
Symbolic Mathematical Computation 1965–1975:
The View from a Half-Century Perspective

Robert M. Corless
Department of Computer Science,

Western University
London, Canada
rcorless@uwo.ca

Arthur C. Norman
Trinity College
Cambridge, UK
acn1@cam.ac.uk

Tomás Recio
Escuela Politécnica Superior,

Universidad Antonio de Nebrija
Madrid, Spain

trecio@nebrija.es

William J. Turkel
Department of History,
Western University
London, Canada

william.j.turkel@gmail.com

Stephen M. Watt
Cheriton School of Computer Science,

University of Waterloo
Waterloo, Canada

smwatt@uwaterloo.ca

Figure 1: Jean E. Sammet, the founding Chair of SIGSAM and General Chair and Program Chair of SYMSAC ’66

Abstract
The 2025 ISSAC conference in Guanajuato, Mexico, marks the 50th
event in this significant series, making it an ideal moment to reflect
on the field’s history. This paper reviews the formative years of
symbolic computation up to 1975, fifty years ago.

By revisiting a period unfamiliar to most current participants,
this survey aims to shed light on once-pressing issues that are now
largely resolved and to highlight how some of today’s challenges
were recognized earlier than expected.

CCS Concepts
• Computing methodologies→ Symbolic and algebraic ma-
nipulation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’25, Guanajuato, Mexico
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2075-8/2025/07
https://doi.org/10.1145/3747199.3747556

Keywords
History, Symbolic Computation, Computer Algebra

ACM Reference Format:
Robert M. Corless, Arthur C. Norman, Tomás Recio, William J. Turkel,
and StephenM.Watt. 2025. Symbolic Mathematical Computation 1965–1975:
The View from a Half-Century Perspective. In International Symposium on
Symbolic and Algebraic Computation (ISSAC ’25), July 28-August 1, 2025,
Guanajuato, Mexico. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3747199.3747556

1 Introduction
The modern symbolic computation world is quite large in absolute
terms, comprising on the order of a thousand active researchers
and a million dedicated users, and even more people who use it
occasionally. Symbolic computation has a very large impact through
a variety of software packages and problem-solving environments.

The history of any important field is of intrinsic interest, and
every researcher in it has an obligation to know the main currents
of its history. Such knowledge also has instrumental value in that
knowing the history can prevent new projects from repeating earlier
mistakes and can help overcome similar obstacles. As the saying
goes, ‘Six months in the lab can save you three days in the library.’

https://orcid.org/0000-0003-0515-1572
https://orcid.org/0000-0002-1011-295X
https://orcid.org/0000-0003-4734-9894
https://orcid.org/0009-0006-0196-3249
https://doi.org/10.1145/3747199.3747556
https://doi.org/10.1145/3747199.3747556
https://doi.org/10.1145/3747199.3747556

ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico Corless et al.

Finally, the history of symbolic computation is a crucial compo-
nent of the history of mathematical thought more broadly since
it was one way that ideas of abstraction and axiomatic thinking
reached much larger audiences from the mid-20th century on-
ward [38, 90].

This paper tells part of the story of the history of symbolic
computation in a way that addresses these desires. We have spent
some time surveying, reading, and digesting the early literature
on symbolic computation, and here we present some highlights of
the period 1965–1975. However, this paper is not comprehensive.
We welcome discussion, especially of things we have missed. If
you have knowledge that has passed us by please get in touch so
that extended and updated versions of this can be as complete as
possible.

At the outset, we note that even now there is some uncertainty
regarding the best name for the field most of us work in, even just in
English! We will not be strict. ISSAC refers to the field as “Symbolic
and Algebraic Computation” while ACA uses the term “Computer
Algebra”. JSC drops the word “Algebraic” and thus it is only “Sym-
bolic Computation” where the main ACM subgroup SIGSAM went
for “Symbolic and Algebraic Manipulation”. We will use the terms
largely interchangeably. We will use “Symbolic Computation” to
mean symbolic mathematical computation, since other fields also
use that term.

We do not attempt here to define what is, and what is not, a topic
relevant to computer algebra. It is possible to disagree on whether a
topic should be included or not. We could give historical examples
of this discussion going right back to 1966.

At one end of the spectrum have been groups that have built
software to be applied in a range of mathematical and engineering
domains. At the other end have been those concerned with theory.
To some extent, this can be seen as the continuation of earlier work
to rebuild mathematics from a constructivist standpoint. The mix
of tensions and cross-pollination across the different approaches is
part of what gives the subject and its associated conferences some
of their flavour.

We have organized our report chronologically in sections, ending
in 1975 (a half century ago). Activity in each period had its own
distinctive dynamic. Within each section, we use the device of
classifying contributions as those for software systems, applications,
algebra and formal proof. We may view these as contributions by
the heirs of Turing, Laplace, Hilbert, and Tarski respectively. 1. Of
course people contributed inmore than oneway, and in reality these
four groups are insufficient to truly cover the ground. We might
also add the heirs of Abel to cover group theoretic contributions,
the heirs of Noether to cover symmetry and invariants, the heirs of
Fermat and Gauß to cover number theoretic contributions, or the
heirs of Euclid for geometry.

Perhaps we could classify numerical computation as the work
of the heirs of Cauchy; by and large we exclude such work here,
except for multiple precision and except insofar as it was used for

1The authors of [73] label the parts of their book with Euclid (for the Euclidean
algorithm and algorithms in general), Newton (for Newton’s method but also for some
applications), Gauß (for finite fields), Fermat (for number theory and cryptography),
and Hilbert (for algebra, in a similar way to how we use it). Notice that the heirs of
Turing are not present in that book. We suspect that this was so that the book would
age more slowly.

exact computation. See the impressive work [12] for an 800-page
journey through just the history of numerical linear algebra, as a
partial recompense for this exclusion.

Our focus is on symbolic mathematical computation for pro-
grammable computers. We highlight key algorithmic developments
in this context.

We have chosen to frame our work by focusing on the contribu-
tions of Jean E. Sammet (1928–2017), who contributed signally to
the early symbolic computation world [34] and took prime responsi-
bility for the SYMSAC’66 conference that is being celebrated here as
having grown to become ISSAC. Among her further achievements,
she was the founder and first Chair of SIGSAM, the ACM Special
Interest Group on Symbolic and Algebraic Manipulation. She was
the lead designer of FORMAC, which was the first commercially
successful programming language for computer algebra, and was
instrumental in the development of COBOL. She later became the
first female president of the ACM itself.

Sammet was also a historian of computing. “From childhood on,
I hated to throw papers away. As I became an adult, this charac-
teristic merged with my interest in computing history. As a result,
I created important files and documents of my own, and became
concerned with having other people publish material on their im-
portant work so the facts (rather than the myths) would be known
publicly.” [44] She wrote an encyclopedic book [83] on the early his-
tory of programming languages (concentrating on those invented
in the USA), including those for computer algebra, and later wrote
a condensed paper on the same subject, together with a look to
the future [84]. As well as her having started the SYMSAC confer-
ence series and founding key early groupings and publications, her
output has helped us to see how those active in the field saw it at
the time, and in particular what they viewed as part of the subject:
so what we report here is less tainted by our modern views than
might otherwise have been the case.

2 1964 and before
By the 1930s mathematicians had developed a concept of an “effec-
tive procedure” for completing a task, even though computers as
we know them were not available. The 1926 paper of Grete Her-
mann [59], translated to English in 1998 [60], was cited in [20] (the
table of contents of which is in [19]) as being of special impor-
tance. These century-old works really set up the idea of what could
be done algorithmically, and the biggest result associated with it
was Gödel’s Incompleteness Theorem which effectively dashed the
hopes of those seeking to rebuild all of mathematics on constructive
foundations. A key point to make here is that in deriving that result,
Gödel publicised the fact that any formula could be encoded using
a number.

The Turing machine was defined in the same decade. It estab-
lished a framework for mechanical computation that could handle
mathematical equations and a desire to solve them exactly or prove
properties of them. It also suggested using one computational model
to simulate another: in effect introducing the concept of an “inter-
preter”. In the same time-frame, the American logician Alonzo
Church introduced the lambda calculus as a model of computation.
That the lambda calculus and Turing machines provide equiva-
lent computational power is the Church-Turing thesis. Church also

A Half-Century Perspective ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico

proved that problem of deciding validity of formulas in first-order
logic is unsolvable [22, 23], which has implications throughout
computer algebra, including subsequent work on the decision prob-
lem [35] and later Richardson’s theorem on the undecidability of
symbolic real expressions [76]. Of course, all of that work was theo-
retical and much of it did not see general algebraic transformations
and simplifications as the main objective, but it provided a basis for
those who came later.

