis may fit the overall
shape of the stroke well but may overlook how sharply
it bends or how smoothly it flows. A Sobolev basis cap-
tures these details, which can be helpful in distinguishing
visually similar characters or symbols [3].

The choice of inner product affects the norm used
to measure approximation error. The standard L2 norm
measures the square error at position only, while the
Sobolev norm combines position error with derivative
error. Choosing norms that better reflect the visual and
geometric features of handwriting can enhance both
accuracy and robustness [3].

In this work, we compare different bases Legendre,
Legendre–Sobolev, Chebyshev, and Chebyshev–Sobolev
to understand the influence of basis choice on model
performance. Our aim is to find representations that
balance accuracy, and computation cost. In what follows
the degrees of the polynomials are d and the length of
the coefficient vectors is n = d+ 1.

Theorem 1: Let f(x) and g(x) be polynomials ex-
pressed in an orthogonal basis {Pi(x)}, with coefficient
vectors f and g, respectively. Suppose the polynomials
and their derivatives are evaluated on the interval [0, 1],
and let D be the differentiation matrix corresponding
to the basis. Then, the Sobolev norm of the difference
between f and g satisfies

∥f − g∥s ≤
√
n ∥f − g∥∞(1 + µ∥D∥),

where µ is the weight for the derivative term.
Proof: Let f(x) and g(x) be polynomials given in

orthogonal basis Pi(x) that

f(x) =

d∑
i=0

fiPi(x) g(x) =

d∑
i=0

giPi(x) (6)

= fP = gP, (7)

where, f is a vector of polynomial coefficients and P is
a vector of orthogonal basis.

Considering section 11.2, in [16], there exists a dif-
ferentiation matrices D such that

f ′ = Df g′ = Dg, (8)
f ′P = DfP g′P = DgP (9)

f ′(x) = Df(x) g′(x) = Dg(x) (10)

where f ′ is a vector of coefficients for the derivative of
f(x) in the same basis. Now,

||f(x)− g(x)||s = ||f(x)− g(x)||+ µ||f ′(x)− g′(x)||
(11)

= ||f(x)− g(x)||+ µ||Df(x)−Dg(x)||
(12)



Using Cauchy-Schwartz inequality, we can expand the
terms as

||f(x)− g(x)||s ≤ ||f(x)− g(x)||
+ µ||D|| ||f(x)− g(x)|| (13)

= ||f(x)− g(x)|| (1 + µ ||D||) (14)

We know that ||f(x) − g(x)||2 ≤
√
n ||f(x) −

g(x)||∞. Here, f(x) and g(x) are defined in (0,1).

||f(x)− g(x)||s ≤
√
n ||f(x)− g(x)||∞ (1 + µ ||D||)

(15)

Theorem 2: Let f(x) and g(x) be polynomials ex-
pressed in an orthogonal basis {Pi(x)}, with coefficient
vectors f and g. Let D be the differentiation matrix such
that f ′ = Df and g′ = Dg, and assume f(x), g(x), and
their derivatives are evaluated over an interval where the
basis functions are bounded. Then, the Sobolev norm of
the difference between f and g satisfies:

∥f(x)− g(x)∥s ≤
√
n · (1 + µ∥D∥) · ∥P∥ · ∥f − g∥∞,

where µ is the weight in the Sobolev norm, and ∥P∥ is
the norm of the basis vector evaluated over the domain.

Proof: Let f(x) and g(x) be polynomials given in
orthogonal basis Pi(x) that

f(x) =

d∑
i=0

fiPi(x) g(x) =

d∑
i=0

giPi(x) (16)

= fP = gP, (17)

where, f is a vector of polynomial coefficients and P is
a vector of orthogonal basis.

Considering section 11.2, in [16], there exists a dif-
ferentiation matrices D such that

f ′ = Df g′ = Dg, (18)

where f ′ is a vector of coefficients for the derivative of
f(x) in the same basis. Now,

||f(x)− g(x)||s = ||f(x)− g(x)||+ µ||f ′(x)− g′(x)||
= ||(f − g)P||+ µ||(Df −Dg)P||

(19)

Using the Cauchy–Schwartz inequality, we can expand
the terms as

||f(x)− g(x)||s ≤
||(f − g)|| ||P||+ µ||D|| ||(f − g)|| ||P||

(20)

We know that ||f−g||2 ≤
√
n ||f−g||∞. Here, f and

g are n dimension vectors.

Fig. 1: Cumulative norms for degrees 5–10.

||f(x)− g(x)||s ≤
√
n ||(f − g)||∞ ||P||

+
√
nµ ||D|| ||(f − g)||∞ ||P||

=
√
n [ 1 + µ ||D|| ] ||P|| ||(f − g)||∞

(21)

IV. EXPERIMENTS

A. Experimental setting

For our experiments, we have run tests on UCI pendig-
its dataset [17] and CROHME dataset [18]. The UCI
pendigits dataset contains samples of 10992 handwritten
digits (0-9) of multiple users. For each symbol, the num-
ber of strokes and the x and y coordinates of the sample
points are available. The normalized Legendre–Sobolev
coefficient vectors and Chebyshev–Sobolev coefficient
vectors were computed for all samples, with the value
of the parameter µ set to 1/8. The reason for the choice
of this value is proven results in [11] and [3].