By the late 1940s and through the first half of the 1950s an increas-
ing number of mathematicians became able to access electronic
computers. Several of them had prior experience using electrome-
chanical calculators to compile tables of special functions or to
predict the trajectories of shells: work that was numerical in style.
But some looked at problems that might be described as pure rather
than applied mathematics. Perhaps the main focus was on support
for logic, inference, and proof checking. Today these are still official
topics of ISSAC, but in the early years schemes set up to handle
them became directly applicable to symbolic elementary algebra.

A notable contribution was IPL (Information Processing Lan-
guage) by Allan Newell, John Clifford Shaw and Herbert A. Simon2
(c. 1956) which introduced list processing, recursion and dynamic
memory allocation. IPL further featured functions as arguments
and a form of multi-tasking: a major task it undertook was to show
that the proofs in Principia Mathematica could be checked mechan-
ically. It was an early example of a language or system that ended
up available on a range of different computers. Newell and Simon
demonstrated their automated reasoning program at the 1956 Dart-
mouth Summer Research Project on Artificial Intelligence, which
was co-organized by John McCarthy.

FORTRAN made its first appearance in an IBM memo dated
November 10, 1954, and FORTRAN II was released in June 1958.
See [83] for a detailed discussion. As will be seen in the next sec-
tion, FORTRAN later became an important base for mechanized
symbolic computation. But from its inception (indeed from the
time of Autocode some years earlier) the issue of parsing algebraic
formulae had been addressed. From technical reports published
even some years later it is clear that this was a challenging task
for quite some time. It is hard to have an algebra system without
a way for the system to accept reasonably natural mathematical
input! Indeed some of the very earliest attempts used what now
seem like bizarre tabular notations for both problem presentation
and delivery of results.

ALGOL was developed in the period 1955–1957 by work started
by a committee struck by GAMM3 [83, p. 173]. COBOL was devel-
oped extremely rapidly, taking just the last six months of 1959 [83,
p. 331]. LISP, very much a successor to IPL, originated at around
the same time (the key publication [68] was in 1960), and those
working close to McCarthy started to use it for a range of symbolic
calculations.

As with IPL, some of the very earliest activity concentrated on
logic rather than algebra. Efficient list processing, the first LISP com-
piler (1962), extended precision integers and floating point values
(including elementary function evaluation), and garbage collection

2See the description of the contributions of Newell, Shaw, and Simon at the History of
Information website. https://www.historyofinformation.com/detail.php?id=742
3https://www.gamm.org/

would eventually build on this to provide necessary infrastructure
for symbolic algebra.

Somewhat later, the first in the SNOBOL family of string process-
ing programming languages was initiated [42, 43] at Bell Telephone
Laboratories. This emerged from the work on SCL [53, 64], “a Lan-
guage for Symbolic Communication,” used for symbolic integration,
factoring of multivariate polynomials and the analysis of Markov
Chains [53]. Symbolic computation has continued to be one of
the intended application areas of the SNOBOL languages. For a
summary of the early history of programming languages, see [84],
which has a beautiful map showing lines of descent.

The state of the art of symbolic computation software in the pe-
riod covered by this section has been captured in Sammet’s survey
article [81]. On the algorithmic side, of particular note is the emer-
gent interest in faster methods for multiplication by Karatsuba [61]
and leading to Toom-Cook multiplication [28, 93].

The situation at the end of the 1950s can be looked at in two
quite contrasting ways. Almost nothing that we would now view
unambiguously as an ISSAC topic had yet been published. But sev-
eral projects had begun and a very substantial body of fundamental
work would lead to tremendous growth the following decades. From
that perspective the bounty of the 1950s included:

(1) Computers of increasing power and reliability became fairly
broadly accessible to people wishing to develop advanced
applications;

(2) High level languages rather than machine code became a
practical strategy for developers, with some hope for cross-
platform portability. Fortran and LISP were the ones that
were widely used then and have lasted, but ALGOL existed
and has influenced almost everything since, and at the time
string processing such as SNOBOL were seen as core tech-
nology for symbol manipulation;

(3) List and tree data structures with automatic storage man-
agement was an understood concept – either built into the
language used or implemented as part of the program being
written;

(4) There were links between practical and theoretical work
and workers relating to algorithms and computation. This
spanned cost analysis of algorithms where today the results
would be reported in big-O notation, formal models of com-
putation such as the lambda calculus and forged bridges
between theoretical development and practical problem-
solving applications;

(5) The body of experience in proof checking and calculations in-
volving logic was such that adapting it to work with general
classical algebraic formulae could seem natural;

(6) Initial planning or work was under way on many significant
projects that will be described in the next section.

(7) The concept of artificial intelligence inspired much work
on carrying out procedures that humans find challenging,
and working with algebraic formulae certainly fell into that
category.

None of this work was isolated from wider social and cultural
concerns. RAND Corporation, where IPL was developed, had spun
off from a post-war US Air Force project to plan for future weapons.
We view a verification of Russell and Whitehead as perhaps an

https://www.historyofinformation.com/detail.php?id=742
https://www.gamm.org/

ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico Corless et al.

unusual future weapon and celebrate the support that project was
given. The Soviet launch of Sputnik in October 1957 led President
Eisenhower to establish the Advanced Research Projects Agency
(ARPA) early the following year. One of its missions was to give
the US the capacity to launch and use spacecraft. This called for
work on automating calculations in celestial mechanics and orbital
dynamics where pure numeric computation became strained and
symbolic work was the best option. ARPA would go on to fund
many of the projects we describe below.

3 1965–1970
At the instigation of Jean E. Sammet, the ACM Special Interest
Committee on Symbolic and Algebraic Manipulation (SICSAM)
was formed in 1965 by George Forsythe, then President of the
Association for Computing Machinery. In a 2006 oral history [8],
Sammet recalled Forsythewriting back to her saying “I think that’s a
fine idea. You are now the Chairman...” Years later, Sammet recalled
that one of the main motivations to form SICSAM was to have a
forum where staff from different companies could share ideas [85].
Later this “Committee” became a “Group” and ACM SIGSAM was
born. The following year, Sammet organized the first SYMSAC,
which took place in Washington, DC and eventually led to the
ISSAC conference series. “Everybody that went thought it was
wonderful, and when you expected them to be out at the bar, they
were in sessions!” she also recalled.

Although the ACM Digital Library does not record who was
the General Chair of that conference, Sammet said she served as
General Chair, Program Chair, and Chair of SICSAM, “a troika of
one.” Some of the papers were published in the Communications
of the ACM after the conference. They include works on systems,
on applications, on techniques for differentiation, and something
that at first glance looks like it’s for teaching—it’s entitled “Grad
Assistant”—but is not; the idea was that the program would re-
place your graduate student research assistant and do your drudge
computations for you!

There is another quotation from Sammet’s interview which is
quite sobering in view of recent developments in the relationship
between SIGSAM and ACM, and indeed between some journal
editorial boards and their publishers.

One of the interesting things involving the SIGs and
SICs occurred when some of the leaders of a SIG or
SIC became annoyed with ACM. Periodically, a Spe-
cial Interest Group or Committee Chair would get
very annoyed with ACM and say, “We’re just going to
leave ACM. We don’t want anything more to do with
you; there is too much bureaucracy. We’re going to
leave.” And I would sit down and talk to this person
and I would say, “What does “leave” mean?” “Well,
we’re going to go form our own organization.” And I
said, “Well what about the money?” “Oh, well we’ve
got lots of money in our treasury.” I would then say:
“Youmay not know it, but the ACM bylaws say that all
the money in a Special Interest Committee or Special
Interest Group belongs to ACM. The ACM bylaws
clearly say that if a Special Interest Group or commit-
tee dissolves, the money just goes to the general ACM

funds. You may leave ACM. You may take your key
people with you. That does not dissolve the Special
Interest Group or Special Interest Committee. There
will surely be other people who are willing to run it.
Maybe they’re not as good as you are, but there will
be people who are willing to run it, and they will have
the money.” And so he would say, “Oh.” And he would
go away and think about it, and that was the last that I
would ever hear of this resigning from ACM, because
it was a pretty meaningless gesture.

We see therefore that Sammet had a significant role in the creation
of SIGSAM and indeed in the reconstruction of ACM itself at that
time.
One more quotation, this one with an ironic outcome. Sammet said:

There was a very strong Special Interest Group on
numerical analysis [SIGNUM] in ACM, and at some
point I think I contacted them, and, in a presumably
polite way, they told me to go away and not bother
them. They were interested in numerical analysis,
and they didn’t want any of this non-numerical stuff
floating around. And that attitude lasted for a very,
very long time.

When SIGNUM closed up shop around the turn of the 21st century,
during the tenure of one of the present authors as Chair of SIGSAM
or shortly thereafter, its remaining assets were assigned to SIGSAM.
So the present ACM SIGSAM is the heir to both groups.

We mention one more item of interest from the archives of the
SICSAM Bulletin (later the SIGSAM Bulletin, later Communications
in Computer Algebra). The first Editor of the Bulletin was Peter
Wegner4. He passed the torch after a year to John Young, who
announced in his first message to the readership5, that there would
be a European sub-editor to whom correspondence should be ad-
dressed from that side of the Atlantic. That sub-editor was Professor
Sir Maurice Vincent Wilkes, of Cambridge University. Wilkes won
the Turing Award the next year, in 1967, and was knighted in 2000
for his many contributions to computer science. Early issues of the
Bulletin also included a note on curriculum design for computer
science by Donald E. Knuth (ACM Turing award 1974) co-authored
with Peter Wegner. We will also note that “Tini” Veltman, whose
1963 algebra system Schoonschip [95] is another candidate for being
“first,” went on to become a Nobel Laureate. It seems that Sammet
was right: there was significant interest in the community in sym-
bolic and algebraic manipulation, and that attracted participants of
extraordinary calibre.

Sammet identified the language ALGY as the first published step
towards a general-purpose language for computer algebra [10]. The
authors were Myrna D. Bernick, E. D. Callender, and J. R. Sanford.
The system ALGY seemed to allow basic polynomial manipulation.
Sammet credited this work with ideas that led to the creation of
FORMAC in this period. FORMAC has been called the “first com-
mercially successful computer algebra system.” Elaine R. Bond’s
history of FORMAC, published in the Proceedings of SYMSAC ’66 ac-
knowledged the influence of “other similar systems such as ALPAK,

4Peter Wegner (1932–2017) was a professor of Computer Science at Brown University
from 1969 to 1999. His work on object-oriented programming is considered seminal.
5On p. 1 of Issue #5

https://en.wikipedia.org/wiki/Maurice_Wilkes
https://en.wikipedia.org/wiki/Maurice_Wilkes

A Half-Century Perspective ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico

ALTRAN, and Formula ALGOL” and cited a paper of Sammet’s that
appeared in technical report form in 1965, and later in [82].

ALPAK (Algebra Package) was a set of SNOBOL routines and
macros for symbolic manipulation of very large rational algebraic
expressions. It was implemented by W. Stanley Brown and col-
leagues at Bell Labs in the early 1960s. This was succeeded by
ALTRAN, “a highly portable implementation of both algorithms
and compiler... [which] included algorithmic advances in the han-
dling of multivariate polynomials and macro generation to tailor
FORTRAN code to make full use of the characteristics of particular
hardware. Its features included a run-time environment with dy-
namic storage allocation, recursion, symbolic dumping, and error
handling”. One challenge raised by the ALTRAN team was finding
multivariate greatest common divisors. This led to intensive work
in the early 1970s before being satisfactorily resolved [69].

It’s part of the folklore of the symbolic computing community
that ‘the first program for symbolic differentiation was written
before FORTRAN existed,’ and this turns out to be true. In [7], a
paper describing a system “MANIP” that could differentiate, we
find citations that go back to 1962. That 1962 paper [55] cites two
1953 papers, one by Kharimanian and one by Nolan, and describes
the process by which the programs had to be used: in each case
the expressions had to be translated into a compact code before the
programs could be run. These papers are credited in [83] as being
the first.

Drawing further from [55], we infer several things. First, these
early differentiation programs were seriously limited by the capac-
ity of the computers used and a consequence was that the input and
output of expressions had to be in really ugly restricted formats.
The one in [55] accepted input in forms that looked like

A * X P 2 -I- B * X -4- SIN.(C * X)

They used “P” where today we might use “^”. They parsed the input
into a kind of Łukasiewicz prefix form [67] in a table and thought
of this more as a table than as a tree.

The applications that they mention include a guided missile
system, and they say “Equations consisting of three hundred or
more symbols have been successfully differentiated with resultant
derivatives of length in excess of seven hundred symbols. The
equations under consideration involve six independent variables
and four dependent variables.”

If one can differentiate, then one can compute Taylor series. It
turns out that for efficiency one should be careful, because naive
methods lead to combinatorial growth in the length of symbolic
expressions, as soon became painfully clear. So-called automatic
differentiation emerged later to address this, but early work in-
cluded [75]. That report described a program that generated FOR-
TRAN and machine code for the particular computer in use at the
author’s institution in a way that we might classify as automatic
differentiation today.

The papers so far highlighted here are concerned with system
construction. Papers from applications also appeared in SYMSAC
’66, such as [30], which described a FORMAC program to solve
linear initial and boundary-value problems for ODE. The author,
Elizabeth Cuthill (1923–2011), is perhaps most famous for her work
on the Cuthill–McKee algorithm, which permutes sparse matrices
in a way to reduce bandwidth. The paper describing that work

is [31]. It’s a judgement call to say that that work was “symbolic
computation,” but since it is so famous and so useful and has been
cited thousands of times we are quite motivated to claim it for the
community!

Another contribution in the applications line is [32] which de-
scribed manipulation of Poisson series, that is, series where the
terms are of the form

𝑥
𝑘1
1 𝑥

𝑘2
2 · · · 𝑥𝑘𝑚𝑚 𝑒𝑦1𝑒𝑦2 · · · 𝑒𝑦𝑛 . (1)

Such series6 were, and are, in great demand for solving problems
in celestial mechanics; see the famous paper [37].

James R. Slagle (1934-2023), who completed his 1961 dissertation
under Marvin Minsky [88], described a LISP program called SAINT
which could find antiderivatives of many functions. Slagle, who
was blind, was also a chess champion. He won the first Over-the-
Board tournament of the US Braille Chess Association.7 Joel Moses
(1941–2022), who began his doctorate in 1963, redesigned Slagle’s
SAINT into a symbolic integration program called SIN completed in
1967. It was also written in LISP and advanced the use of knowledge
based systems rather than tree search for AI [70]. This work in LISP
coincided with the creation of Project MAC at MIT (1963). Its first
director was Robert M. Fano. Out of this project the MACSYMA
system would be born.

REDUCE was also created in the early-mid 1960s [57, 58]. The
first published use of REDUCE was [56], where it was reported that
six months of human labour had been reduced to fifteen minutes
of computer time. REDUCE 2 appeared in 1970. One of the present
authors has the full working source of that program, and its manual,
fromwhich we find that REDUCE 2 did not have arbitrary-precision
integers or bigfloats, and instead relied on whatever floating-point
system was supplied by the underlying machine. Given the state
of floating-point arithmetic in the years before the IEEE Standards,
this seems natural. REDUCE had to wait until 1979 for a bigfloat
package [86]. COBOL, in contrast, already had facilities for specify-
ing the number of figures before and after the decimal point fairly
freely, which was another milestone for Jean Sammet. The first
(and probably only) algebra system implemented in COBOL was
described in 1976 [46]. To be fair, that system, while slow, actually
had some quite interesting features.

MATHLAB was also a product of the mid-1960s, created at
MITRE8 by Carl Engelman (1929-1983) [41]. One of his rules stated
“MATHLAB is intended for the physicist, not the programmer.”,
while another insisted:

The computer, as viewed by the user, must be intimate
and immediate. The user should have next to [his]
desk a console consisting of a typewriter or, preferably,
a typewriter and a scope. Economy might, in some
cases, dictate the substitution of a plotter for the scope.
These are connected to a large, fast, on-line, time-
shared digital computer. [He] communicates with that
computer by typing messages on his typewriter or

6Or the more or less equivalent ones with sines and cosines in place of the complex
exponentials
7https://web.archive.org/web/20160502160843/http://www.americanblindchess.org/
potb.htm
8MITRE was a military think tank that was spun off from MIT Lincoln Labs in 1958.
Its first employees were developers of the SAGE system which provided air defense
during the Cold War.

https://web.archive.org/web/20160502160843/http://www.americanblindchess.org/potb.htm
https://web.archive.org/web/20160502160843/http://www.americanblindchess.org/potb.htm

ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico Corless et al.

by means of a light-pen on the scope. The computer
replies by means of the same machines. It types both
messages and equations. On the scope it displays both
equations and graphs. Above all, the response time to
the user’s requests must be short.