B. Coefficient Norms Across Polynomial Bases

For each basis (Chebyshev, Legendre, Legendre–
Sobolev, and Chebyshev–Sobolev), we generate the se-
quences of orthogonal polynomials up to a fixed degree.
We then compute the coefficients for the orthogonal
vectors for the given handwritten mathematical symbols.

As seen in (20), the Sobolev norm is bounded by
the norm of coefficient vector, we analyze the norm of
coefficient vector considering series up to degree 20.

A lower value of norm of coefficient vector implies
that the basis can represent the function compactly and
efficiently, while a growing norm with increasing degree
may indicate poor efficiency. We compare these trends
across the bases to highlight stability and efficiency of
basis for approximating real handwriting data.



Fig. 2: Cumulative norms for degrees 10–15.

Figures 1, 2, and 3 show the cumulative norms of
polynomial coefficients considering up to degrees 10,
15 and 20, respectively. In Figure 1, the cumulative
norms of coefficients across degrees 5–10 show apparent
differences between the four polynomial bases. At degree
5, all the polynomial bases start with modest values,
showing a slight difference at lower degrees. Legen-
dre and Chebyshev bases show steeper growth as the
degree increases, with Legendre consistently producing
the largest cumulative norms, particularly at degrees
8–10. Chebyshev follows a comparable but slightly more
restrained trajectory. In contrast, both Legendre–Sobolev
and Chebyshev-–Sobolev maintain more reasonable in-
creases, illustrating the stabilizing effect of the Sobolev
inner product. This controlled change indicates that the
derivative-sensitive Sobolev bases overcome coefficient
explosion, leading to smooth approximations at higher
degrees. By degree 10, the gap is high. Legendre domi-
nates all the bases, Chebyshev is slightly lower, whereas
the Sobolev variants remain compact, highlighting their
advantage for numerical stability.

As shown in Figure 2, from degrees 10–15, the
differences between the bases become more evident.
The Legendre basis grows the fastest, especially after
degree 13, while Chebyshev also grows quickly but stays
slightly lower. The Sobolev-based bases increase much
more slowly. Legendre–Sobolev shows stable but smaller
growth, and Chebyshev–Sobolev remains the most sturdy
with the least increase. This indicates that the Sobolev
bases manage the coefficient growth and give smoother
results for higher degrees.

Figure 3 highlights the cumulative norm of coefficients
growth from degree 15 to 20. The gap between the bases
becomes significantly large. Legendre and Chebyshev
bases rise sharply, making them less trustworthy for
higher degrees. The Sobolev versions stay much con-

Fig. 3: Cumulative norms for degrees 15–20.

Fig. 4: Computation time per sample as a function of polynomial
degree for different polynomial bases (Legendre, Legendre-Sobolev,
Chebyshev, Chebyshev-Sobolev).

trolled. Legendre–Sobolev grows steadily, and Cheby-
shev–Sobolev again has the gradual and most stable
increase. Sobolev bases, especially Chebyshev–Sobolev,
give smoother and more stable results for high-degree
handwriting representation.

C. Computation Time Analysis of Polynomial Bases

In this experiment, we compare the computation time
to represent handwritten ink symbols using polynomial
bases for different degrees. We have considered Leg-
endre, Chebyshev, Legendre-Sobolev and Chebyshev–
Sobolev basis. The parameterized curve for each symbol
is projected onto the considered polynomial basis. This
involved the computation of inner products and apply-
ing numerical integration to calculate coefficients using
Gram-Schmidt orthogonalized bases. The experiment
was repeated for different degrees and the recorded
computation time was averaged over the entire dataset.



Fig. 5: Recognition rate (accuracy) as a function of polynomial degree for different polynomial bases, with error bars showing variability.

Figure 4 highlights the average computation time per
sample of different polynomial bases varying with de-
gree. The time grows almost linearly with degree, which
is expected since the number of inner products also
increases linearly. Legendre and Chebyshev bases have
nearly similar timings. Still, Chebyshev is slightly slower
because its inner product involves the weight factor

1√
1−x2

, unlike Legendre, which has a constant weight
of 1. The Sobolev bases require more time because of
the inclusion of derivative terms in the inner product.
Among them, Chebyshev–Sobolev is the most expensive,
as it combines the derivative term with the 1√

1−x2

weight, making the computations expensive. There are
small fluctuations at some degrees; however, they are
insignificant.

D. Recognition Rate
We evaluate the recognition rate using the UNIPEN

dataset, focusing on handwritten digits from 0 to 9.
Each digit was preprocessed by uniformly resampling
its trajectory to exactly 8 points, ensuring consistent
representation across all samples. These 8-point traces
are then represented as a parametric curve representation,
and the resulting polynomial coefficients are obtained as
feature vectors. This representation captures the essential
shape and dynamics of the handwritten digits while
enabling compact representation for classification.