It would be at least twenty to thirty years before that goal would
be widely achieved. Mathlab 2 introduced two-dimensional output
(subscripts and superscripts in ASCII format).

SCRATCHPAD I, written in LISP by James Griesmer, Dick Jenks
and later David Yun [52], started in 1965 but was never publicly re-
leased. First versions are important for history, though: Griesmer’s
knowledge was later incorporated into SCRATCHPAD II by Dick
Jenks and his team.

Now, we must include a seminal contribution in the area of
algebraic algorithms, namely the 1965 PhD thesis of Bruno Buch-
berger [14] which introduced Gröbner bases to computer algebra,
and which was later translated to English in [18]. The thesis was
first followed by [15], which itself was translated to English in [17].
These major works and the Buchberger algorithm did not make
their way into computer algebra systems until much later; in fact,
not until after 1976 and the publication of [16]. Nevertheless these
were important milestones for the era.

Before Gröbner bases, though, there was elimination theory
using resultants. Significant prior work includes [54]. One very
important paper of the late 1960s, now less well known than it
deserves to be, is [63]. It made the claim that, for multivariate
polynomials, Bézout matrices are superior to subresultants both in
respect to speed and in respect to numerical stability. In view of
the very pessimistic recent result [72] this may merit a second look
with a modern lens.

Other important papers in polynomial arithmetic include Berlekamp’s
factorization of polynomials over finite fields [9] and Lipson’s use
of Chinese remaindering [66] for homomorphic methods.

A fundamental and practical advance was made in [1], where an
efficient method for solving linear systems of equations over the
integers was given. This was the first of the “fraction-free” methods.
Later, in [2], this was extended to general integral domains.

A huge development in the theory of integration in finite terms
was published in this time period, namely the papers of Robert H.
Risch giving (in outline) an algorithm to either find an antiderivative
of a given elementary function, or to prove that no such expression
was possible. See [77], [78], and [80] for a more accessible intro-
duction. See also [79], which seems to have been the paper which
converted the earlier analytic techniques of Liouville and of Ritt
into the algebraic terms that we know now. Implementation of this
algorithm took quite some time and effort; the Proceedings of EU-
ROSAM ’79 contain four important papers by Norman, Davenport,
Trager, Moses and Zippel which helped to bring the development
to a more satisfactory state. Of course, research continues today.

At the risk of venturing too far outside of the symbolic computa-
tion world, we mention the pioneering work of Stephen A. Cook on
the complexity of computation of functions, beginning with multi-
plication, for example the 1969 paper [29]. This was soon followed
by fast multiplication by Schönhage and Strassen [87]. The paper by
Strassen [91] was a fundamental advance in improved complexity
for linear algebra. The field of “computational complexity” has had

a profound effect on research in computer algebra ever since. See,
for instance, the textbook [73].

We nowmention the 1969 undecidability result of Richardson [76],
and the 1970 paper of Caviness [21]. According to Joel Moses [70],
Richardson’s result was a bit controversial at the time because of his
inclusion of “absolute value” in the collection of functions allowed
in the expression to be processed. Nonetheless, the fact that recog-
nizing zero is undecidable over such a simple class of expressions
remains remarkable. Specifically, if the expression 𝐸 contains ln 2, 𝜋 ,
exp(𝑥), and sin(𝑥), then the problem of determining if 𝐸 < 0 is un-
decidable. Adding the function |𝑥 | to the list of possibilities makes
determining if 𝐸 = 0 undecidable. As discussed in [21] this result
has many implications for practical symbolic computation, because
simplification is fundamental. Because (some) simplification prob-
lems are undecideable, we must sometimes rely on heuristics, and
this leads to a forest of difficulties even today.

4 1971–1975
Computer algebra systems become truly international in this period.
The program REDUCE 2 had been widely distributed and groups
all over the world started to contribute.

The very efficient and compact CAMAL (for Cambridge Algebra
Language), by David Barton, Stephen Bourne9, John Fitch and oth-
ers, started its gestation in about 1968 according to the delightful
little history [45] (see also [3, 4]) but was not published until 1971.

MACSYMA became publicly available in 1971, after develop-
ments mentioned in the previous section. The history of MACSYMA
is sketched broadly in [38], from the point of view of a historian
of computing. The comments there might be fascinating to the
insider: we see that in addition to providing tools for human use,
MACSYMA forced the humans to adapt to the tools. HAKMEM (a
February 1972 AI Lab memo) also came out of MIT around this
time. Compiled by Michael Beeler, R. William Gosper, and Richard
C. Schroeppel, it described ‘little known data’ of interest to com-
puter hackers, ‘to save some duplication of effort–except for fun’ [6].
It has become known to subsequent generations through references
like [65] and [98]. MACSYMA was weighted more heavily towards
the knowledge of special functions than were the other systems
at the time, and this memo reflects an important emphasis of that
software system.

ALTRAN continued its development during this time. We note
thatMorven Gentleman (1942–2018) is credited in the fourth edition
of the ALTRAN manual as being one of the developers, probably
in the early 1970s; some of us knew him later as an advisor for
the creation of the 1980s program Maple. Gentleman published
a paper in the SIGSAM Bulletin using ALTRAN for Truncated
Power Series [49]. Another related result was Gentleman showing
that, unexpectedly at the time, the optimal multiplication chain for
powering a polynomial was repeated multiplication by the original
polynomial [48].

Also in this period, George Collins (1928–2017) introduced his
SAC-1 system for polynomial arithmetic [24]. This system, written
in FORTRAN, included functions for polynomial GCD, factorization,

9Stephen R. Bourne is known for the Bourne shell, for work on ALGOL68, and for
having been President of the ACM. See his Wikipedia page https://en.wikipedia.org/
wiki/Stephen_R._Bourne.

https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://en.wikipedia.org/wiki/Stephen_R._Bourne

A Half-Century Perspective ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico

resultants, exact real zero calculation, partial fraction decomposi-
tion, rational function integration, and solution of systems of linear
equations with polynomial coefficients.

It is hard to overestimate the influence of SCRATCHPAD II
project that followed SCRATCHPAD I in the 1980s. The heady
“pure research” environment of IBM T.J. Watson Research Center
provided a hub for the exchange of ideas and technology. The in-
terchanges between visiting researchers and all kinds of scientists
and engineers led to many downstream effects. The principal fea-
ture that emerged from SCRATCHPAD II and that differentiated
it from other computer algebra systems (before or since) was its
formalization of the domains of computation. This enabled both
rigour and efficiency in a way that was both challenging (to the
user, sometimes) and satisfying to the researcher.

An example paper from this time is [74]. This paper appeared
in ACM Transactions on Mathematical Software, which even then
was an excellent vehicle for publication10. A comparison to the
report [75] published ten years earlier shows considerable devel-
opment: we see for instance what is now called “lazy evaluation,”
as well as considerably improved ease of use. Portability, however,
remained an issue for both works, although for completely different
reasons.

Leaving systems for the moment and considering algorithms,
major progress was made in this time period on the important
problems of multivariate GCD [71] and factorization [96, 97] using
ideal-adic methods [100]. This work—building on the work of others
as it does—marks the take-off of sophisticated modular methods in
computer algebra systems, which remain crucial system tools for
efficiency.

Several people have since observed that, in applications, multi-
variate polynomials factor frequently and usefully. This implies that
the results of these fundamental papers have had, in all likelihood,
an outstanding if underappreciated effect on the utility of symbolic
computation. Since multivariate polynomials with coefficients “cho-
sen at random” mostly do not factor at all, perhaps the extreme
utility of this work could not have been anticipated.

Perhaps themost highly-citedwork ever published in the SIGSAM
Bulletin was George E. Collins’ follow-up to [25], namely the ab-
stract [26] which is just outside our time frame, although the first
one is inside our time frame and is the one that has the actual
results (the second is just an abstract11). As of January 2025 that
abstract had been cited more than two and a half thousand times.
This reflects the importance of the topics of cylindrical algebraic
decomposition and quantifier elimination. Collins cites Tarski [92]
in that first-mentioned paper for the foundational work.

Descriptions of other applications of computer algebra contin-
ued to be published in this time period. For instance, consider [5],

10Some of the present authors feel that this journal was not as well-used historically by
the symbolic computation community as it might have been, perhaps because it was
viewed as primarily a “numerical” software journal. This (very symbolic) paper shows
that that perception was incorrect. There were a few further symbolic computation
papers in TOMS since this paper, and they tended to have good impact outside our
community, but there were not that many. More might have been better.
11At times one gets the idea that citation culture is irrational. We use Google Scholar
to count citations because of its wide disciplinary coverage. Although flawed, Google
Scholar citation counts are just a proxy for impact anyway, and because we use this
consistently at least it’s a reasonably fair comparator. Being off by, say, ten percent is
entirely likely, but with this many citations that doesn’t matter.

a very substantial paper of over seventy pages (including a seven-
page bibliography). This paper surveyed various applications in
physics: celestial mechanics, general relativity, and quantum elec-
trodynamics. It also gave an overview of computer algebra systems
for physicists (not just REDUCE), and from this paper we learn
that SIN by Joel Moses (mentioned above) already used Hermite
reduction to perform integration by partial fractions.

5 Towards more modern times
We leave off discussion of the history of symbolic computation
with a few short remarks leading to the present day. We do not
wish to give the impression that we believe that the current state is
uniformly better than that of the past. Indeed we do not hold that
opinion, and instead lament some lost opportunities (for efficiency,
for example). But there is no question that the fifty years since
1975 have wrought great change and in many cases very significant
advances. We do not tell that story here even in the laconic style we
used for the years 1965–1975, but rather just mention a few items.

• The first is the 1982 book edited by Buchberger, Collins,
Loos, and Albrecht. The table of contents is printed in [19],
where we see that a comprehensive overview of the field
is attempted for the first time. A significant collection of
historical material is present in the volume itself. This clearly
marks a degree of maturity in the field;

• The first textbooks on computer algebra (it may be invidious
to mention any particular one, but for instance the book [33]
was translated to many languages);

• Wen-tsünWu12 and themethod of characteristic sets 1978 [47],
starting the topic of automated deduction in geometry by
computer algebra tools that is still quite active (ADG confer-
ence series, see https://adg2023.matf.bg.ac.rs);

• The founding of the Journal of Symbolic Computation in 1985;
• The founding of the Research Institute for Symbolic Com-
putation (RISC)—Linz in 1987, of the Key Laboratory of
Mathematics-Mechanization (KLMM)-Beijing, also in 1987,
and of the Ontario Research Centre for Computer Algebra
(ORCCA)-London, Ontario, in 1997;

• The rise of the most popular modern commercial systems,
namely Maple and Mathematica, and the MATLAB Symbolic
Toolbox.

• The creation and development of Cayley, later MAGMA,
Macaulay, CoCoA and Singular. These last three were all
started in the 1980s and specialized in computational alge-
braic geometry;

• The D5 principle, as expounded by Dominique Duval and
others [36, 39];

• The merging of the SYMSAC conference series (held every 5
years from 1966 to 1986) with the interleaved European EU-
ROSAM/EUROCAM/EUROCAL stream to form the named
ISSAC stream in 1988, together annual since 1981 (for con-
ference chairs and program chairs see [27]);

• Developing visions of the future [11, 99];

12In the Western manner of family name last, his name is spelled variously Wenjun
Wu, Wen-Tsun Wu, Wen-tsun Wu, and Wen-tsün Wu. He himself used the latter, and
so we do the same.

https://adg2023.matf.bg.ac.rs

ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico Corless et al.

• Macsyma, AXIOM and REDUCE, all of which had previously
been either commercial or otherwise subject to redistribution
constraints were re-licensed as open source and the general
purpose capabilities they offered thus became available to all
cost-free. This also means that the algorithms and techniques
embedded within them could be studied by anybody who
was interested, and various volunteers support them right
up to the current day. These will now count as among the
oldest software products still being maintained and used;

• Continuing development of applications (for instance, the
Canadarm13)

• Continuing development of practical methods for exact so-
lution of linear systems [40];

• Portmanteau mathematical, engineering and educational
support software, led by SAGEMATH where symbolic com-
putation is supported alongside numerical work, visualiza-
tion and document preparation and presentation;

• Hardware design motivated by the special needs of our sub-
ject, including both the Xerox D-series machines, the MIT
Lisp machines14 [51] and FLATS[50]. Some of these hard-
ware projects have left a lasting impact on modern ways of
using personal computers, while others were eclipsed by the
rising tide of cheap fast processors.

5.1 Other histories
Wehavementioned already some historically-oriented papers. Then
there is the telegraphic list at Brian Evans’s History of Computer
Algebra15.

In [94] we find a history of computer algebra starting in the 1980s,
traced back through the Spanish engineer and inventor Torres–
Quevedo (1852–1936) and before. That paper takes as its actual
starting point the results of SYMSAC ’86 and the meeting of the
one of the present authors there with Wen-tsün Wu, and works its
way backward.

6 Significant omissions
We have not discussed the history of the use of computer algebra
in education, even though it has been very important for many
members of our community since the beginning. We might have
included the creation of the computer language LOGO in 1967.
Instead we point to the history at [89], and leave that story for
another day.

Automatic reasoning, then called theorem proving, was men-
tioned as an interest of the members of SICSAM in the very first
issue of the Bulletin. Yet we have not mentioned much about the
developments in 1965–1975 apart from the quantifier elimination
work. There is much more to say.

We mentioned the two-dimensional math output of MathLab,
but the whole subject of human-computer interaction has had a
“test laboratory” in computer algebra systems. Input of complex

13https://www.asc-csa.gc.ca/eng/canadarm/, http://www.maplesoft.com/view.aspx?
SF=141144/ChangingFaceRobotic.pdf
14See https://en.wikipedia.org/wiki/Lisp_machine. See also the discussion at https:
//en.wikipedia.org/wiki/Symbolics and the adversarial connection to the modern GNU
project.
15http://felix.unife.it/Root/d-Mathematics/d-The-mathematician/d-History-of-
mathematics/t-History-of-computer-algebra

objects, control of highly structured objects where transformations
from one class to another are routinely desired, and sophisticated
visualization of the output have all been desiderata. Simultaneously
there has been a strong need for standardized dissemination of the
results.

Neither have we talked about visualization or illustration of
mathematical concepts. One very amusing visualization in the 1975
Bulletin is by Donald E. Knuth [62], where in describing the then-
current state of his “Volume 2, Seminumerical algorithms” he in-
cludes a hand-drawn chart of editing changes.

7 Concluding remarks
We have given a brief summary of work in computer algebra and
symbolic computation, concentrating on the period 1965–1975,
ending fifty years ago. This time period was chosen in part because
this ISSAC is the fiftieth since SYMSAC ’66, the founding conference
organized by Jean Sammet. We have spent a bit more space in
this paper in detailing her contributions, which we believe were
formative for the community.

During 1965–1975, several important features of our current
set of tools were established: efficient methods for dealing with
polynomials and series, effective methods for differentiation and
integration, methods for solving linear and nonlinear algebraic
equations, and manipulations of special functions. One major idea
driving our subject early on was Artificial Intelligence. Another
could loosely be termed “solving equations”. In each case the work
was notable for being sharply constrained by the amount of memory
that was available.

A half-century and more later, we can see the discipline of “sym-
bolic computation,” which had split off into its own island state
for a while, beginning to move back to merge with other sorts of
computer work, bringing with it its style of mathematical discipline.
And as it impinges on AI it joins in where hundreds of gigabytes
strain current resources. Application areas that will have benefited
from analytic derivation of the exact computation rules for compu-
tational chemistry and fluid dynamics and others are in a similar
situation.

Jean Sammet observed early on that “expressions grow to exceed
the space available” [83]. This has held true to a really astonishing
extent! Even today, Gröbner Bases and Quantifier Elimination can
have explosive memory demands even on problems of modest size.

It is becoming evident that knowing the history of computer
algebra and symbolic computation is important for the general
public, not just for us. By the time of this ISSAC meeting, the
authors of this paper will have run a session on historical topics
at the 30th Applications of Computer Algebra (ACA) conference
in Crete in July 2025. The plan there is to have a number of first-
hand reports from individuals who were present in earlier days,
and then to form a group to build up a fuller record of this history
in book form. Those who read this paper and who have relevant
information or insight are encouraged to get in touch so that they
can provide input to that enterprise.

https://www.asc-csa.gc.ca/eng/canadarm/
http://www.maplesoft.com/view.aspx?SF=141144/ChangingFaceRobotic.pdf
http://www.maplesoft.com/view.aspx?SF=141144/ChangingFaceRobotic.pdf
https://en.wikipedia.org/wiki/Lisp_machine
https://en.wikipedia.org/wiki/Symbolics
https://en.wikipedia.org/wiki/Symbolics
http://felix.unife.it/Root/d-Mathematics/d-The-mathematician/d-History-of-mathematics/t-History-of-computer-algebra
http://felix.unife.it/Root/d-Mathematics/d-The-mathematician/d-History-of-mathematics/t-History-of-computer-algebra

A Half-Century Perspective ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico

Acknowledgments
This project was begun in a conversation at a meeting of the Com-
putational Epistemology Think Tank run by The Rotman Institute
of Philosophy. We have relied significantly on the record kept by
the ACM Digital Library. We are grateful to Bruno Buchberger for
encouragement and comments on an earlier draft. We also thank
the referees, and Michael Monagan, for their comments and sug-
gestions, many of which were extremely helpful.