We use a support vector machine (SVM) framework
for the classification task. The dataset is divided as
80 % for training and 20 % for testing. A one-vs-
one classification strategy is adopted, which results in
45 binary SVM classifiers, each trained to distinguish

between a pair of 10-digit classes. During inference,
each test sample goes through all 45 classifiers. The final
predicted label is determined using majority voting based
on the outputs of these binary classifiers. This approach
allows robust multi-class recognition while leveraging
the discriminative power of binary SVM decision bound-
aries.

We randomly split the dataset into training and testing
sets 100 times to obtain statistically trustworthy results.
Recognition accuracy is computed for each split, and the
reported results are based on these repeated trials. We
further summarize the outcomes at each polynomial de-
gree by calculating the maximum, minimum, and mean
recognition rates across the 100 runs for all polynomial
bases considered.

Figure 5 shows the recognition rates of different
polynomial bases as the degree varies from 5 to 20. The
curves are unsmooth due to the natural variations across
repeated runs. Performance improves steadily up to
around degree 10–12, after which the gains become grad-
ual and the curves almost level off. Chebyshev–Sobolev
consistently has the best mean accuracy, reaching around
97.5-98% around degree 12 and maintaining this level.
Chebyshev and Legendre–Sobolev also perform strongly,
with mean accuracy peaking close to 97% across higher
degrees. Legendre lags slightly behind, plateauing closer
to 96%. These results indicate that both the choice of
basis and the degree of the polynomial affect the recogni-
tion rate, with Sobolev-type and Chebyshev-based bases
offering a modest but consistent advantage.



(a) Approximation at degree 5

(b) Approximation at degree 10

(c) Approximation at degree 15

(d) Approximation at degree 20

Fig. 6: Polynomial approximations of a representative symbol using different bases across degrees 5, 10, 15, and 20.
The solid black line show piecewise-linear approximation of the original data, while the dotted colored lines represent polynomial approximations.

E. Approximation of Handwritten symbol

This experiment evaluates the effectiveness of dif-
ferent polynomial bases for handwriting representation.
We plot a representative symbol from the ORCCA
dataset and approximate it using Legendre, Chebyshev,
Legendre-Sobolev, and Chebyshev-Sobolev polynomial
bases. The approximated symbol is shown for degrees
5, 10, 15, and 20 in figure 6, with the original digital-
ink trace overlapped by the approximated symbol.

Figures 6a and 6b show the approximated curves
for lower degrees, 5 and 10. The rough outline of the
symbol appears, but finer details are missed. The biggest
mistakes occur in the curved parts and at the ends of the
trace. Legendre and Chebyshev bases follow the overall
shape but are still missing in some places, while the
Sobolev versions smooth out the lines, which makes
them lose details in tight curves.



At degree 15, the results (Figure 6c) look closer to
the original. The differences between the four bases
are minor, and just small mismatches remain in certain
curved spots. Chebyshev-based results usually fit those
curves better, while the Sobolev polynomials make the
lines look smoother and reduce small wiggles. At this
point, all bases give a good balance between accuracy
and stability, although each basis has its own style of
error.

At degree 20, the approximations (Figure 6d) look
almost identical to the original symbol. The loops, inter-
sections, and endpoints are all drawn very accurately, and
the slight differences that remain are barely noticeable.
The main effect of the basis here is on smoothness.
Sobolev bases give a slightly steadier curve, while
Chebyshev and Legendre bases also keep the fine details.
This shows that the choice of basis matters at all degrees.

V. CONCLUSIONS

In this work, we have analyzed the choice of differ-
ent polynomial bases, Legendre, Chebyshev, Legendre–
Sobolev, and Chebyshev–Sobolev, in handwriting recog-
nition. We investigated the trade-offs between computa-
tional time and classification accuracy using parametric
curve representations and orthogonal polynomial approx-
imations.

In theoretical analysis, we have bounded Sobolev
norms in terms of coefficient norms, showing that minor
coefficient variations produce proportionally bounded
changes in both the function and its derivative, an
essential property for robust handwriting recognition.
The experimental results confirm these insights: Sobolev
bases maintain lower coefficient norms even at higher de-
grees and yield smoother growth with increasing degree,
making it well-suited for complex curves and higher-
order approximations.

Legendre and Chebyshev bases offer faster computa-
tion time but suffer from instability at higher degrees.
Chebyshev–Sobolev basis achieves significantly better
recognition accuracy, although at the cost of increased
computation time. The Chebyshev–Sobolev basis had the
highest recognition accuracy among all the polynomial
bases examined, peaking at more than 97.5%.

Our results suggest that Sobolev orthogonal bases,
especially Chebyshev–Sobolev, balance accuracy and
stability well. These are good choices with practical
applications in education, accessibility tools, and math-
ematical handwriting recognition.
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