Note Added in Proof: Michael Monagan read the arXiv preprint
of this paper and pointed out some additional references, including
the work of Zassenhaus who in [101] converted Hensel’s lemma into
what is now known as “Hensel lifting,” and other important work
on multivariate GCD, such as [13], which was required to avoid the
phenomenon of intermediate expression swell. Other suggestions of
his will be taken into account for any future version of this paper.

References
[1] Erwin H. Bareiss. 1968. Sylvester’s identity and multistep integer-preserving

Gaussian elimination. Mathematics of computation 22, 103 (1968), 565–578.
[2] Erwin H. Bareiss. 1972. Computational solutions of matrix problems over an

integral domain. IMA Journal of Applied Mathematics 10, 1 (1972), 68–104.
[3] David Barton. 1967. A Scheme for Manipulative Algebra on a Computer. Comput.

J. 9, 4 (02 1967), 340–344. https://doi.org/10.1093/comjnl/9.4.340
[4] David Barton, Stephen R. Bourne, and Colin J. Burgess. 1968. A simple algebra

system. Comput. J. 11, 3 (01 1968), 293–298. https://doi.org/10.1093/comjnl/11.
3.293

[5] David Barton and John P. Fitch. 1972. Applications of algebraic manipulation
programs in physics. Reports on Progress in Physics 35, 1 (1972), 235.

[6] Michael Beeler, R. William Gosper, and Richard Schroeppel. 1972. HAKMEM.
Technical Report AIM 239. MIT AI Lab.

[7] Bernice Bender. 1966. A computer system for algebra and analytic differ-
entiation. In Proceedings of the First ACM Symposium on Symbolic and Al-
gebraic Manipulation (SYMSAC ’66). ACM, New York, NY, USA, 0201–0227.
https://doi.org/10.1145/800005.807967

[8] Thomas J. (Tim) Bergin and Jean E. Sammet. 2006. Jean E. Sammet interview:
March 28, April 4, April 11 and April 18, 2006. In ACM Oral History Interviews.
ACM, New York, NY, USA, 78 pages. https://doi.org/10.1145/1141880.1243440

[9] Elwyn R. Berlekamp. 1967. Factoring Polynomials over Finite Fields. Bell System
Technical Journal 46 (1967), 1853–1859.

[10] Myrna D Bernick, E. David Callender, and J. R. Sanford. 1961. ALGY—an alge-
braic manipulation program. In Papers presented at the May 9-11, 1961, western
joint IRE-AIEE-ACM computer conference. ACM, New York, NY, USA, 389–392.

[11] Ann Boyle and Bobby F. Caviness. 1988. Future directions for research in
symbolic computation. In Report on Symbolic Algebraic Computations Workshop,
April, TR-200. Society for Industrial and Applied Mathematics, Washington DC,
USA, 29–30.

[12] Claude Brezinski, Gérard Meurant, and Michela Redivo-Zaglia. 2022. A Journey
through the History of Numerical Linear Algebra. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9781611977233

[13] William S Brown. 1971. On Euclid’s algorithm and the computation of poly-
nomial greatest common divisors. Journal of the ACM (JACM) 18, 4 (1971),
478–504.

[14] Bruno Buchberger. 1965. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. Ph. D. Disserta-
tion. Mathematical Institute, Leopold Franzens University, Innsbruck, Austria.

[15] Bruno Buchberger. 1970. Ein algorithmisches Kriterium für die Lösbarkeit eines
algebraischen Gleichungssystems. Aequationes Mathematicae 4, 3 (Oct. 1970),
374–383. https://doi.org/10.1007/bf01844169

[16] Bruno Buchberger. 1976. A theoretical basis for the reduction of polynomials
to canonical forms. SIGSAM Bull. 10, 3 (Aug. 1976), 19–29. https://doi.org/10.
1145/1088216.1088219

[17] Bruno Buchberger. 1998. An Algorithmic Criterion for the Solvability of Alge-
braic Systems of Equations. InGröbner Bases and Applications, Bruno Buchberger
and Franz Winkler (Eds.). London Mathematical Society Lecture Note, Vol. 251.
Cambridge University Press, Cambridge, UK, 535–545.

[18] Bruno Buchberger. 2006. Bruno Buchberger’s PhD thesis 1965: An algorithm
for finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal. Journal of Symbolic Computation 41, 3 (2006), 475–511. https:
//doi.org/10.1016/j.jsc.2005.09.007 Logic, Mathematics and Computer Science:
Interactions in honor of Bruno Buchberger (60th birthday).

[19] Bruno Buchberger, George E. Collins, Rüdiger Loos, and Rudolf Albrecht. 1982.
Computer algebra symbolic and algebraic computation. SIGSAM Bull. 16, 4 (Nov.
1982), 5. https://doi.org/10.1145/1089310.1089312

[20] Bruno Buchberger, George E. Collins, and Rüdiger Loos with the cooperation
of Rudolf Albrecht (Eds.). 1982. Computer algebra — symbolic and algebraic
computation. Springer, Vienna. i–vi, 1–283 pages.

[21] Bobby F. Caviness. 1970. On canonical forms and simplification. Journal of the
ACM (JACM) 17, 2 (1970), 385–396.

[22] Alonzo Church. 1936. Correction to A Note on the Entscheidungsproblem. The
Journal of Symbolic Logic 1, 3 (1936), 101–102.

[23] Alonzo Church. 1936. A Note on the Entscheidungsproblem. The Journal of
Symbolic Logic 1, 1 (1936), 40–41.

[24] George E. Collins. 1971. The SAC-1 system: An introduction and survey. In
SYMSAC’71: Proceedings of the second ACM symposium on Symbolic and algebraic
manipulation. ACM, New York, 144–152. https://doi.org/10.1145/800204.806279

[25] George E. Collins. 1974. Quantifier elimination for real closed fields by cylin-
drical algebraic decomposition-–preliminary report. SIGSAM Bulletin (ACM
Special Interest Group on Symbolic and Algebraic Manipulation) 8, 3 (Aug. 1974),
80–90.

[26] George E Collins. 1976. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition: a synopsis. ACM SIGSAM Bulletin 10, 1 (1976), 10–12.

[27] ISSAC Steering Committee. 2025. Past ISSAC Conferences. https://www.issac-
conference.org/past.php.

[28] Stephen A. Cook. 1966. On the minimum computation time of functions. Ph. D.
Dissertation. Harvard University.

[29] Stephen A. Cook and Stál O. Aanderaa. 1969. On the minimum computation
time of functions. Trans. Amer. Math. Soc. 142, 0 (1969), 291–314. https://doi.
org/10.1090/s0002-9947-1969-0249212-8

[30] Elizabeth Cuthill. 1966. A FORMAC program for the solution of linear bound-
ary and initial value problems. In Proceedings of the First ACM Symposium on
Symbolic and Algebraic Manipulation (SYMSAC ’66). ACM, New York, NY, USA,
0801–0850. https://doi.org/10.1145/800005.807958

[31] Elizabeth Cuthill and James McKee. 1969. Reducing the bandwidth of sparse
symmetric matrices. In Proceedings of the 1969 24th National Conference (ACM
’69). ACM, New York, NY, USA, 157–172. https://doi.org/10.1145/800195.805928

[32] J. M. A. Danby, AndréDeprit, andA. R.M. Rom. 1966. The symbolicmanipulation
of Poisson series. In Proceedings of the First ACM Symposium on Symbolic and
Algebraic Manipulation (SYMSAC ’66). ACM, New York, NY, USA, 0901–0934.
https://doi.org/10.1145/800005.807970

[33] J. H. Davenport, Y. Siret, and E. Tournier. 1993. Computer Algebra, Systems and
Algorithms for Algebraic Computation (2nd ed.). Academic Press, USA.

[34] Amanda Davis. 2024. Jean Sammet, the accidental programmer. IEEE Spectrum 61
(December 2024). https://spectrum.ieee.org/jean-sammet-accidental-computer-
programmer

[35] Martin Davis, Hilary Putnam, and Julia Robinson. 1961. The Decision Problem
for Exponential Diophantine Equations. The Annals of Mathematics 74, 3 (Nov.
1961), 425–436. https://doi.org/10.2307/1970289

[36] Jean Della Dora, Claire Dicrescenzo, and Dominique Duval. 1985. About a new
method for computing in algebraic number fields. Lecture Notes in Computer
Science, Vol. 204. Springer, Berlin Heidelberg, 289–290. https://doi.org/10.1007/
3-540-15984-3_279

[37] André Deprit. 1969. Canonical transformations depending on a small parameter.
Celestial mechanics 1, 1 (1969), 12–30.

[38] Stephanie A. Dick. 2020. Coded conduct: making MACSYMA users and the
automation of mathematics. BJHS Themes 5 (2020), 205–224. https://doi.org/10.
1017/bjt.2020.10

[39] Claire Dicrescenzo and Dominique Duval. 1989. Algebraic extensions and al-
gebraic closure in Scratchpad II. Lecture Notes in Computer Science, Vol. 358.
Springer, Berlin Heidelberg, 440–446. https://doi.org/10.1007/3-540-51084-2_41

[40] John D. Dixon. 1982. Exact solution of linear equations using p-adic expansions.
Numer. Math. 40, 1 (1982), 137–141.

[41] Carl Engelman. 1965. MATHLAB: a program for on-line machine assistance in
symbolic computations. In Proceedings of the November 30–December 1, 1965,
fall joint computer conference, part II: computers: their impact on society. ACM,
New York, 117–126.

[42] D.J. Farber, R.E. Grisold, and I.P. Polonsky. 1963. A Preliminary Report on
the String Manipulation Language SNOBOL. Technical Report Unpublished
Technical Memorandum 63-3344-2. Bell Telephone Laboratories.

[43] D.J. Farber, R.E. Grisold, and I.P. Polonsky. 1964. SNOBOL, a string manipulation
language. J. ACM 11, 1 (1964), 21–30.

[44] Lawrence M Fisher. 2017. Jean E. Sammet 1928–2017. Commun. ACM 60, 7
(2017), 22–22.

[45] John P. Fitch. 2009. CAMAL 40 Years on - Is Small Still Beautiful?. In Intelligent
Computer Mathematics, 16th Symposium, Calculemus 2009, 8th International
Conference, MKM 2009, Held as Part of CICM 2009, Grand Bend, Canada, July 6-12,
2009. Proceedings (Lecture Notes in Computer Science, Vol. 5625), Jacques Carette,
Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt (Eds.). Springer,
Berlin, Heidelberg, 32–44. https://doi.org/10.1007/978-3-642-02614-0_8

https://doi.org/10.1093/comjnl/9.4.340
https://doi.org/10.1093/comjnl/11.3.293
https://doi.org/10.1093/comjnl/11.3.293
https://doi.org/10.1145/800005.807967
https://doi.org/10.1145/1141880.1243440
https://doi.org/10.1137/1.9781611977233
https://doi.org/10.1007/bf01844169
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1145/1089310.1089312
https://doi.org/10.1145/800204.806279
https://www.issac-conference.org/past.php
https://www.issac-conference.org/past.php
https://doi.org/10.1090/s0002-9947-1969-0249212-8
https://doi.org/10.1090/s0002-9947-1969-0249212-8
https://doi.org/10.1145/800005.807958
https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/800005.807970
https://spectrum.ieee.org/jean-sammet-accidental-computer-programmer
https://spectrum.ieee.org/jean-sammet-accidental-computer-programmer
https://doi.org/10.2307/1970289
https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1017/bjt.2020.10
https://doi.org/10.1017/bjt.2020.10
https://doi.org/10.1007/3-540-51084-2_41
https://doi.org/10.1007/978-3-642-02614-0_8

ISSAC ’25, July 28-August 1, 2025, Guanajuato, Mexico Corless et al.

[46] John P. Fitch, P. Herbert, and Arthur C. Norman. 1976. Design features of
COBALG. In Proceedings of the third ACM symposium on Symbolic and algebraic
computation. ACM, New York, 185–188.

[47] Xiao-Shan Gao. 2017. Wen-Tsun Wu: His Life and Legacy. ACM Commun.
Comput. Algebra 51, 2 (Oct. 2017), 73–79. https://doi.org/10.1145/3151131.
3151136

[48] W. Morven Gentleman. 1972. Optimal Multiplication Chains for Computing a
Power of a Symbolic Polynomial. Math. Comp. 26, 120 (1972), 935–939.

[49] W. Morven Gentleman. 1974. Experience with truncated power series. SIGSAM
Bull. 8, 3 (1974), 61–62. https://doi.org/10.1145/1086837.1086846

[50] E. Goto, T. Soma, N. Inada, T. Ida, M. Idesawa, K. Hiraki, M. Suzuki, K. Shimizu,
and B. Philipov. 1982. Design of a Lisp machine - FLATS. In Proceedings of
the 1982 ACM Symposium on LISP and Functional Programming (Pittsburgh,
Pennsylvania, USA) (LFP ’82). ACM, New York, NY, USA, 208–215. https:
//doi.org/10.1145/800068.802152

[51] Richard D. Greenblatt, Thomas F. Knight, John T. Holloway, and David A. Moon.
1980. A LISP machine. SIGIR Forum 15, 2 (March 1980), 137–138. https:
//doi.org/10.1145/1013881.802703

[52] James H. Griesmer and Richard D. Jenks. 1971. SCRATCHPAD/1—an interactive
facility for symbolic mathematics. In Proc. 2nd Symposium on Symbolic and
Algebraic Manipulation. ACM, New York, 45–53.

[53] Ralph E. Griswold. 1978. A History of the SNOBOL Programming Langauges.
ACM Sigplan Notices 13, 8 (1978), 275–308.

[54] Walter Habicht. 1948. Zur inhomogenen Eliminationstheorie. Commen-
tarii Mathematici Helvetici 21, 1 (Dec. 1948), 79–98. https://doi.org/10.1007/
bf02568027

[55] James W. Hanson, Jane Shearin Caviness, and Camilla Joseph. 1962. Analytic
differentiation by computer. Commun. ACM 5, 6 (June 1962), 349–355. https:
//doi.org/10.1145/367766.368195

[56] Anthony C. Hearn. 1966. Computation of Algebraic Properties of Elementary
Particle Reactions Using a Digital Computer. Comm. ACM 9, 8 (1966), 573–577.
https://doi.org/10.1145/365758.365766

[57] Anthony C. Hearn. 1968. REDUCE: A User-Oriented Interactive System for Alge-
braic Simplification. In Interactive Systems for Experimental Applied Mathematics,
M. Klerer and J. Reinfelds (Eds.). Academic Press, New York, 79–90.

[58] Anthony C. Hearn. 2005. REDUCE: The First Forty Years. In Algorithmic Algebra
and Logic. Proceedings of the A3L, Andreas Dolzmann, Andreas Seidl, and Thomas
Sturm (Eds.). Books on Demand GmbH, Norderstedt, 19–24. http://reduce-
algebra.com/reduce40.pdf

[59] Grete Hermann. 1926. Die Frage der endlich vielen Schritte in der Theorie der
Polynomideale: Unter Benutzung nachgelassener Sätze von K. Hentzelt. Math.
Ann. 95, 1 (1926), 736–788.

[60] Grete Hermann. 1998. The question of finitely many steps in polynomial ideal
theory. SIGSAM Bull. 32, 3 (Sept. 1998), 8–30. https://doi.org/10.1145/307339.
307342

[61] A. Karatsuba and Yu. Ofman. 1962. Multiplication of many-digital numbers by
automatic computers. Dokl. Akad. Nauk SSSR 145 (1962), 293–294. Issue 2.

[62] Donald E. Knuth. 1975. Son of seminumerical algorithms. ACM SIGSAM Bulletin
9, 4 (1975), 10–11.

[63] S. Y. Ku and R. J. Adler. 1969. Computing polynomial resultants: Bezout’s
determinant vs. Collins’ reduced P.R.S. algorithm. Commun. ACM 12, 1 (Jan.
1969), 23–30. https://doi.org/10.1145/362835.362839

[64] C.Y. Lee et al. 1962. A Language for Symbolic Communication. Technical Report
Unpublished Technical Memorandum 62-3344-4. Bell Telephone Laboratories.

[65] Steven Levy. 1984. Hackers: Heroes of the Computer Revolution. Anchor
Press/Doubleday, USA. Google-Books-ID: o3YfAQAAIAAJ.

[66] John D. Lipson. 1971. Chinese remainder and interpolation algorithms. In Pro-
ceedings of the second ACM symposium on Symbolic and algebraic manipulation.
ACM, New York, 372–391.

[67] Jan Łukasiewicz. 1931. Uwagi o aksjomacie Nicod’a io „dedukcji uogólniającej”.
skł. gł. Księgarnia SA Książnica-Atlas, Lviv. https://sbc.org.pl/dlibra/publication/
edition/18864

[68] John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. Commun. ACM 3, 4 (1960), 184–195. https:
//doi.org/10.1145/367177.367199

[69] S. Millman (Ed.). 1984. A History of Engineering and Science in the Bell System:
Communications sciences (1925-1980). AT & T Bell Laboratories, Murray Hill.

[70] Joel Moses. 2012. Macsyma: A personal history. , 123–130 pages.
[71] Joel Moses and David Y. Y. Yun. 1973. The EZ GCD algorithm. In ACM’73:

Proceedings of the ACM annual conference. ACM, New York, 159–166. https:
//doi.org/10.1145/800192.805698

[72] Vanni Noferini and Alex Townsend. 2016. Numerical instability of resultant
methods for multidimensional rootfinding. SIAM J. Numer. Anal. 54, 2 (2016),

719–743.
[73] Joachim von zur Gathen and Jürgen Gerhard. 2003. Modern computer algebra.

Cambridge University Press, Cambridge, UK.
[74] Arthur CNorman. 1975. Computingwith formal power series. ACMTransactions

on Mathematical Software (TOMS) 1, 4 (1975), 346–356.
[75] Allen Reiter. 1965. Automatic generation of Taylor coefficients (TAYLOR). Math-

ematics Research Center, United States Army, the University of Wisconsin,
USA.

[76] Daniel Richardson. 1969. Some undecidable problems involving elementary
functions of a real variable. The Journal of Symbolic Logic 33, 4 (1969), 514–520.

[77] Robert H. Risch. 1969. The problem of integration in finite terms. Trans. Amer.
Math. Soc. 139 (1969), 167–189.

[78] Robert H. Risch. 1970. The solution of the problem of integration in finite terms.
Bull. Amer. Math. Soc. 76 (1970), 605–608.

[79] Maxwell Rosenlicht. 1968. Liouville’s theorem on functions with elementary
integrals. Pacific J. Math. 24, 1 (1968), 153–161.

[80] Maxwell Rosenlicht. 1972. Integration in finite terms. The American Mathemati-
cal Monthly 79, 9 (1972), 963–972.

[81] Jean E. Sammet. 1966. Survey of formula manipulation. Commun. ACM 9, 8
(Aug. 1966), 555–569. https://doi.org/10.1145/365758.365762

[82] Jean E. Sammet. 1967. Formula manipulation by computer. In Advances in
Computers. Vol. 8. Academic Press (Elsevier), New York, 47–102.

[83] Jean E. Sammet. 1967. Programming Languages: History and Fundamentals.
Prentice-Hall, Englewood Cliffs, New Jersey.

[84] Jean E. Sammet. 1972. Programming languages: history and future. Commun.
ACM 15, 7 (July 1972), 601–610. https://doi.org/10.1145/361454.361485

[85] Jean E. Sammet. 1990s. personal communication.
[86] Tateaki Sasaki. 1979. An arbitrary precision real arithmetic package in REDUCE.

In Symbolic and Algebraic Computation, EUROSAM ’79, An International Sym-
posium on Symbolic and Algebraic Computation, Marseille, France, June 1979,
Proceedings (Lecture Notes in Computer Science, Vol. 72), Edward W. Ng (Ed.).
Springer, Berlin, Heidelberg, 358–368. https://doi.org/10.1007/3-540-09519-5_87

[87] Arnold Schönhage and Volker Strassen. 1971. Fast multiplication of large
numbers. Computing 7 (1971), 281–292.

[88] James R. Slagle. 1961. A heuristic program that solves symbolic integration
problems in freshman calculus: symbolic automatic integrator (SAINT). Ph. D.
Dissertation. Massachusetts Institute of Technology.

[89] Cynthia Solomon, Brian Harvey, Ken Kahn, Henry Lieberman, Mark L. Miller,
Margaret Minsky, Artemis Papert, and Brian Silverman. 2020. History of LOGO.
Proceedings of the ACM on Programming Languages 4, HOPL (2020), 1–66.

[90] Alma Steingart. 2023. Axiomatics: Mathematical Thought and High Modernism.
University of Chicago Press, USA.

[91] Volker Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13, 4
(1969), 354–356. https://doi.org/10.1007/BF02165411

[92] Alfred Tarski. 1948. A decision method for elementary algebra and geometry. In
Quantifier elimination and cylindrical algebraic decomposition. Springer, Vienna,
24–84.

[93] Andrei L. Toom. 1963. The complexity of a scheme of functional elements
simulating the multiplication of integers. Doklady Akad. Nauk SSSR 150, 3
(1963), 496–498.

[94] M. Pilar Vélez, Tomás Recio, and Carlos Ueno. 2022. Niagara Falls and the
Origins of Computer Algebra. Maple Transactions 2, 1 (Sept. 2022), 14 pages.
https://doi.org/10.5206/mt.v2i1.14362

[95] Martinus J. Veltman. 1963. A CDC 6600 program for symbolic evaluation of
algebraic expressions. Technical Report. CERN. https://vsys.physics.lsa.umich.
edu/schip-docs/CERN-Schoonschip-1967.pdf

[96] Paul S. Wang and Linda Preiss Rothschild. 1973. Factoring multivariate poly-
nomials over the integers. ACM SIGSAM Bulletin , 28 (Dec. 1973), 21–29.
https://doi.org/10.1145/1086814.1086819

[97] Paul S. Wang and Linda Preiss Rothschild. 1975. Factoring multivariate polyno-
mials over the integers. Math. Comp. 29, 131 (1975), 935–950.

[98] Henry S. Warren. 2002. Hacker’s Delight. Addison-Wesley Professional, Boston.
Google-Books-ID: h3zvwQEACAAJ.

[99] Stephen M. Watt. 2009. On the Future of Computer Algebra Systems at the
Threshold of 2010. In Proceedings of the Joint Conference of ASCM 2009 and
MACIS 2009: Asian Symposium of Computer Mathematics and Mathematical
Aspects of Computer and Information Sciences (COE Lecture Notes, Vol. 22). Kyushu
University, Japan, 422–430.

[100] David Y. Y. Yun. 1974. The Hensel lemma in algebraic manipulation. Ph. D.
Dissertation. MIT.

[101] Hans Zassenhaus. 1969. On Hensel factorization I. J. Number Theory 1, 1 (1969),
291–311.

https://doi.org/10.1145/3151131.3151136
https://doi.org/10.1145/3151131.3151136
https://doi.org/10.1145/1086837.1086846
https://doi.org/10.1145/800068.802152
https://doi.org/10.1145/800068.802152
https://doi.org/10.1145/1013881.802703
https://doi.org/10.1145/1013881.802703
https://doi.org/10.1007/bf02568027
https://doi.org/10.1007/bf02568027
https://doi.org/10.1145/367766.368195
https://doi.org/10.1145/367766.368195
https://doi.org/10.1145/365758.365766
http://reduce-algebra.com/reduce40.pdf
http://reduce-algebra.com/reduce40.pdf
https://doi.org/10.1145/307339.307342
https://doi.org/10.1145/307339.307342
https://doi.org/10.1145/362835.362839
https://sbc.org.pl/dlibra/publication/edition/18864
https://sbc.org.pl/dlibra/publication/edition/18864
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/800192.805698
https://doi.org/10.1145/800192.805698
https://doi.org/10.1145/365758.365762
https://doi.org/10.1145/361454.361485
https://doi.org/10.1007/3-540-09519-5_87
https://doi.org/10.1007/BF02165411
https://doi.org/10.5206/mt.v2i1.14362
https://vsys.physics.lsa.umich.edu/schip-docs/CERN-Schoonschip-1967.pdf
https://vsys.physics.lsa.umich.edu/schip-docs/CERN-Schoonschip-1967.pdf
https://doi.org/10.1145/1086814.1086819

	Abstract
	1 Introduction
	2 1964 and before
	3 1965–1970
	4 1971–1975
	5 Towards more modern times
	5.1 Other histories

	6 Significant omissions
	7 Concluding remarks
	Acknowledgments
	References

